
Discovering Algorithmic Relationship Between Programming Resources on the Web

Guojin Zhu∗, Kai Zhang and Jiyun Li
School of Computer Science and Technology

Donghua University
Shanghai, China

gjzhu.dhu@163.com, kaiyou1989@163.com and jyli@dhu.edu.cn

Abstract—Algorithmic relationships are discovered here for
programming tutoring. There are two kinds of algorithmic
relationships between programming resources on the web:
associative relationship and structural similarity relationship.
They can be organized as a hierarchical body. An algorithm
can solve different programming problems and a
programming problem also can be solved by different
algorithms. Thus, there is such algorithmic relationship, or
associative relationship, between these programming resources
on the web. The algorithmic structures of source codes can be
mined by neural computing. Different source codes may have a
structural similarity relationship between them, meaning that
they are similar in their algorithmic structures. A learner can
learn algorithms from simple to complicated structures or
from similarities in their structures. In our experiment, we use
a tree structure to organize the algorithmic relationships.

Keywords-algorithmic relationship; lobe component analysis;
formal concept analysis; programming tutoring; nueral
computing

I. INTRODUCTION

There are lots of programming problems and their source
codes on the web. Thousands of algorithmic methods are hid
in these source codes. However, it is difficult to provide the
suitable algorithmic methods for programming learners.
Consequently, Intelligent Computer-assisted Instruction
(ICAI) has been arisen [1, 2]. It is suitable to deal with this
issue by mining the algorithmic relationships in the source
codes and organizing the algorithmic relationships into a
reasonable structure. Our previous work has organized the
programming knowledge on a basis of a predefined
hierarchical body [3].

On one hand, a problem usually can be solved by several
different algorithms. To learn different algorithms to solve
one problem can expand learners’ thinking. On the other
hand, an algorithm can solve different problems. For
example, a teacher who has just taught students an algorithm
by solving one problem can assign the students with other
problems that can be solved by the same algorithm. The
students can understand the algorithm better by solving the
assigned problems. This explains that each pair of these
problems has such an associative relationship between them.

Different source codes may have a structural similarity
relationship between them, meaning that they are similar in
their algorithmic structures. A learner can learn a simple

*Corresponding Author.

algorithmic structure before he learns a complicated one. A
learner who has learnt an algorithmic structure can learn
other similar algorithmic structures easily. It is easy to learn
algorithmic structures by organizing the structural similarity
relationships into a relationship hierarchy.

Lobe Component Analysis (LCA) is a theory that meets
the Autonomous Mental Development (AMD) [4]. Our
previous work has applied LCA to algorithm recognition [5].
Its vectors are tree-edit distances from which we cannot read
algorithmic structures. We convert algorithmic structures
into vectors to develop algorithmic templates by LCA. We
can get structure patterns from algorithmic structures which
are extracted from algorithmic templates. The developed
algorithmic templates are used to recognize which algorithm
hid in each source code. We proposed a hierarchical model
to organize associative relationships and structural similarity
relationships. Our other previous work has applied Formal
Concept Analysis (FCA) to discovery mainstream
knowledge in source codes [6]. It has proved that FCA is an
efficient tool to mine the knowledge of source codes which
are used to solve problems. Hence, we use it to generate the
concept lattice to order the algorithms in the first three layers
of the hierarchical body.

This paper proposed a way to mine algorithmic
relationships from programming resources on the web. We
employ the algorithmic relationships to organize the
programming resources into a hierarchical body.

II. TERMINOLOGY

A. Control Structures

A control structure is to specify what has to be done by
the program. Each control structure is a block. There are four
kinds of control structures in C++: the while loop, the for
loop, the conditional structure if and the selective structure
switch. In Fig. 1, there is a control structure while. All source
codes in the block while will execute circularly until the
condition becomes false.

B. Language Points

A language point is the language knowledge of source
codes. The relevant language points are language points that
belong to one control structure. The left side of Fig. 1 is a
source code. It has a control structure while and its relevant
language points are input, not equal to, etc..

C. Matrix for Source Code

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2373

A source code can be converted into a matrix through its
control structures and language points. The right side of
Fig. 1 is a matrix for the left source code.

D. Algorithmic Templates

An algorithmic template represents the common program
plan for many source codes. An algorithmic structure can be
extracted from its algorithmic template in this paper. Every
algorithmic template can be represented by a matrix like the
right side of Fig. 1.

E. Structure Patterns

A program may have more than one control structures,
but has one structure pattern only. All control structures in
one program form a structure pattern. A structure pattern can
be extracted from an algorithmic structure. A structure
pattern is denoted by a combination of control statements,
pairs of parentheses “(“ and “)”. The structure pattern of the
source code in Fig. 1 is denoted by while(). Control
structures have two kinds of relations: nesting relation and
sequence relation. For example, the structure pattern
while(if()if()) has the two conditional structures, each
denoted by if(), which have a sequence relation with each
other and have nesting relations with the while loop.

F. Pattern Types

A pattern type is a category of structure patterns, denoted
by a combination of control structures, pairs of parentheses
“(“ and “)”, the symbol “*” and the symbol “+”. The symbol
“*” means that there are zero or more structure patterns. The
symbol “+” means there are one or more structure patterns.
For example, a pattern type while(if(*)+) represents a group
of structure patterns which include while(if()if()),
while(if()if()if()), while(if()for()for(if())), etc..

III. THE HIERARCHICAL MODEL

We organize algorithmic relationships as a hierarchical
model. The hierarchical body has six layers. The first layer C
consists of pattern types. The second layer S consists of
structure patterns. The third layer P consists of algorithmic
templates. The fourth layer consists of problems. The fifth
layer has two directories: associative algorithms and source
codes. The sixth layer consists of associative algorithms and
source codes. Associative algorithms are other algorithms to
solve the same problem. There are source code links under
the source code. For a triple <C, S, P>, we can search the
algorithmic template by C->S->P. Then we can search its
problems and then source codes and the associative
algorithmic templates of the problems. The Fig. 2 shows the
hierarchical model.

IV. METHODOLOGY

A. Discovery Procedure

There are nine steps to obtain algorithmic relationships.
An adult algorithmic template P is an algorithmic template
whose age is greater than or equal to a threshold. The
discovery procedure is shown as follows.

1) Convert the source codes E into the depth-first
traversals T of their parse trees.

2) Convert the depth-first traversals T into matrixes M1.
3) Convert the matrixes M1 into vectors N1 column by

column.
4) Develop every algorithmic template P from the

vectors N1 in a one-layer neural network which are
based on LCA.

5) Get every one of developed vectors N2 from every
adult algorithmic template P.

6) Get developed matrixes M2 from the developed
vectors N2 column by column.

7) Get every structure pattern S from the developed
matrixes M2.

8) Get associative relationships for algorithms through
recognize relationships of algorithms and problems.

9) Organize algorithms by hierarchical body through
every triple <C, S, P> and associative relationships.

Fig. 3 shows the process to discovery algorithmic
relationships between programming resources on the web.
The left side in Fig. 1 is a source code to solve a problem
that summarizes 1 to N. The right side in Fig. 1 is the matrix
of matrixes M1 for the left source code. Each row in the
matrix is a control unit which consists of control structures
and their relevant language points. We use controlling

 #include<stdio.h>
int main()
{

int N;
while(scanf("%d",&N)!=EOF&

&N>=1&&N<10000)
printf("%d\n",(1+N)*N/2);

return 0;
}

000000

000000

000000

000000

000000

1110080

Figure 1. A source code and its matrix.

Structure pattern S1

Algorithmic template P1

Problem 1

Associative algorithm

…

…

Source code

Algorithmic link 1 … Source code link 1 …

…

…

Problem 2

Algorithmic template P2

Structure pattern S2

Pattern type C2Pattern type C1

Figure 2. The hierarchical model.

Source
codes

Parse trees Input
vectors

Matrixes

Neural
network

Output
vectors

MatrixesHierarchical
model

Figure 3. The nine steps.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2374

numbers 80, 110, 190 and 220 to represent control structures
and use non-controlling numbers 0 and 1 to represent
nonexistence and existence of relevant language points. In
each row, the controlling number occupies several positions
and every non-controlling number occupies one positions. In
Fig. 1, the controlling number occupies one position and the
non-controlling number occupies six positions. The first
number is the control number 80 which represents the while
loop. The next six are non-controlling numbers which
correspond to six language points: greater than, equal to,
less than, input, output. The left non-controlling numbers are
1s mean there are equal to, less than and input. For each
input of vectors N1, the neural network activates one neuron
and updates its weight and adds one to its age.

We can get every structure pattern S and language points
from every adult algorithmic template P whose age is greater
than or equal to a threshold. A row which contains a number
greater than a threshold will be treated as a control unit in
each one of developed matrixes M2. The position of the first
number which greater than the threshold reveals the relation
between this unit and the upper control unit. This unit which
has an indentation with a similar position of the upper
control unit has a nesting relation with the upper control unit,
otherwise it has a sequence relation. We can obtain the all
language points according to numbers that are greater than a
threshold in the matrix. We use “0” and “1” to represent a
language point is nonexistence or existence. Then we get the
binary representation for language points. We change the
binary representation to hexadecimal representation. Thus,
we get the structure pattern S and the language points. An
algorithmic name is obtained through analyzing source codes.

B. Discovering Algorithmic Relationship

We get the pattern type C of the structure pattern S
according its representation. In a triple <C, S, P>, every
pattern type C is defined by ourselves and the algorithmic
template P is simplified by language points and algorithmic
names. The structural similarity relationship can be

implemented by organizing these triples.
On the one hand, there are generally many algorithms to

solve one problem. For example, the left side of Fig. 4
provides another algorithm to solve the problem that can be
solved by the left side of Fig. 1. On the other hand, an
algorithm commonly solves more than one problem. The
right side of Fig. 4 shows a source code to computer a
rectangle area for given width a and height b. Obviously, it
has the same algorithm with left side of Fig. 1.

When recognizing which algorithm behind a source code,
we should convert it into a vector as the same ways we
develop algorithm templates. Thus, for source codes belong
to a problem, we can active some neuron and get the
algorithm that can solve the problem. The associative
relationship can be implemented by last three layers in the
hierarchical body. For every algorithmic template P that
have the same pattern type C and structure pattern S, we sort
them by FCA. We build the formal context by treating every
algorithmic template P as objects and their language points
as attributes. We use tool called ConExp to generate concept
lattice. The sorting of them is the topological sorting of the
concept lattice.

C. Model Implementation

We use a tree structure to implement the hierarchical
model. Algorithmic names, problems and source codes have
hyperlinks to link the web pages of algorithms, problems or
source codes. A web page of algorithm lists all problems it
can solve. It also lists the source codes after every problem.
All they are hyperlinks. A web page of problem lists all
algorithms can solve it and also list the source codes after
every algorithm. All they are hyperlinks. A web page of
problem also gives the description of the problem. The

#include<iostream>
using namespace std;
int main(void){

 int a,i,sum=0;
 while(cin>>a){

for(i=1;i<=a;i++)
 sum+=i;
 cout<<sum<<endl;
 sum=0;
 }

return 0;
}

#include<iostream>
using namespace std;
int main(){

 long long int a,b;
while((cin>>a>>b)&&(a>

=0&&a<10000)&&(
b>=0&&b<10000))
cout<<a*b<<endl;

return 0;
}

Figure 4. Two source codes.

TABLE II. The statistics for the first five algorithms

ID Problem total
Source

code total
Most source

code
Threshold

total
1 11 47 21 3

2 10 49 13 3

3 4 35 17 2

4 9 37 18 2

5 18 83 28 5
TABLE I. Pattern type

ID Pattern type

1 while()

2 while(if(*))

3 while(switch(*))

4 while(while(*))

5 while(for(*))

6 while(if(*)+)

7 while(while(*)+)

TABLE III. The statistics for the first five problems

ID Algorithm total
Source

code total
Most source

code
Threshold

total
1 14 32 7 4

2 12 30 7 3

3 5 49 40 2

4 8 48 21 3

5 8 38 17 2

Figure 5. A part of the tree structure in the web page.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2375

hyperlinks of source codes only open source codes.

V. EXPERIMENT AND RESULT

A. Experimental Data

Our experiment data are 2341 C++ source codes that are
used to solve 60 simple problems from an online judge
system. All source codes in each problem are submitted by
sixty college students and judged correct. The number of
control statements in each source code is not greater than ten
and the nesting level of control statements is not greater than
six. All these source codes are filtered from 2706 source
codes. It leads to 50th problem has none source codes and 51st
only has one source code. All source codes are converted
into vectors and each vector occurs 300 times. TABLE I is
the seven pattern types. The neural network has developed
400 algorithmic templates. We choose 69 adult algorithmic
templates whose ages are greater than or equal to 3000 for
recognition. All algorithmic templates are numbered from 1
to 400 according to their ages from small to big.

B. Associative Relationship

TABLE II is the statistics for the first five algorithms.
The problem total is the total of problems that can be solved
by the corresponding algorithms. The source code total is the
total of source codes that contains corresponding algorithms.
The most source code is the most number of source codes for
problems of algorithms. The threshold total is the number of
problems whose number of source codes is more than a
threshold. The threshold is the round for ten percent of
source code total. The maximum source code total is 83 and
the minimum source code total is 12. The maximum most
source code is 40 and the minimum one is 2. We consider the
threshold total. Every algorithm generally can solve more
than one problem. Only the 46th algorithm just can solve zero
problems. The maximum threshold total is 7. The average of
threshold total is 2.609.

TABLE III shows the statistics for the first five problems.
The algorithm total is the total of algorithms for each
problem. The source code total is the total source codes of
each problem. The most source code is the most total number
for algorithms that can solve the problem. The threshold total
is the algorithm total for all algorithms whose source codes
are more than threshold. We choose the round for ten percent
of source code total as threshold. We consider the threshold
total. The maximum algorithm total for one problem is 5.
The 50th problem has one algorithm and the 51st problem has
zero algorithms. The minimum algorithm total is 1 except
the 50th and 51st problems. The average of algorithm total is
3. The maximum source code total is 49 and the minimum
source code total is 19 except the 50th and 51st problems. The
maximum most source code total is 40 and the minimum
most source code total is 4 except the 50th and 51st problems.

C. Tree Structure

TABLE IV is the part of the tree structure. C is the
pattern type, S is the structure pattern and P is the
algorithmic template. The threshold is 50 when we convert
matrixes into structure patterns. There are 8843 control
statements. The average of control statements is 8843/2341 ≈
3.777. The total control statements of 69 structure patterns is
245 and the average of them is 245/69 ≈ 3.551. The order of
pattern type C follows the order of TABLE I. The order of
structure pattern S is organized from small to big according
the length of structure pattern. Fig. 5 is a part of the tree
structure in the web page. The first level consists of pattern
types. The number in the pair of parentheses shows how
many structure patterns in this pattern type. They are
hyperlinks for web pages of algorithmic template P.

VI. CONCLUSION

There are many algorithms behind source codes between
programming resources on the web. We develop algorithmic
templates of source codes by a neural network based on LCA.
The algorithmic templates in the neural network can be used
to recognize what algorithm in every source code.
Associative algorithmic relationships between programming
problems are discovered on a basis of the algorithmic
templates. We can obtain structure patterns from the
algorithmic templates. We organize the associative
relationships and structural similarity relationships into a
hierarchical body.

In this paper, we proposed a method to discovery
algorithmic relationships that are implemented through a tree
structure with hyperlinks on the web. The implementation
can be used to program tutoring in the future.

ACKNOWLEDGMENT

This research is supported by the National Natural
Science Foundation of China (NSFC) under Grant No.
60973121.

REFERENCES
[1] A. Kurnia, et al., "Online Judge," Computers & Education, vol.

36, pp. 299-315, 2001.
[2] Tangjinjuan and Xiahongwen, "Intelligent tutoring system based on

computing conceptual graphs," in 2010 3rd International Conference
on Artificial Intelligence and Education, ICAIE 2010, October 29,
2010 - October 30, 2010, Hangzhou, China, 2010, pp. 60-62.

[3] G. Zhu and L. Fu, "Automatic Organization of Programming
Resources on the Web," in Advances in Computer Science and
Information Engineering. vol. 168, D. Jin and S. Lin, Eds., ed:
Springer Berlin Heidelberg, 2012, pp. 675-681.

[4] J. Weng and M. Luciw, "Dually optimal neuronal layers: Lobe
component analysis," IEEE Transactions on Autonomous Mental
Development, vol. 1, pp. 68-85, 2009.

[5] G. Zhu and X. Zhu, "Autonomous mental development for algorithm
recognition," in 2011 International Conference on Information
Science and Technology, ICIST 2011, March 26, 2011 - March 28,
2011, Nanjing, China, 2011, pp. 339-347.

[6] G. Zhu and Z. Zhang, "Discovering mainstream knowledge in source
codes of programming learners," Information Science and
Technology, pp. 333-338, 2011.

TABLE IV. The part of the tree structure

C S P

while() while() 00000A0-Print letters1

 00001A0-Print letters2

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2376

