
A Cross-Platform and Context-aware Middleware Application

Liao Zhen
Beijing University of Posts and Telecommunications,

Beijing, China
10212756@bupt.edu.cn

Zhao Jingling
School of Computer,

Beijing University of Post and Telecommunications,
Beijing, China

zhaojingling@bupt.edu.cn

Abstract—Nowadays, context-aware applications have become
a hot research field. However, many context-aware
applications don’t fully connect to the characteristics of the
Internet and the developed applications are limited by the
platform, thus, the cross-platform deployment can’t achieve.
This paper presents a mechanism which can shield the
difference among terminal operating systems and gather, store,
and interpret the context information on the same smart
terminal, based on the research achievements about the
arithmetic of context-aware and the design of the
cross-platform and context-aware middleware. To some
extents, this frame can not only lessen the developers’
workload and avoid duplication of effort, but also speed up the
applications’ development time and reduce the power
consumption of mobile terminal.

Keywords-context-aware; cross-platform; middleware;
mobile terminal

I. INTRODUCTION

With the rapid development of communication
technologies, the mobile devices permeate almost every
facet of our lives. And in order to meet the users’ needs, the
mobile devices’ functions are extended and develop to the
intellectualized direction. Since Weiser[1] proposed the
concept of the ubiquitous computing, context-aware gets
enough attention and become the hot topic of the computer
field, such as, the “SmartClassroom” project by Tsinghua
University [2], the “Oxygen” project by MIT [3], the
“DreamSpace” project by IBM [4], etc. Its system can use
context information automatically. Besides, it provides
services and computer resources. Meanwhile, mobile
devices become the ideal platform of context-aware because
of these feature.

However, intelligent applications of the mobile devices
about context-aware are still lacked. In the early system, in
order to achieve the specific application, the developers must
participate in the whole process from building sensors’
environment, collecting the context information to
programming, and applied logic and context acquisition are
tightly coupled, which reduces the system’s reusability. In
addition, these applications need collect context information
by their own programs, especially when sensors are changed,
the high level context also must modify accordingly. This
case increases the cost of development and difficulty. The
main reason of this phenomenon is lack of a middleware to
facilitate the development of such applications.

Thus, this paper proposes a framework of the
middleware to centralize context processing work so that

reduce the time and difficulty of developing context-aware
application. This middleware contributes to simplify the
process of context-aware and provide relevant service
information to the high level.

In the section Ⅱ, this paper introduces some relevant
developing frameworks about context-aware. Then, the
section Ⅲ introduces the work mechanism with
middleware and explains every model in detail. In the end,
the section Ⅳ proposed the application based on this
mechanism.

II. RELATED WORK

With the development of the context-aware application,
many researchers or scholars are proposed the framework of
it and improve it from many aspects, such as, modeling,
inferring and collision detection.

Context Broker Architecture is the system of
context-aware based on intelligent agent and CoBrA [5] uses
Context Brober to manage the smart space of the context. In
this process, the ontology model contributes to express the
meaning of the context, but, the computing is complex and
it’s unfit for the mobile platform or environment which has
limited resources. When the Internet’s environment is
limited, the system’s performance fails to maintain stability.

BeTelGeuse [6] is proposed by HIT, which supports the
communication between the mobile devices and external
sensors by Bluetooth. However, the existing sensors don’t
equip the module of Bluetooth and they communicate by
Zigbee. Besides, BeTelGeuse needs every external sensor to
own one resolver. Thus, the extendibility of the middleware
is reduced and this communication is not suit for the
dynamic environment.

Therefore, to the development framework of the
context-aware application, the characteristic of the mobile
environment, the ways of context modeling, context storing
and so on need to be considered.

III. ARCHITECTURE FOR THE CROSS-PLATFORM

AND CONTEXT-AWARE MIDDLEWARE

This section describes details of middleware. It locates
on the top of the server’s operate system and it can control
the resources and network communication. The middleware
connects two independent applications even if they have
different interfaces. By this way, the application can be
adopted on multi-platform.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2274

Figure 1. Architecture of the middleware.

The architecture of the middleware is shown in Figure1.
This middleware acquires and analyzes context, furthermore,
it can provide the upper application with the right services. It
is mainly composed of 5 parts: inference module, context
manager module, register module, service manager module
and data gathering module. Meanwhile, the database is
responsible for saving and maintaining the context
information and the request ranking information about every
application.

A. Inference module
Inference Module is responsible for interpreting or

aggregating high level context on the basis of the low level
context and inferring the situation further, which satisfies the
needs of developers better. It receives the request from the
register module and informs the data gathering module to
collect initial data about the context. Then, according to the
context manager module’s episode rules, it interprets the low
level context which is saved in the database. If there are
corresponding situation being matched, then the inference
module will informs the register module and the register
module will provide callback service.

There are two approaches that are used for reasoning the
high level context. One is based on domain knowledge
which defined by the experts, such as rule-based inference.
Its complexity is very low, but when meeting the
complicated situation, it cannot define related rules. The
other approach is based on statistic learning, which can
analyze and explore the correlation between data and
situation by statistic, such as Hidden Markov Model and
Bayesian Model. The statistics learning approach is suitable
for handling the complicated situation, but it requires high
energy consumption and storage space.

In order to offer the accurate and reliable presumable
results to the application developers, this paper will adopt
the inference model which combines the rule-based
inference and the stochastic algorithms of Bayesian Model
together.

1) Based on domain knowledge
In the integrated tree structure’s expression, the leaf

node is data collected by the lower level sensor and the root
node is the situation inferred by the model. The user can
define a rule to judge the condition by using the expression
and the bit arithmetic ‘AND’, ‘OR’ and ‘NOT’. And the
related rule is stored in the context manager module. The

inference mechanism can use the situation’s ID to acquire
the related expression and also traverse all branch of the tree
to make sure whether it has been triggered.

2) Based on Bayesian Model
Based on the Bayesian, the inference mechanism can

ensure the user’s situation through calculating a group
probability of the context situation. Equation (1) is the
formula of Bayesian.

(1,..., |) ()
(| 1,...,)

(1,...,)

P F Fn C PCP C F Fn
P F Fn

×=
 (1)

If the probability of the eigenvalues F1,…,Fn in the
condition of the C is known, then the probability of C in the
condition of the eigenvalues F1,… ,Fn can be known.
Assume that eigenvalues are independent. Then, the module
of the Bayesian can be obtained.

1

1
(| 1,...,) () (|)

n

i
P C F Fn P C P Fi C

Z =

= ∏
 (2)

In the inference module, the user set up a set which
contains the situation C and its eigenvalues F1,…,Fn. The
mechanism classifies the context test sample F1,…,Fn, and
when the probability of C reaches a maximum, the situation
C is triggered.

Figure 2. Example of the inference mechanism based on Bayesian Model.

As shown in the Fig.2, based on 4 parameters about
weather that is ‘outlook’, ‘temperature’, ‘humidity’ and
‘windy’, the mechanism infers whether the player can play
sport. If this situation is triggered, a training sample can be
defined by the vector, which consists of this four
characteristics’ actual data and the results of the users’
situations. And many training samples form the set of the
training samples. The mechanism gathers a group of
weather’s characteristics, then, based on the sample,
calculating the probability of the user’s choice (e.g. play
sport or not play sport). Finally, the triggered situation can
be gotten.

There are two methods when inferring which are ‘Text’
as the feature and ‘Numeric’ as the feature.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2275

Figure 3. Training sample

The training sample is shown in the Fig.3.
Assume that the test sample is ‘sunny cool normal

TRUE’, the result is shown in below.

Figure 4. Execution screen when ‘Text’ as the feature.

Assume that the test sample is ‘sunny 66 90 TRUE’, the
result is shown in below.

Figure 5. Execution screen when ‘Text’ as the feature.

B. Context Manager Module
The context manager module is responsible for storing

and protecting the regular knowledge of the context’s
inference. The situation’s ID identifies every situation’s
inferred knowledge. This module acquires the regular
inferred knowledge which defined by user and the training
dataset based on the Bayesian Model which provided by
user. Meanwhile, middleware stores some common situation
training datasets.

Through traversing the regular knowledge and the test
sample’s tree structure, the context service can be inferred
and saved in the database. Then, through the high-level
inference mechanism, the raw data can be acquired for
subsequent processing, allowing it to evaluate whether the
situation is triggered.

Based on domain knowledge
This module uses the nested structure to model the

context tree modeling. Every high-level context situation is
identified by Situation ID. The tree structure is defined by
some Conditions (e.g. AND, OR and NOT).To every
Condition, it is related to the data which is detected by the
sensors and through defined Sensor ID, Condition can
contact to the sensor. Thus, Condition is the logical
comparison between the data from Sensor and Parameter

that are some features of the situation and can restrict
Condition, and Parameter and Operator (e.g. >, < and =)
which are used in there can be defined based on the users’
need. Furthermore, in order to provide the precise matching
regulation module and reduce the error and collision, the
context manager module has an evaluating layer for users,
and user can use Specifier, to define the matching module
and accuracy. In the evaluating layer, the level of the service
request is determined by the sampling period and the
number of samples; Mode (e.g. MAX, MIN, MEAN,
DIFFERENCE, GRADIENT, etc) can be chosen.

1) Based on Bayesian Model
Based on Bayesian Model, the test sample can be

classified by situation.
When the value of the context’s test sample is discrete

value, through calculating the probability of the discrete
value Fi in different situation, the situation’s classification
can be achieved. When the value of the context’s test sample
is continuous value, if the sample obeys the normal
distributions, conditional probability can be gotten. The
formula is shown in below.

2

2

-(f i-)
()

2

2

1
(f i |)

2

m

P Fi C c e πσ

πσ
= = =

 (3)

In (3), μ represents the mean value of Fi in the situation

c;
2σ represents the variance of Fi in the situation c.

C. Register Module
The register module is the only interface between the

middleware and the APP developers. It looks like a listener
in the interface. To the upper layer, it provides the
customized service to the application, so that the developers
don’t need to be concerned with the details about the context
processing. Besides, through configuring the interfaces’
parameters, the user can call other module of middleware
and achieve centralized management of the context
information. The developers can use middleware as agency
and invoke the related API to customize the service.

D. Service Manager Module
The service manager module is designed for saving the

energy. It is responsible for handling the service requests of
every sensor. After the module receives the updated service
requests from the register module, it will use optimizing
algorithm to update the value of the corresponding sample
and period in the service database. For using the least space
to store the same context information of many applications,
the service manager module need to adjust precision for
sampling and storing, when it receives the same requests.
And to the different requests from one sensor, the service
manager module needs to calculate a common service for
them.

E. Data Gathering Module
The data gathering module is responsible for invoking

the sensors of the mobile terminal, then perceiving the

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2276

context original data and updating the context database.
After the inference module sends the request of gathering
the data to this module, it will try to find the data about the
service in the database of the service. In addition, this
module updates the database of the context based on the
number of the samples regularly. Sometimes, the inference
module may provide a request from the same sensor
repeatedly. At that time, this module will read the value of
the context’s service level again and adjust the precision of
the sampling and storing.

Ⅳ APPLICATION – SMART ASSISTANT

The Smart Assistant widget application is developed as
the example of the context-aware application to check the
availability of the middleware. This application shows how
middleware provide the inference to application.

Thus, this application can help the user to analyze
context and provide API’s suitable interface. Aiming at the
different design requirement, developers set the parameter of
the context.

Figure 6. Screen

As shown in the Fig.6, the central is the main screen and
the developers can add or set the rule by themselves. And
the users can add rules to the register module and then the
context manager module acquires the inference knowledge
from it. For example, firstly, they choose the type of the
trigger, then, define the service of this rule in ‘Action’.

Figure 7. Define the service of the rule

The ‘Action’ screen is shown in Fig.7. Finally, import
the regulation’s ID to distinguish others in ‘Rule Name’. By
this way, a new rule can add in the context manager module.
After, the users can define this rule in details. In ‘Set Rule’,
according to their own need, the users set the type of the
context, sampling period, ‘Mode’, ‘Parameter’ and

‘Operator’. Thus, the logical relationship between the
‘Parameter’ and the sensor data and the service degree can
be ensured by this mean.

The final result of the definition of the regulation is
shown in Fig.8. And the user should also name the rule in
the end.

After these, the user can implement the new rule to check
this mechanism, which is shown in the Fig.9. The
application listens to this situation and gets the data
acquisition and recording of it. At last, the situation is
triggered and executes the behavior.

Figure 8. Final result

Figure 9. Execution screen

CONCLUSION

This paper proposes and designs the developing
framework of the cross-platform and context-aware
middleware application. The proposed middleware can
reduce the context’s complexity, simplify the development
process of the context application and solve the
compatibility problem in different applications’ platform. In
addition, this middleware provides two inference
mechanisms that satisfy the developers’ needs of setting the
inferences and provides the situations’ classification method
when the logical inference is incomplete.

REFERENCE
[1] Mark Weiser, “Some Computer Science Issues in Ubiquitous

Computing”, Communications of the ACM, pp.75-84, 2003.

[2] Mao Yanhua, “The research of the software platform of smart space
and its resource management ”, Beijing:Tsinghua University
computer science and technology, 2004.

[3] “MIT project oxygen”,http://oxygen.lcs.mit.edu/Overview.html

[4] “IBM research”, http://www.research.ibm.com/natural/dreamspace

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2277

[5] H. Chen, F. Perich, T. Finin, and A. Joshi. “SOUPA: Standard
Ontology for Ubiquitous and Pervasive Applications”. In Int. Conf.
on Mobile and Ubiquitous Systems: Networking and Services,
Aug.2004.

[6] Joonas Kukkonen and Eemil Lagerperx, “BeTeiGeuse:a platform for
gathering and processing situational data”, IEEE Pervasive, pp49-56,
2009

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2278

