
Training Data Reduction and Classification Based on Greedy Kernel Principal 
Component Analysis and Fuzzy C-means Algorithm 

 

Xiaofang Liu 
School of Computer Science 

Sichuan University of Science and Engineering 
Zigong, China 

lxf1969@163.com 

Chun Yang 
School of Economics and Management 

Sichuan University of Science and Engineering 
Zigong, China 

yangchun1972@163.com
 
 

Abstract—Nonlinear feature extraction used standard Kernel 
Principal Component Analysis (KPCA) method has large 
memories and high computational complexity in large datasets. 
A Greedy Kernel Principal Component Analysis (GKPCA) 
method is applied to reduce training data and deal with the 
nonlinear feature extraction problem for training data of large 
data in classification. First, a subset, which approximates to the 
original training data, is selected from the full training data 
using the greedy technique of the GKPCA method. Then, the 
feature extraction model is trained by the subset instead of the 
full training data. Finally, FCM algorithm classifies feature 
extraction data of the GKPCA, KPCA and PCA methods, 
respectively. The simulation results indicate that the feature 
extraction performance of both the GKPCA, and KPCA 
methods outperform the PCA method. In addition of retaining 
the performance of the KPCA method, the GKPCA method 
reduces computational complexity due to the reduced training 
set in classification. 

Keywords-training data reduction; classification; nonlinear 
feature extraction; greedy kernel principal component analysis; 
fuzzy C-means algorithm; kernel matrix 

I.  INTRODUCTION 

The Kernel Principal Component Analysis (KPCA) 
method in [1] is the nonlinear extension of the ordinary 
linear Principal Component Analysis (PCA) method. It 
shows a powerful nonlinear feature extraction technique by 
kernel methods in [2]. The kernel methods use kernel 
functions to perform the feature space straightening 
effectively. This technique allows to using established theory 
behind the linear algorithms to design their nonlinear 
counterparts. A disadvantage of the KPCA method in [3], 
however, is that the storage of training data in terms of the 
dot products is too expensive since the size of kernel matrix 
increases quadratically with the number of training data. The 
standard KPCA method could process limited number of 
training data. For large scale data set, it suffers from 
computational problem of diagonal and occupies large 
storage space of kernel matrix. The size of training data is 
therefore vital in any real application incorporating the 
KPCA method. So, a more efficient feature extraction 
method, Greedy Kernel Principal Component Analysis 
(GKPCA) method in [4] is applied to reduce training data 
and nonlinear feature extraction for classification. 

II. GREEDY KERNEL PRINCIPAL COMPONENT ANALYSIS 

METHOD 

The standard KPCA method is an extension of the PCA 
method by kernel methods, whereby the data in the input 
space ℵ  are nonlinearly mapped to a feature space F  via 
some nonlinear map Φ  before applying the PCA method. 
Give a set of training data 1 2{ , , , } q

NX x x x R= ⊂ , N  is 

the number of samples, q  is the dimension of the sample ix . 

The data set X , q
ix R∈ℵ ⊂  ( 1, 2, , )i N=   are mapped by 

a function : FΦ ℵ →  to a new high dimensional feature 
space F . Note feature space F  could have an arbitrarily 
large, possibly infinite dimensionality. The PCA method is 
applied on the mapped data 1 2{ ( ), ( ), , ( )}NX x x xΦ Φ Φ Φ=  . 
The computation of the principal components and the 
projection on these components can be expressed in terms of 
dot products thus the kernel functions :K Rℵ×ℵ →  can be 
employed. 

A disadvantage of the KPCA method in [3], however, is 
that the training and evaluation costs are dependant on the 
size of the training data. During training, an N N×  size of 
the kernel matrix K , which grows quadratically with the 
number N of samples in the training data, needs to be 
calculated before the PCA method can be applied in feature 
space. The size of the training data is therefore vital in any 
real system incorporating the KPCA method. 

The GKPCA method in [4] is proposed by V. France to 
reduce training set in 2005. It is an efficient algorithm to 
compute the ordinary KPCA method. The approach aims to 
represent data in a low dimensional space with possibly 
minimal representation error which is similar to the PCA 
method. In contrast to the PCA method, the basis vectors of 
the low dimensional space used for data representation are 
properly selected vectors from the training data and not as 
their linear combinations.  

Let 1 2{ , , , } q
NX x x x R= ⊂  be the set of input training 

data. The vector set 1 2{ , , , } q
S nX s s s R= ⊂ , whose size is 

much smaller than that of training data X , is a subset of 
training data X . Let 1 2{ , , , }nJ j j j=   be the indices of 

subset SX  in [5], a subset of X , where 1 2{ , , , }NI i i i=   is 
the original indices of X . The reduced set method aims to 
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find a new kernel expansion and well approximates the 
original one. The approximate feature space representation of 
the original training samples can be expressed as follows: 

 ( ) ( )i ij j
j J

x xΦ β Φ
∈

=  , i I∀ ∈ . (1) 

The problem of finding the reduced kernel expansion can 
be stated as the optimization task. The objective of the 
GKPCA method is to minimize the mean square error in (2) 
while the size n  of the subset SX  is kept small. The 
GKPCA method is implemented in [5]. 

 21
|| ( ) ( ) ||MS i ij j

i J j J

x x
N

ε Φ β Φ
∈ ∈

= −  . (2) 

The GKPCA method, therefore only needs to determine 
the optimal subset J  from I . As shown in [5], we can 
choose to minimize the upper bound where 

 2

\

1
( ) max || ( ) ( ) ||MS i i

i I J

N n x x
N

ε Φ Φ
∈

≤ − −  . (3) 

The task can be solved by an iterative greedy algorithm 
in [5]. The number of iterations of the algorithm equals to the 
number n  of selected basis vectors. The number n  can be 
equal to the number of all training vectors N  at most. 
However, it is reasonable to stop the algorithm earlier. It is 
natural to stop the algorithm if the one of the conditions is 
satisfied: mean square reconstruction error MSε falls below 

prescribed limit; maximal error 2max || ( ) ( ) ||i ix xΦ Φ−   falls 
below prescribed limit; or the number of basis vectors 
achieves prescribed limit. 

Further optimization of the GKPCA method can be found 
in [5]. Nevertheless, given the original training data X , it is 
possible to use the GKPCA method to find out SX , a subset 
of X , which has similar linear span in the principal feature 
space.  

In contrast to the ordinary KPCA method, the subset SX  
does not contain all the training vectors. Training the KPCA 
method using the subset SX  will result in of an n n×  size of 
a reduced kernel matrix K , and therefore reduction of the 
evaluation cost. The basis vectors can be selected by the 
GKPCA method which has low computational requirements 
and allows on-line processing of larger data sets.  

III. FUZZY C-MEANS ALGORITHM 

The Fuzzy C-Means (FCM) algorithm was introduced by 
J. C. Bezdek in [6]. The algorithm classifies the extracted 
feature data by the PCA, KPCA and GKPCA methods, and 
obtains their fuzzy partition matrix (class membership matrix) 

{ }c n ijU u× =  in the case. Each column of class membership 

matrix U  is the distribution of the class belonging of its 
corresponding sample. 

Suppose the extracted feature data are 1 2{ , , ,X x x=   

} p
nx R⊂  by the PCA, KPCA and GKPCA methods, n  is 

the number of samples, p  is the number of principal 
components, and c  is the number of clusters. If X  is 
classified into c  clusters, then the objective function of the 
FCM algorithm is defined in (4), and the fuzzy partition 
matrix { }c n ijU u× =  of X  is subjected to the conditions 

given in (5). 

 2

1 1

min ( , , )
c n

m
ij ij

i j

J X U V u d
= =

=  . (4) 
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Where { }c n ijU u× =  is the fuzzy partition matrix, and iju  

is the degree of membership that the sample jx  belongs to 

the cluster center iv ; { , 1,..., }c q iV v i c× = =  is the set of 

cluster centers, and iv  is the cluster center of class i ; m  is 
the weighting exponent that controls the fuzziness of the 
membership function; ijd  is a distance measure between the 

sample jx  and the cluster center iv . 

By utilizing Lagrange multipliers, the minimization of 
the objective function J  in (4) is performed in subject to the 
restriction conditions in (5). The cluster centers V  and the 
optimal membership matrix U are obtained by (6) and (7), 
respectively. 

 
1 1

, 1,...,
n n

m m
i ij j ij

j j

v u x u i c
= =

= =  . (6) 

 2 ( 1)

1

1 ( ) , 1,..., , 1,...,
c

m
ij ij kj

k

u d d i c j n−

=

= = = . (7) 

Where || ||, 1,..., , 1,...,ij i jd v x i c j n= − = = , it is chosen as 

Euclidean distance here. 

IV. EXPERIMENTATION AND RESULTS ANALYSIS 

A. Experimental data 

Two examples are carried out to compare the 
performance of the PCA, KPCA and GKPCA methods using 
two data sets of Iris and Landsat Satellite in [7]. The 
descriptions of two data sets are shown in TAB. I.  
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TABLE I.  THE DESCRIPTIONS OF TWO DATA SETS (NUMBER) 

Data 
Sets 

Samples Classes Attributes 
Training 

Data 
Test 
Data

Iris 150 3 4 90 60 

Landsat 
Satellite 

6435 6 4 4435 2000

B. Flowchart of the classification 

Flowchart of the classification experiments is showed in 
Fig. 1. Given the data set 1 2{ , , , } p

nX x x x R= ⊂ , the data 
standardization method in (8) is used to obtain normalized 
data and balance the data impact on the results of the 
classification. 

 ( ) / , 1, , , 1, ,jq jq q qx x μ σ j n q p= − = =   . (8) 

Where jqx  is the thp  feature of the sample jx , 

1

1 n

q jq
j

μ x
n =

=   is the mean vector, 2 2

1

1
( )

n

q jq q
j

σ x μ
n =

= −  is 

the variance vector of the thq  feature vector, 1, ,q p=  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Flowchart of the classification. 

C. Results of training data reduction by GKPCA method 

The GKPCA method uses Radial Basis Functions (RBF) 
kernel in (9). In the GKPCA method, let the mean squared 
errors 610MSε −= , the desired maximal error 610Maxε −= , 
and  the value of kernel parameters σ  is shown in TAB. II. 
Extracted subsets SX  from the training data X  of Iris and 

Landsat Satellite by the greedy technology of the GKPCA 
method are also shown in TAB. II. 

 ( , )i jK x x =  2 2exp( || || /(2 ))i jx x σ− − . (9) 

TABLE II.  EXTRACTED SUBSETS FROM TRAINING DATA BY GKPCA 

Data 
Sets 

Kernel 
Parameters

Samples Number 
of Subset 

Percentage  of Training 
Data Reduction (%) 

Iris 3 22 75.6 

Landsat 
Satellite

8 783 82.3 

D. Classification results and performance evaluations 

The feature extraction data is classified by the FCM 
algorithm. In the FCM algorithm, set the weighting exponent 

2m =  in [8], the convergent threshold 610ε −= , maximally 
iterative number max 50T = .  

Clustering results are evaluated by classification 
accuracy and clustering validity indices, related to the 
inherent features of these extracted data. A few widely 
known validity indices, such as partition coefficient pcV , 

partition entropy peV  in [9] and Xie–Beni index xbV  in [10], 

which are chosen to evaluate partitions by the FCM 
algorithm from these extracted data by the PCA, KPCA and 
GKPCA methods. The partition coefficient pcV  and partition 

entropy peV  in (10) and (11), respectively, introduced by 

Bezdek, are defined using the memberships from a 
classification algorithm. They indicate the degree to which a 
partition is unambiguous. The Xie–Beni index xbV  in (12) 
examines separation of with-class, and compactness of 
between-class. 

 2

1 1

1
, )

c n

pc ij
i j

V U c u
n = =

= （ . (10) 

 2
1 1

1
, ) log ( )

c n

pe ij ij
i j

V U c u u
n = =

= − （ . (11) 

 

2

1 1

, 1,

( )

( , , , )
( min )

c n
m
ij j i

i j

xb c

i j
i j i j

u X v

V U v c X
N v v

= =

= ≠

−
=

−


. (12) 

Where 1 , ) 1pcc V U c≤ ≤（ , and 20 , ) logpeV U c c≤ ≤（ . 

The best cluster is achieved when the value of the 
partition coefficient pcV  is high, and partition entropy peV  

and Xie-Beni index xbV  are low. 
Classification performances of Iris data and Landsat 

Satellite data by several methods are shown in TAB. III and 
TAB. IV, respectively. 

Feature extraction
 data for test data

Y 

N 
Validity of classification? 

Output classification result 

Data normalization 

Feature extraction model

Classifier based on FCM algorithm 

Evaluation indexes

Feature extraction 
data for training data 

Training data 

Classification result 

Data  

Test data 

Adjustment 
parameters 

PAC GKPCAKPCA 
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TABLE III.  CLASSIFICATION PERFORMANCE OF IRIS 

Data 
Sets 

Methods 
Recognition 
Rates (%) 

Vpc Vpe Vxb 

Training 
Data 

FCM 93.3 0.8046 0.5194 0.2068

PCA+FCM 95.0 0.8375 0.4339 0.1648

KPCA+FCM 95.0 0.8634 0.3595 0.0263

GKPCA+FCM 95.0 0.8634 0.3595 0.0297

Test 
Data 

FCM 90.0 0.7849 0.5694 0.2473

PCA+FCM 90.0 0.8191 0.4860 0.1982

KPCA+FCM 90.0 0.8574 0.3865 0.0263

GKPCA+FCM 90.0 0.8574 0.3865 0.0297
 

TABLE IV.  CLASSIFICATION PERFORMANCE OF LANDSAT SATELLITE 

Data 
Sets 

Methods 
Recognition 
Rates (%) 

Vpc Vpe Vxb 

Training 
Data 

FCM 84.6 0.7792 0.5845 0.3382

PCA+FCM 84.6 0.7704 0.5832 0.2924

KPCA+FCM 85.6 0.7884 0.4785 0.0463

GKPCA+FCM 85.2 0.7828 0.4834 0.0483

Test 
Data 

FCM 84.4 0.7689 0.5975 0.3404

PCA+FCM 84.5 0.7604 0.5792 0.2994

KPCA+FCM 85.0 0.7981 0.4865 0.0563

GKPCA+FCM 84.7 0.7868 0.4934 0.0583

According to simulation experiment over, the results 
show that the fuzziness of the partition is reduced by feature 
extraction, and the superiority of both the KPCA and 
GKPCA methods over the PCA method in feature extraction. 
Simulation results show both the KPCA and GKPCA 
methods are more superior to the PCA method in feature 
extraction. The GKPCA method will tend towards the KPCA 
method feature extraction as more percentage of training data 
is included in the reduced set, whilst the GKPCA method 
results in lower evaluation cost due to the reduced training 
set. The experiments show that the GKPCA method can 
significantly reduce the complexity of the found classifiers 
while retaining their accuracy. 

V. CONCLUSIONS 

The KPCA method, however, is that the storage of 
training data in terms of the dot products, is too expensive 
since the size of kernel matrix increases quadratically with 
the number of training data. So, a more efficient feature 

extraction method, the GKPCA method, is applied to reduce 
training data and nonlinear feature extraction in classification. 
The reduced set method aims to find a new kernel expansion 
and well approximates the original training data. Simulation 
results show both the KPCA and GKPCA methods are more 
superior to the PCA method in feature extraction. Feature 
extraction performance of the GKPCA method will tend 
towards one of the KPCA method, whilst the GKPCA 
method results in lower evaluation cost due to the reduced 
training set. The theoretical analysis and experimental results 
show the advantages of the GKPCA method in terms of 
computational efficiency, storage space, and nonlinear 
feature extraction capability, especially when the number of 
training data is large. In a word, the GKPCA method can 
significantly reduce the complexity while retaining their 
accuracy in classification. 
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