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Abstract—The commercial time-series database is suitable for 
processing the time-series data. However, a single commercial 
time-series database can only accommodate the time-series 
data acquired by limited amount of sensors. In this paper, in 
order to cope with the challenge of massive time-series data 
processing, we first propose a cloud time-series database 
framework based on commercial time-series databases, and 
then propose an effective consistent hashing based algorithm 
for solving the key problem, i.e., the data localization problem, 
in cloud time-series databases. A performance study shows the 
superiority of the framework and the algorithm for processing 
massive time-series data acquired by large amount of sensors. 

Keywords-time-series data; massive data; data localization; 
consistent hashing; time-series database; cloud database; sensor. 

I. INTRODUCTION 

Nowadays, with continue advances of the information 
technology, especially the development of the Internet of 
Things (IoT) technology, large amount of sensors are used to 
acquire massive time-series data. For example, the electric 
power usage information acquisition system of State Grid 
Corporation of China (SGCC) utilizes 230 million smart 
meters to acquire the power usage information of all power 
users, where each smart meter has more than 10 sensors. The 
traditional commercial time-series database, e.g., the PI 
system, is suitable for processing the time-series data [1], [2]. 
However, a single commercial time-series database can only 
accommodate the time-series data acquired by limited 
amount of sensors, e.g., a PI system can accommodate the 
time-series data acquired by no more than 10 million sensors. 

In this paper, in order to cope with the challenge of 
massive time-series data processing, we first propose a cloud 
time-series database framework based on commercial time-
series databases, and then propose an effective consistent 
hashing [3], [4] based algorithm for solving the data 
localization problem which is the key problem in cloud time-
series databases. A performance study shows the superiority 
of the framework and the algorithm for processing massive 
time-series data acquired by large amount of sensors. To the 
best of our knowledge, our work is the first that proposes the 
cloud time-series database framework and gives an effective 
solution for solving the key problem, i.e., the time-series data 
localization problem, in scalable cloud time-series databases. 

The remainder of this paper is organized as follows: In 
the Related Work Section, we summarize the related work. 

In the Cloud Time-Series Database Framework Section, we 
introduce the cloud time-series database framework based on 
commercial time-series databases. In the Data Localization 
Algorithm Section, we introduce the consistent hashing 
based data localization algorithm. The Performance Study 
Section reports the result of an extensive performance study, 
followed by our conclusions in the last Conclusions Section. 

II. RELATED WORK 

The cloud database [5-20] utilizes the cloud computing 
technology to process data, and hence achieves very high 
performance and scalability. For example, the BigTable [8] 
cloud structured database proposed by Google is a NoSQL 
database based on the Google File System (GFS) [5], the 
MapReduce cloud computing framework [6], and the 
Chubby distributed lock service [7]. BigTable can process 
structured data with very high performance and scalability. 
However, the ACID (Atomicity, Consistency, Isolation, and 
Durability) properties of transactions cannot be guaranteed 
and the data cannot have the very complex relationships as 
that in traditional RDBMSs (Relational Data Base Systems). 

The commercial time-series database has been proved to 
be suitable for processing the time-series data [1], [2]. 
However, to the best of our knowledge, the cloud time-series 
database which can process massive time-series data with 
very high performance and scalability has not been proposed. 

III. THE CLOUD TIME-SERIES DATABASE FRAMEWORK 

In commercial time-series databases, the time-series data 
is commonly organized as quadruples with the format of 
“<id, timestamp, value, quality>”, where id is the identifier 
of a sensor, timestamp is the time when the value is acquired 
by a sensor, value is the acquired value, and quality is the 
quality of the acquired value. A non-SQL API is provided 
for processing the time-series data, including insertion, 
deletion, update and selection of the time-series quadruples. 

The time-series data has a very good property, i.e., there 
is no inherent relationship between the quadruples generated 
by different sensors. Therefore, we may randomly distribute 
the quadruples generated by different sensors into different 
nodes where each node is a commercial time-series database. 
In this way, we solve the problem that a single commercial 
time-series database can only accommodate the time-series 
data acquired by limited amount of sensors. However, the 
distribution of the quadruples should be transparent to 
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application developers, i.e., application developers should 
not be aware of the fragmentation of the time-series data and 
can only see an integrated view of the time-series quadruples. 

According to above analysis, Figure 1 demonstrates the 
framework of a cloud time-series database which provides 
PaaS (Platform as a Service) level cloud service via a cloud 
proxy. The cloud proxy is an access point of the cloud time-
series database, and the cloud time-series database may 
provide multiple access points in case of a single access 
point becomes the bottleneck. When a computer needs to 
access the time-series data, it invokes the API functions 
provided by the cloud proxy to perform the accessing, in 
which the identifier of the sensor which generates the time-
series data, i.e., id, is always a parameter of the functions. 
After the cloud proxy receives the invocation, it utilizes a 
data localization algorithm to map id to node where the time-
series data locates, and then the invocation is forwarded to 
the corresponding commercial time-series database. The 
invocation is processed by the commercial time-series 
database and the processing result is returned to the cloud 
proxy. Finally, the result is forwarded to the initial invoker. 

 

 
Figure 1.  The cloud time-series database framework. 

The structure of the time-series quadruples is very simple. 
However, the performance requirement for processing the 
time-series data is very high. The commercial time-series 
database has been proved to have very high performance, 
and hence the performance of the data localization algorithm 
determines the performance of the cloud time-series database. 

IV. THE DATA LOCALIZATION ALGORITHM 

The data localization algorithm can be seen as a function 
with the form of “h(id)→node”, where id and node are the 
identifier of a sensor and the position where the time-series 
data generated by the sensor locates, respectively. The 
performance of the data localization algorithm determines 
the performance of the cloud time-series database, and hence 
the performance of the algorithm should be enhanced as far 
as possible. We utilize consistent hashing [3], [4] to 
implement the data localization algorithm which maintains 
the mapping between ids and nodes using a well designed 
“circle” instead of a 2-dimensional table, and the space and 

the time performance of the algorithm is very high. Figure 2 
demonstrates how the data localization algorithm works over 
three nodes where each node is a commercial time-series 
databases. The circle denotes a 32-bit integer region where 0 
and 232-1 are “connected” to form the circle. Each node is 
randomly distributed to the circle. The id of each sensor is 
hashed to a 32-bit integer using a base hash function with 
O(1) time complexity, and the first node clockwise from the 
32-bit integer denotes the commercial time-series databases 
where the timer-series data generated by the sensor locates. 

 

 
Figure 2.  An exampe of data localization using consistent hashing. 

 
Figure 3.  An exampe of adding a new node to the cloud framework. 

Figure 3 demonstrates how to add a new node to the 
“circle” as shown in Figure 2. The new node, i.e., node 4, is 
randomly distributed to the circle, and the time-series data 
generated by three sensors which locates at node 2 should be 
moved to node 4, for node 4 becomes the clockwise nearest 
node. Compared with the data localization algorithms which 
maintain the mapping between ids and nodes using a 2-
dimensional table, the consistent hashing based algorithm 
has a drawback, i.e., in the case of the number of the nodes 
changes, some data needs to move among nodes. However, 
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compared with other hashing based data localization 
algorithms, the consistent hashing based algorithm only 
redistributes a small percent of the data. As Equation 1 
shows, when the nth commercial time-series database is 
added to the cloud framework, the average percent of the 
data which should be redistributed, i.e., MovePercent (n), is 
only 1/n. Compared with the data localization algorithms 
which maintain the mapping between ids and nodes using a 
2-dimensional table, the hashing based algorithms achieve 
very high space and time performance, which is very 
important for implementing the cloud time-series database. 

 MovePercent (n) = 1/n. (1) 

In order that the time-series data can be uniformly 
distributed over nodes, we may add some virtual nodes to the 
“circle”. Figure 4 demonstrates how the data localization 
algorithm using consistent hashing with virtual nodes works. 
Compared with Figure 1, Figure 4 adds two virtual nodes, 
i.e., the nodes with dotted lines, for each real node, and the 
data is distributed to the clockwise nearest real/virtual node. 
In this way, the data can be distributed uniformly over the 
nodes. For example, in Figure 1, the three nodes contains the 
time-series data generated by three sensors, six sensors, and 
three sensors, respectively; however, in Figure 3, each sensor 
just contains the time-series data generated by four sensors. 

 

 
Figure 4.  An exampe of data localization using consistent hashing with 

virtual nodes. 

According to above demonstrations in this section, the 
consistent hashing based data localization algorithm is 
straightforward, and we will omit the details of the algorithm.  

V. A PERFORMANCE STUDY 

In this section, we evaluate the performance of the cloud 
time-series database framework and the time-series data 
location algorithm proposed in this paper by experiments. 
All the experiments are run on personal computers connected 
by local area network, each of which has a 2.67GHz Intel 
Pentium CPU and 2GB of physical memory. One personal 
computer serves as the cloud proxy and other personal 

computers serve as commercial time-series databases. The 
operating system used is Windows 7. The time-series 
database used is the STR system developed by State Grid 
Electric Power Research Institute of China, which can 
accommodate the time-series data acquired by no more than 
1 million sensors. The cloud time-series database framework 
as well as the data localization algorithm is implemented by 
the C++ programming language under the Microsoft Visual 
Studio 2008 platform. The dataset used is a real-life dataset 
exported from the Energy Management System (EMS) of a 
provincial electric power company of SGCC, which contains 
the time-series data generated by 10 million sensors. 

The base hash function is implemented using a SHA-1 
(Secure Hash Standard) algorithm with time complexity of 
O(1), and the “circle” is implemented using a typical list. In 
the case of one of the STR systems accommodates the time-
series data generated by more than 0.6 million sensors, we 
will add a new STR system to the cloud time-series database. 
We add 9 virtual nodes for each real node, and the final real 
node and virtual node numbers are 18 and 162, respectively. 

According to above configuration, the space complexity 
of the data localization algorithm is O(n) where n is the 
number of the nodes, including real nodes and virtual nodes. 
Compared with the data localization algorithms which 
maintain the mapping between ids and nodes using a 2-
dimensional table, the space complexity may be neglected. 
Given the id of a sensor, the time complexity of the SHA-1 
algorithm is O(1), and the time complexity of searching the 
corresponding node in the node list is O(lgn) in the case of 
using binary search. Therefore, the time complexity of the 
data localization algorithm is O(lgn) where n is the number 
of the nodes, including real nodes and virtual nodes. 

 
Figure 5.  Time performance comparision. 

Figure 5 shows the time performance comparison result 
between a single STR system and a cloud time-series 
database system based on the STR system, where the time is 
measured by an API invocation which accesses the historical 
data generated by a randomly selected sensor at a specified 
time. As Figure 5 shows, in the case of the number of the 
sensors is no more than 1 million, the single STR system and 
the cloud time-series database system all have very high time 
performance, and the time performance of the cloud time-
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series database is a little lower than the single STR system 
due to existence of the cloud proxy. In the case of the 
number of the sensors is more than 1 million, the single STR 
system outages due to sensor number limitation, but the 
cloud time-series database still has a good time performance. 

According to above study, the proposed cloud time-series 
database framework and the consistent hashing based data 
localization algorithm have good performance and scalability. 

VI. CONCLUSIONS 

In this paper, in order to cope with the challenge of 
massive time-series data processing, we propose a cloud 
time-series databases framework based on commercial time-
series databases as well as an effective consistent hashing 
based algorithm for solving the data localization problem 
which is  the key problem in cloud time-series databases. An 
extensive performance study shows the superiority of the 
proposed framework and algorithm for processing massive 
time-series data acquired by large amount of smart sensors. 
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