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Abstract—The issue of angle estimation for multiple-input 
multiple-output (MIMO) radar is studied and an algorithm for 
the estimation based on compressive sensing with multiple 
snapshots is proposed. The dimension of received signal is 
reduced to make the computation burden lower, and then the 
noise sensitivity is reduced by the eigenvalue decomposition 
(EVD) of the covariance matrix of the reduced-dimensional 
signal. Finally the signal subspace obtained from the 
eigenvectors is realigned to apply the orthogonal matching 
pursuit (OMP) for angle estimation. The angle 
estimation performance of the proposed algorithm is better 
than that of estimation of signal parameters via rotational 
invariance techniques (ESPRIT) algorithm, and reduced-
dimension Capon. Furthermore, the proposed algorithm works 
well for coherent targets, and requires no knowledge of the 
noise. The complexity analysis and simulation results 
verify the effectiveness of the algorithm. 
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I.  INTRODUCTION  

Multiple-input multiple-output (MIMO) radars use 
multiple antennas to simultaneously transmit diverse 
waveforms and utilize multiple antennas to receive the 
reflected signals, and they have many potential advantages 
over conventional phased-array radars [1-4]. MIMO radar 
systems have more degrees of freedom than other systems 
with a single transmit antenna, and these additional degrees 
of freedom can overcome fading effect, enhance spatial 
resolution, strengthen parameter identifiability and improve 
target detection performance [5-8]. Angle estimation is a key 
issue in MIMO radar, and several algorithms for angle 
estimation have been established, which contain estimation 
of signal parameters via rotational invariance techniques 
(ESPRIT) algorithm [9], Capon algorithm [10], multiple 
signal classification (MUSIC) algorithm [11] and parallel 
factor analysis algorithms [12-13]. Reduced-dimension (RD) 
ESPRIT algorithm [14] and RD Capon [15] have been 
proposed for angle estimation in monostatic MIMO radar, 
and they reduce the complexity and improve the 
performance compared to conventional methods. 

Compressive sensing [16-17] has attracted a lot of 
attention in the last decade, and it has been applied to a 
variety of problems, including image reconstruction and 
restoration, wavelet denoising, feature selection in machine 
learning, radar imaging and penalized regression [18]. The 
super-resolution property and ability of resolving coherent 
sources can be achieved when apply it in the source location 

[19]. Lots of the location methods using compressive sensing 
just use one snapshot and are very sensitive to the noise, for 
multiple snapshots, 1 -SVD method [18] employs 1  norm 
to enforce sparsity and singular value decomposition to 
reduce complexity and sensitivity to noise, and sparse 
recovery for weighted subspace fitting (SRWSF) [19] 
improved the 1 -SVD method via the weight to the subspace. 
However, both the method in [18] and [19] have a common 
problem, which is the choice of the regularization parameter, 
so a prior knowledge of the noise may be known. 

In this paper, we propose a compressive sensing-based 
method for angle estimation in MIMO radar. The reduced-
dimension transformation is utilized to reduce the dimension 
of the signal, i.e. the dimension of the dictionary, and then 
the eigenvalue decomposition (EVD) is employed to reduce 
the sensitivity of the noise. Finally, according to the 
relationship between the direction matrix and signal 
subspace, the signal subspace is realigned to apply the 
orthogonal matching pursuit (OMP) [20] for angle estimation. 
The angle estimation performance of the proposed algorithm 
is better than that of RD ESPRIT algorithm, and RD Capon. 
Furthermore, the proposed algorithm works well for coherent 
targets, and requires no knowledge of the noise. 

Notation: ( ). T
、 ( ). H

、 ( ) 1
.

−
 and ( ). +

 denote transpose, 

conjugate-transpose, inverse, pseudo-inverse operations, 
respectively; diag(v) stands for diagonal matrix whose 
diagonal element is a vector v; ( ).nD  is to take the nth row 

of the matrix to construct a diagonal matrix; KI  is a K × K 
identity matrix; ⊗ ,   and   are the Kronecker product, 
Khatri–Rao product and Hadamard product, respectively; 
Re(.) is to get real part of the complex; min(.) is to get 
minimum elements of an array; [.]E is expectation operator 
and ( )vec ⋅ denotes an operator stacking the columns of a 
matrix on top of each other 

II. DATA MODEL  

We consider a monostatic MIMO radar system equipped 
with both of uniform linear arrays for the transmit and 
receive arrays, and the transmit array and receive array are 
both located in the y-axis with half-wavelength spacing 
between adjacent antennas, respectively. We assume that 
there are K targets in the y-z plane, and the output of the 
matched filters at the receiver can be expressed as 

1 1( ) [ ( ) ( ), , ( ) ( )] ( ) ( )r t r K t Kt t tθ θ θ θ= ⊗ ⊗ +x a a a a s n  (1) 
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where kθ  is the (Direction of arrival) DOA of the kth target 
with respect to the transmit array normal or the receive array 
normal; 1

1 2( ) [ ( ), ( ), , ( )]T K
Kt s t s t s t ×= ∈ s , 2( ) kj f t

k ks t e πβ=  

with kf  being Doppler frequency and kβ  the RCS; ( )tn  is 

an 1MN ×  Gaussian white noise vector of zero mean and 
covariance matrix 2

MNσ I ; ( ) ( )r k t kθ θ⊗a a  is the Kronecker 

product of the receive and the transmit steering vectors for 
the kth target, and  

( ) sin ( 1) sin1, , ,k k
T

k
j j N

r e eθ π θπθ − − − =  a       (2.a) 

( ) sin ( 1) sin1, , ,k k
T

k
j j M

t e eθ π θπθ − − − =  a       (2.b) 

θ

θ

 
Figure 1.  Array structure of monostatic MIMO radar 

III. COMPRESSIVE SENSING-BASED METHOD FOR ANGLE 

ESTIMATION IN MIMO RADAR WITH MULTIPLE SNAPSHOTS  

A. Reduced-dimension transformation  

The length of ( ) ( )r k t kθ θ⊗a a  is MN, which costs high 
computation in the later recovery via OMP, so the reduced-
dimension transformation is necessary. As 

( ) ( ) ( ) ( )k r k t k kθ θ θ θ= ⊗ =a a a Gb                   (3) 
where  
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( ) [1,exp( sin ), exp( ( 2)sin )]T
k k kj j M Nθ π θ π θ= − − + −b . 

Then we define HW G G ,  

1

(1,2, ,min( , ), ,min( , ), ,2,1)
M N

diag M N M N
− +

=   W   (5) 

Using the reduced-dimension transformation 
1

2 H−
W G  for the 

receive signal ( )tx , we obtain 
1

2

1 1

2 2
1 2

1 1

2 2

( ) ( )

[ ( ), ( ), , ( )] ( ) ( )

( ) ( )

H

H
K

H

t t

t t

t t

θ θ θ

−
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−

=

       = +

       = +



y W G x

W W b b b s W G n

W Bs W G n

(6) 

where ( 1)
1 2[ ( ), ( ), , ( )] M N K

Kθ θ θ + − ×= ∈ B b b b . 
1

2W B can be 
regarded as the new direction matrix which has lower 
dimension, and the reduced-dimension matrix is sparse, its 
transformation adds less computational load. The covariance 
matrix of ( )ty in (6) is ( 1) ( 1)( ) M N M N

y t + − × + −∈R  

1 1
22 2

1

[ ( ) ( )]H

H
s M N

E t t

σ + −

=

= +

R y y

W BR B W I
           (7) 

where sR = [ ( ) ( )]HE t ts s . 

B. Compressive sensing-based method for angle 
estimation  

The covariance matrix in (7) can be decomposed as 
H H

s s s n n n= +R E D E E D E                        (8) 

where sD  denotes a K × K diagonal matrix formed by K 

largest eigen-values, and nD  denotes a diagonal matrix 

formed by the rest (M+N-1) − K smaller eigen-values. sE  

and nE  represent the signal subspace and noise subspace, 

respectively, of which sE  stands for the eigenvectors 

corresponding to the K largest eigen-values, nE  consists of 

the rest eigenvectors. The equation between sE  and the 
direction matrix can be formulated as  

1

2
s =E W BT                                 (9) 

where T represents a nonsingular K K×  matrix. 
Let 1 2, , , Lθ θ θ   be a sampling grid of all target locations of 
interest. The number of potential source locations will 
typically be much greater than the number of sources K or 
even the number of sensors M+N-1. We construct a matrix 
composed of steering vectors corresponding to each potential 
target location as its columns: 1 2[ ( ), ( ), , ( )]Lθ θ θ=   Θ b b b .  

Then construct a matrix L K×∈Q , and the rows of 
Q corresponding to the true DOAs keep the same with those 
of T , with the other rows being all-zero. And  

1

2
s =E W ΘQ                               (10) 

This implies that if Q  can be recovered from sE , the DOAs 
can be determined by exploiting the positions of nonzero 
rows of Q . Define ( )s svec=e E , which is the realigned form 

of sE , and it satisfies  
1

2 )( ( )) (s K vec= ⊗ =e I W Θ Q Φq           (11) 
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where 
1

( 1)2( ) K M N LK
K

+ − ×= ⊗ ∈Φ I W Θ , and 
1)( LKvec ×∈= q Q  is a sparse vector with 2K  nonzero 

elements.  
According to (11), Φ can be regard as the recovery 

matrix or dictionary in compressive sensing, and the sparse 
vector q  can be obtained by utilizing OMP recovery method 
[20]. The detailed recovery processing via OMP is shown in 
Fig.2. Then Q  can be estimated by reshaping the vector q  
into the L K×  matrix and the nonzero rows in Q  will show 
the DOAs of the targets. 

 
Figure 2.  The OMP algorithm flow 

With respect to (7), the covariance matrix 
[ ( ) ( )]HE t t=R y y can be estimated with J snapshots by  

1

( )ˆ ( )
1 H

J

t

t t
J =

= y yR                        (12) 

C. Complexity analysis and CRB 

The proposed algorithm has higher complexity than RD 
ESPRIT, but has much lower complexity than RD Capon 
algorithm, which needs peak searching. 

Fig.3 shows the run time of the three algorithms in 
computer versus the number of antennas, we choose M=N 
for simplify. From Fig.3, we find that our algorithm has 
much lower complexity than the RD Capon, and the change 
trend versus the number of antennas of the proposed 
algorithm is smaller than that of the other two algorithms. 
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Figure 3.  complexity comparison against number of antennas 

According to Ref.[21], we can derive the CRB in bistatic 
MIMO radar 

{ }
2 1

ˆRe
2

H T
wCRB

J

σ −
⊥ =  AD Π D P            (13) 

where 1 2 1 2

1 2 1 2

, ,..., , , ,...,K K

K Kθ θ θ φ φ φ
 ∂ ∂ ∂ ∂ ∂ ∂=  ∂ ∂ ∂ ∂ ∂ ∂ 

a a a a a a
D with 

( ) ( )k r k t kθ θ= ⊗a a a , and 1[ , , ]K= A a a ; 
ˆ ˆ

ˆ
ˆ ˆ

s s
w

s s

 
=  
  

P P
P

P P
, 

( ) ( )
1

1ˆ
J

H
s

t

t t
J =

= P s s ; ( ) 1H H
MN

−⊥ = −AΠ I A A A A . 

IV. SIMULATION RESULTS  

Define root mean square error (RMSE) as  
10001 1 2 1/ 2

,10001 1
ˆ( [( ) ])

K

k l kK k l
θ θ

= =
−   , where ,k̂ lθ  is the estimate of 

DOD kθ  of the lth Monte Carlo trial. We assume there are K 
= 2 targets with angle ( ) ( )1 2, 5 ,25θ θ =   . The RCSs and 
Doppler frequencies are ( ) /5 / 4

1 2, [ ,0.8 ]j je eπ πβ β = and 
( )1 2, [100 ,500 ]f f Hz Hz= , respectively. 

Fig.4 depicts angle estimation result of the proposed 
algorithm for all two targets with M=16, N=14, J=50, 
SNR(Signal-to-Noise Ratio)= 0dB, respectively. It is shown 
that the DOAs can be clearly observed. 

We compare the proposed algorithm against the RD 
ESPRIT algorithm, RD Capon algorithm and CRB. Fig. 5 
presents the comparison of the algorithms. From Fig. 5, we 
can find that the angle estimation performance of the 
proposed algorithm is better than that of RD ESPRIT 
algorithm, and has better performance than RD Capon 
algorithm when SNR is higher. 
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Figure 4.  Angle estimation result of the proposed algorithm  
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Figure 5.  Angle estimation performance comparison  
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Figure 6.   Angle estimation results for coherent targets  

Fig.6 shows the estimation results of the three algorithms 

with two coherent targets ( ( ) /5 /5
1 2, [ ,0.8 ]j je eπ πβ β =

and 

1 2 500f f Hz= = ), and SNR=10dB. It can be indicated from 
Fig.6 that the proposed algorithm works well for coherent 
targets, which make the other two algorithms fail to work or 
have performance degradation. 

V. CONCLUSION  

In this paper, we have proposed a DOA estimation 
algorithm in monostatic MIMO radar using compressive 
sensing and multiple snapshots. By using the reduced-
dimensional transformation, EVD of the data and OMP for 
recovery, the angle estimation performance of the proposed 
algorithm is better than that of RD ESPRIT and RD Capon 
and the algorithm is effective due to the lower complexity. 
Furthermore, the proposed algorithm works well for coherent 
targets, and requires no knowledge of the noise. 
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