
A Multi-dimensional Data Storage Using Quad-tree and Z-Ordering

Fang Hou, Chenghui Huang, Jiyuan Lu
Department of Computer Science and Technology

Guangdong University of Finance
Guangzhou, China

e-mail: hfhoufang@tom.com

Abstract—Multi-dimensional applications use tree structure to
store data and space filling curves to traverse data. Most
frequently used Quad-tree and Z-ordering curve are analyzed.
By importing these to a HDF5 file format, a multi-dimensional
data storage subsystem is constructed. Performance test results
show in a sequential reading application environment, this
method is feasible and efficient.

Keywords-storage, multi-dimensional, performance, data
structure,

I. INTRODUCTION

A multi-dimensional data processing procedure includes
data generation, data (In-Situ)[1] compression and
decompression, data storage, data query, data transport, data
simulation, etc. A lot of High Performance Computer (HPC)
systems have been implemented to process multi-
dimensional data in scientific research, industry and business
area.

A typical storage capacity of a HPC system exceeds a
scale of ExaBytes (260bytes). The fundamental function of
storage subsystem is to load/store data to/from main memory.
IBM Sequoia Blue Gene/Q, the newest No.1 HPC system on
the TOP500 list published on June 2012[2], owns a 1,572,864
GB main memory(Top500org 2012). Scott Klasky[3] defined
an effective speed index of storage system to evaluate the I/O
speed for HPC systems. This index equals the time of writing
system’s whole main memory to file system. For instance,
the index of the ASCI purple system is 49 TB/140 GB/s
(=358.4s), and this of the Jaguar system is 300 TB/200 GB/s
(=1536s). Although the bandwidth of storage subsystem has
been increasing steadily, transferring whole main memory to
storage system takes more and more time, especially all the
HPC systems prefer to an increasing mass main memory
capacity.

In terms of random accesses for multi-dimensional data,
the response latency of hard disks based storage system is
about 100ms. Fortunately, multi-dimensional applications
rarely perform arbitrarily random accesses. For example,
although a user may navigate a simulated scene in a random
direction in a 3-D virtual reality situation, data needed to
render new images are located in space unites which are
adjacent to the current space unit. This feature makes cache
technology valuable.

To narrowing the performance gap between data process
subsystem and data storage subsystem, researchers have
dedicated to data access pattern, data structure, file systems

and formats, and I/O optimization for recent years. The
following of this note will summarize these results
respectively.

II. CHARACTERISTICS OF MULTI-DIMENSIONAL DATA

ACCESS

Multi-dimensional data of applications is accessed
generally in 6 patterns[3]:

 Figure 1 Data area accessed by different patterns
 (1) Separated write and read pattern. Data is created by

one or more process, and is retrieved by one or more process.
For example, a 3-D data set is created by sampling program
or simulation program, and then was compressed by an In-
Situ process. Then this data set is accessed by a query
process or a virtual reality process.

(2) Specific parameters access pattern. Several
dimensions of all the stored data is retrieved. For instance, a
query for all the 3-D velocity is executed to trace the particle
movements.

(3) Specific parameter access pattern. Only one
dimension of all the stored data is retrieved. For example, a
query only for the temperature of the position in 3-D space is
executed.

(4) Specific plane access pattern. The multi-
dimensional data set is sliced to several planes. A process
accesses all the data on one specific plane. See Figure 1(a).

(5) Specific sub plane access pattern. The multi-
dimensional data set is sliced to several planes. A process
accesses the data belongs to part of this plane. For example,
a rectangle area of this plane. See Figure 1 (b).

(6) Specific sub cubic access pattern. The data set is
divided into several sub-cubes. A process accesses all the
data inside one specific cube. See Figure 1 (c).

III. DATA STRUCTURE AND SPACE FILLING CURVE

A. Quad-tree data structure

Several data structures of multi-dimensional application
was illustrated in Gaede’s survey[4]. Geade’s paper divided
data structure forms into 2 categories: 1) Basic data structure.
The paper introduced several kinds of trees by which multi-

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2149

dimensional data was organized in main memory. 2) Point
access methods. The paper listed some kinds of hashing file
and trees by which multi-dimensional data was stored in
secondary storage device.

In main memory, all the tree structures attached
importance to depth of specific leaf node search, time
complexity of insertion or deletion operations. Besides
aforementioned factors, the point access methods took data
layout into consideration. Because applications have almost
the same time of accesses to any unit in main memory, but
time of accesses to different disk sectors varies within a large
range.

But most widely accepted multi-dimensional tree
structures have already taken disk accesses into
consideration. For example, an R*-tree[5] modified R-tree’s[6]
insertion algorithm to achieve better disk access performance.
So, the tree structures in this note will not be categorized in
this way.

The most common used data structures for multi-
dimensional application are the following 7 kinds of trees: k-
d-tree[7], BSP-tree[8], R-tree, R+-tree[9], R*-tree, Quad-tree[10],
and Oct-tree[11]. The first 2 are binary trees, the branches
numbers of following 3 are not fixed, and the last 2 are
configured by dimension numbers of the data objects.

Generally, a tree consists of non-leaf nodes and leaf
nodes. In multi-dimensional applications, a non-leaf node
can be expressed by: (I, Child-pointer), and leaf node can be
expressed by: (I, Tuple-identifier). In both nodes, the I is the
bounding box of a specific multi-dimensional object. For
instance, in a 2-D case, I={x[a,b] ,y[c,d] } means the data object
is in a closed area within [a, b] on x-axis, and [c, d] on y-axis.
In some cases, the term MBR (Minimum Boundary
Rectangle) is used to refer this I. The Child-pointer points to
non-leaf node, and the Tuple-identifier indicates the location
where a specific data object stores.

The Quad-tree recursively split a rectangle area into 4
parts. All parts are of same size. Figure 2(a) shows the whole
body is divided into NE, SE, SW, and NW parts, and the
NW can be split into another smaller NE, SE, SW and NW
parts. Figure 2(b) is the formed region Quad-tree.

 Figure 2 An example of Quad-tree
B. Z-ordering Space filling curves

To map multi-dimensional data objects to 1-D objects,
several space filling curves have been designed. Most of
them are continuous self-similar fractal curves.

There are 2 curves are widely accepted as spacing filling
methods for present multi-dimensional applications: Hilbert
Curve and Z-Ordering Curve.

(1) Hilbert Curve:

As its name indicates, this curve was proposed by David
Hilbert in 19th century. Figure 3(a) is a 2-D Hilbert Curve
and (b) is a 3-D curve. The innermost black line in Figure
3(a) is a first order Hilbert curve, the middle black line is a
second order one, and the gray line is a third order one. It
illustrates how a Hilbert curve can recursively explore a
space. By these lines, the particles or rectangles in this 2-D
space can be visited in a linear order. It makes mapping 2-D
objects to 1-D objects possible. There are mature algorithms
for finding out the Hilbert order which are important to
perform operations such as searching, deleting and inserting.

The Hilbert Curve combined with an R-tree data
structure[12] has been widely adopted in multi-dimensional
applications.

 Figure 3 Hilbert Curve in 2-D and 3-D
(2) Z-Ordering Curve:
Z-Ordering curve was introduced by Morten(Morton

1966) in 1966. The z-value of a point in multi-dimensional
space is simply calculated by interleaving the binary
representations of its coordinate values. Figure 4 shows Z-
ordering curves in 2-D and 3-D situations.

 Figure 4 Z-Ordering Curve in 2-D and 3-D
Once the data are sorted into this ordering, any one-

dimensional data structure can be used such as binary search
trees, B-trees, skip lists or (with low significant bits truncated)
hash tables.

IV. AN EXAMPLE OF Z-ORDERING QUAD-TREE STORAGE

A. Data Structure

The resulting ordering can equivalently be described as
the order one would get from a depth-first traversal of a
Quad-tree. Because of its close connection with the Quad-
tree, the Z-ordering can be used to efficiently construct a
Quad-tree and related higher dimensional data structures.
Some detailed information is given in Section 3.6 of this note.

The order of how to store these 4 sub-areas has a tight
connection with the space filling curve. The above structure
suits a Hilbert curve very well. If a multi-dimensional
application adopts a Z-ordering curve, constructing a Quad-
tree with the order of SE, SW, NE and NW will be more
efficient for data accesses. Finkel[13] suggested that the sub-
areas could be unequal to decrease average search depth. All
the objects were ordered by their x coordinates primarily and
by y coordinates secondly. Then a more balanced tree could

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2150

be created. This made the differences between the objects
number in each sub-area minimized. Consequently, creation,
insertion and deletion of such a Quad-tree are more
complicated.

Balmelli[14] incorporated Quad-tree with Z-ordering curve.
Figure 7(a) shows a 2-D region recursively divided by Z-
ordering. The rectangle with shadow means there is objects
in this area. Figure 7(b) shows how these nodes are stored
into a Z-ordering Quad-tree.

B. Data node organization

Hierarchical data format version 5 (HDF5)[15] is managed
by the University of Illinois, adopted by several laboratories
such as National Aeronautics and Space Administration
(NASA), National Science Foundation (NSF), Department of
Energy (DOE), etc. Today, it has been formally adopted by
the International Standard Organization (ISO). In the Part 26
of its specification 10303 (Standard for the Exchange of
Product model data, STEP), HDF5 is the standard format for
the binary representation of EXPRSS-driven data.

A HDF5 consists of groups and datasets. Figure 8 shows
the structure of HDF5. The groups describes the data
organization structure, while the datasets offers basic data
storage structure. Innately, the datasets is designed for multi-
dimensional array of elements. The data space area defines
the dimensions of data, and the contiguous type of storage
layout consorts the multi-dimensional data stream.
Furthermore, the chunked method brings 3 advantages to
multi-dimensional data storage:
 a specific subarea of the whole data set can be

stored into a chunk. That means the data can be
organized by chunks;

 algorithms of compressing and decompressing can
be applied on the data in a chunk;

 dimension extending or reducing can be conducted
by chunk units.

The most attractive feature of HDF for a multi-
dimensional application is that the data can be stored into the
storage devices by a contiguous way, which means a direct
map from physical memory, or by a chunked way. The latter
is an equal-size structured node way.

C. Performance results

Using Z-ordering Quad-tree structure in a HDF5 file
format, our research implemented a multi-dimensional
application for a multicellular metal fluid flow simulation.

Figure 5 Write performance results

Figure 6 Read performance results

Figure 5 and Figure 6 shows the performance results of
write and read test.

Contiguous means the data in storage is in the same
linear continuous sequence as in memory. Chunked means
the data is organized in same sized units. Default and
Override refer to if the system cache was flushed before test.
Large and Small illustrate size of each dimension.

V. CONCLUSION

Most of tree structure algorithm optimizations are
application sensitive. At the same time, most of multi-
dimensional applications focus on sequential reading.
Objects searching operations will be performed more
frequently than objects insertions or deletions. For example,
since many program uses a fixed size unit of 16*16*16, the
Z-ordering-Quad tree is an appropriate choice for data
structure.

The organization of data nodes depends on which kind of
multi-dimensional data accesses the application performs. In
a sequential read/write case, the HDF5 will be more suitable.

ACKNOWLEDGMENT

This work is Supported by the Natural Science
Foundation of Guangdong Province, China (Grant
No.S2012040007847)

REFERENCES
[1] Scott Klasky, Hasan Abbasi, Jeremy Logan, et al. In situ data

processing for extreme scale computing [C]. Scientific Discovery
through Advanced Computing Program (SciDAC), Denver, Colorado.
2011:

[2] Top500org (2012). Retrieved 10.29, 2012., from
http://i.top500.org/system/177556.

[3] Jay Lofstead, Milo Polte, Garth Gibson, et al. Six degrees of scientific
data: reading patterns for extreme scale science IO[C]. Proceedings of
the 20th international symposium on High performance distributed
computing, San Jose, California, USA, ACM. 2011:49-60.

[4] Volker Gaede,Oliver Guenther. Multidimensional access methods[J].
ACM Computing Surveys. 1998, 30(2): 170-231.

[5] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, et al. The
R*-tree: an efficient and robust access method for points and
rectangles[J]. SIGMOD Rec. 1990, 19(2): 322-331.

[6] Antonin Guttman. R-trees: a dynamic index structure for spatial
searching[J]. SIGMOD Rec. 1984, 14(2): 47-57.

[7] Jon Louis Bentley. Multidimensional binary search trees used for
associative searching[J]. Commun. ACM. 1975, 18(9): 509-517.

[8] Henry Fuchs, Zvi M. Kedem,Bruce F. Naylor. On visible surface
generation by a priori tree structures[J]. SIGGRAPH Comput. Graph.
1980, 14(3): 124-133.

[9] Timos K. Sellis, Nick Roussopoulos,Christos Faloutsos. The R+-Tree:
A Dynamic Index for Multi-Dimensional Objects[C]. Proceedings of

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2151

the 13th International Conference on Very Large Data Bases, Morgan
Kaufmann Publishers Inc. 1987:507-518.

[10] R. A. Finkel,J. L. Bentley. Quad trees a data structure for retrieval on
composite keys[J]. Acta Informatica. 1974, 4(1): 1-9.

[11] H SAMET. The quadtree and related hierarchical data structure.[J].
ACM Computer Survey. 1984, 16(2): 187-260.

[12] Ibrahim Kamel,Christos Faloutsos. Hilbert R-Tree: An Improved R-
Tree Using Fractals. ISR; TR 1993-19.

[13] Finkel, R. A. and J. L. Bentley (1974). "Quad trees a data structure
for retrieval on composite keys." Acta Informatica 4(1): 1-9.

[14] L. Balmelli, J Kovacevic,M. Vetterli. Quadtrees for embedded
surface visualization: constraints and efficient data structures[C].
1999 International Conference on Image Processing, ICIP 99, KOBE,
JAPAN, IEEE Society. 1999:487-491, vol.482

[15] Matthew T. Dougherty, Michael J. Folk, Erez Zadok, et al. Unifying
biological image formats with HDF5[J]. Communications of ACM.
2009, 52(10): 42-47.

.

Figure 7 An example of Z-ordering Quad-tree

HDF5

Groups

Datasets

Group header

Groups symbol table

A list of group attributes

Group name

Datasets header

Data array

Metadata

Name

Data type

Data space

Storage layout

Dimensions of data

contiguous: same linear way as in memory.
compact:small data, stored directly in the object header
(Not supported in this version).
chunked: insert into equal-sized "chunks" that are stored
separately..

Figure 8 HDF5 file node for multi-dimensional data

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2152

