
Effective Data Localization Using Consistent Hashing

in Cloud Time-Series Databases

Jiakui Zhao, Pingfei Zhu
Beijing China-Power Information Technology Co., Ltd.

State Grid Electric Power Research Institute
Beijing, China

{zhaojiakui, zhupingfei}@sgepri.sgcc.com.cn

Liang Huai Yang
School of Computer Science and Technology

Zhejiang University of Technology
Hangzhou, China

yanglh@zjut.edu.cn

Abstract—The commercial time-series database is suitable for
processing the time-series data. However, a single commercial
time-series database can only accommodate the time-series
data acquired by limited amount of sensors. In this paper, in
order to cope with the challenge of massive time-series data
processing, we first propose a cloud time-series database
framework based on commercial time-series databases, and
then propose an effective consistent hashing based algorithm
for solving the key problem, i.e., the data localization problem,
in cloud time-series databases. A performance study shows the
superiority of the framework and the algorithm for processing
massive time-series data acquired by large amount of sensors.

Keywords-time-series data; massive data; data localization;
consistent hashing; time-series database; cloud database; sensor.

I. INTRODUCTION

Nowadays, with continue advances of the information
technology, especially the development of the Internet of
Things (IoT) technology, large amount of sensors are used to
acquire massive time-series data. For example, the electric
power usage information acquisition system of State Grid
Corporation of China (SGCC) utilizes 230 million smart
meters to acquire the power usage information of all power
users, where each smart meter has more than 10 sensors. The
traditional commercial time-series database, e.g., the PI
system, is suitable for processing the time-series data [1], [2].
However, a single commercial time-series database can only
accommodate the time-series data acquired by limited
amount of sensors, e.g., a PI system can accommodate the
time-series data acquired by no more than 10 million sensors.

In this paper, in order to cope with the challenge of
massive time-series data processing, we first propose a cloud
time-series database framework based on commercial time-
series databases, and then propose an effective consistent
hashing [3], [4] based algorithm for solving the data
localization problem which is the key problem in cloud time-
series databases. A performance study shows the superiority
of the framework and the algorithm for processing massive
time-series data acquired by large amount of sensors. To the
best of our knowledge, our work is the first that proposes the
cloud time-series database framework and gives an effective
solution for solving the key problem, i.e., the time-series data
localization problem, in scalable cloud time-series databases.

The remainder of this paper is organized as follows: In
the Related Work Section, we summarize the related work.

In the Cloud Time-Series Database Framework Section, we
introduce the cloud time-series database framework based on
commercial time-series databases. In the Data Localization
Algorithm Section, we introduce the consistent hashing
based data localization algorithm. The Performance Study
Section reports the result of an extensive performance study,
followed by our conclusions in the last Conclusions Section.

II. RELATED WORK

The cloud database [5-20] utilizes the cloud computing
technology to process data, and hence achieves very high
performance and scalability. For example, the BigTable [8]
cloud structured database proposed by Google is a NoSQL
database based on the Google File System (GFS) [5], the
MapReduce cloud computing framework [6], and the
Chubby distributed lock service [7]. BigTable can process
structured data with very high performance and scalability.
However, the ACID (Atomicity, Consistency, Isolation, and
Durability) properties of transactions cannot be guaranteed
and the data cannot have the very complex relationships as
that in traditional RDBMSs (Relational Data Base Systems).

The commercial time-series database has been proved to
be suitable for processing the time-series data [1], [2].
However, to the best of our knowledge, the cloud time-series
database which can process massive time-series data with
very high performance and scalability has not been proposed.

III. THE CLOUD TIME-SERIES DATABASE FRAMEWORK

In commercial time-series databases, the time-series data
is commonly organized as quadruples with the format of
“<id, timestamp, value, quality>”, where id is the identifier
of a sensor, timestamp is the time when the value is acquired
by a sensor, value is the acquired value, and quality is the
quality of the acquired value. A non-SQL API is provided
for processing the time-series data, including insertion,
deletion, update and selection of the time-series quadruples.

The time-series data has a very good property, i.e., there
is no inherent relationship between the quadruples generated
by different sensors. Therefore, we may randomly distribute
the quadruples generated by different sensors into different
nodes where each node is a commercial time-series database.
In this way, we solve the problem that a single commercial
time-series database can only accommodate the time-series
data acquired by limited amount of sensors. However, the
distribution of the quadruples should be transparent to

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2424

application developers, i.e., application developers should
not be aware of the fragmentation of the time-series data and
can only see an integrated view of the time-series quadruples.

According to above analysis, Figure 1 demonstrates the
framework of a cloud time-series database which provides
PaaS (Platform as a Service) level cloud service via a cloud
proxy. The cloud proxy is an access point of the cloud time-
series database, and the cloud time-series database may
provide multiple access points in case of a single access
point becomes the bottleneck. When a computer needs to
access the time-series data, it invokes the API functions
provided by the cloud proxy to perform the accessing, in
which the identifier of the sensor which generates the time-
series data, i.e., id, is always a parameter of the functions.
After the cloud proxy receives the invocation, it utilizes a
data localization algorithm to map id to node where the time-
series data locates, and then the invocation is forwarded to
the corresponding commercial time-series database. The
invocation is processed by the commercial time-series
database and the processing result is returned to the cloud
proxy. Finally, the result is forwarded to the initial invoker.

Figure 1. The cloud time-series database framework.

The structure of the time-series quadruples is very simple.
However, the performance requirement for processing the
time-series data is very high. The commercial time-series
database has been proved to have very high performance,
and hence the performance of the data localization algorithm
determines the performance of the cloud time-series database.

IV. THE DATA LOCALIZATION ALGORITHM

The data localization algorithm can be seen as a function
with the form of “h(id)→node”, where id and node are the
identifier of a sensor and the position where the time-series
data generated by the sensor locates, respectively. The
performance of the data localization algorithm determines
the performance of the cloud time-series database, and hence
the performance of the algorithm should be enhanced as far
as possible. We utilize consistent hashing [3], [4] to
implement the data localization algorithm which maintains
the mapping between ids and nodes using a well designed
“circle” instead of a 2-dimensional table, and the space and

the time performance of the algorithm is very high. Figure 2
demonstrates how the data localization algorithm works over
three nodes where each node is a commercial time-series
databases. The circle denotes a 32-bit integer region where 0
and 232-1 are “connected” to form the circle. Each node is
randomly distributed to the circle. The id of each sensor is
hashed to a 32-bit integer using a base hash function with
O(1) time complexity, and the first node clockwise from the
32-bit integer denotes the commercial time-series databases
where the timer-series data generated by the sensor locates.

Figure 2. An exampe of data localization using consistent hashing.

Figure 3. An exampe of adding a new node to the cloud framework.

Figure 3 demonstrates how to add a new node to the
“circle” as shown in Figure 2. The new node, i.e., node 4, is
randomly distributed to the circle, and the time-series data
generated by three sensors which locates at node 2 should be
moved to node 4, for node 4 becomes the clockwise nearest
node. Compared with the data localization algorithms which
maintain the mapping between ids and nodes using a 2-
dimensional table, the consistent hashing based algorithm
has a drawback, i.e., in the case of the number of the nodes
changes, some data needs to move among nodes. However,

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2425

compared with other hashing based data localization
algorithms, the consistent hashing based algorithm only
redistributes a small percent of the data. As Equation 1
shows, when the nth commercial time-series database is
added to the cloud framework, the average percent of the
data which should be redistributed, i.e., MovePercent (n), is
only 1/n. Compared with the data localization algorithms
which maintain the mapping between ids and nodes using a
2-dimensional table, the hashing based algorithms achieve
very high space and time performance, which is very
important for implementing the cloud time-series database.

 MovePercent (n) = 1/n. (1)

In order that the time-series data can be uniformly
distributed over nodes, we may add some virtual nodes to the
“circle”. Figure 4 demonstrates how the data localization
algorithm using consistent hashing with virtual nodes works.
Compared with Figure 1, Figure 4 adds two virtual nodes,
i.e., the nodes with dotted lines, for each real node, and the
data is distributed to the clockwise nearest real/virtual node.
In this way, the data can be distributed uniformly over the
nodes. For example, in Figure 1, the three nodes contains the
time-series data generated by three sensors, six sensors, and
three sensors, respectively; however, in Figure 3, each sensor
just contains the time-series data generated by four sensors.

Figure 4. An exampe of data localization using consistent hashing with

virtual nodes.

According to above demonstrations in this section, the
consistent hashing based data localization algorithm is
straightforward, and we will omit the details of the algorithm.

V. A PERFORMANCE STUDY

In this section, we evaluate the performance of the cloud
time-series database framework and the time-series data
location algorithm proposed in this paper by experiments.
All the experiments are run on personal computers connected
by local area network, each of which has a 2.67GHz Intel
Pentium CPU and 2GB of physical memory. One personal
computer serves as the cloud proxy and other personal

computers serve as commercial time-series databases. The
operating system used is Windows 7. The time-series
database used is the STR system developed by State Grid
Electric Power Research Institute of China, which can
accommodate the time-series data acquired by no more than
1 million sensors. The cloud time-series database framework
as well as the data localization algorithm is implemented by
the C++ programming language under the Microsoft Visual
Studio 2008 platform. The dataset used is a real-life dataset
exported from the Energy Management System (EMS) of a
provincial electric power company of SGCC, which contains
the time-series data generated by 10 million sensors.

The base hash function is implemented using a SHA-1
(Secure Hash Standard) algorithm with time complexity of
O(1), and the “circle” is implemented using a typical list. In
the case of one of the STR systems accommodates the time-
series data generated by more than 0.6 million sensors, we
will add a new STR system to the cloud time-series database.
We add 9 virtual nodes for each real node, and the final real
node and virtual node numbers are 18 and 162, respectively.

According to above configuration, the space complexity
of the data localization algorithm is O(n) where n is the
number of the nodes, including real nodes and virtual nodes.
Compared with the data localization algorithms which
maintain the mapping between ids and nodes using a 2-
dimensional table, the space complexity may be neglected.
Given the id of a sensor, the time complexity of the SHA-1
algorithm is O(1), and the time complexity of searching the
corresponding node in the node list is O(lgn) in the case of
using binary search. Therefore, the time complexity of the
data localization algorithm is O(lgn) where n is the number
of the nodes, including real nodes and virtual nodes.

Figure 5. Time performance comparision.

Figure 5 shows the time performance comparison result
between a single STR system and a cloud time-series
database system based on the STR system, where the time is
measured by an API invocation which accesses the historical
data generated by a randomly selected sensor at a specified
time. As Figure 5 shows, in the case of the number of the
sensors is no more than 1 million, the single STR system and
the cloud time-series database system all have very high time
performance, and the time performance of the cloud time-

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2426

series database is a little lower than the single STR system
due to existence of the cloud proxy. In the case of the
number of the sensors is more than 1 million, the single STR
system outages due to sensor number limitation, but the
cloud time-series database still has a good time performance.

According to above study, the proposed cloud time-series
database framework and the consistent hashing based data
localization algorithm have good performance and scalability.

VI. CONCLUSIONS

In this paper, in order to cope with the challenge of
massive time-series data processing, we propose a cloud
time-series databases framework based on commercial time-
series databases as well as an effective consistent hashing
based algorithm for solving the data localization problem
which is the key problem in cloud time-series databases. An
extensive performance study shows the superiority of the
proposed framework and algorithm for processing massive
time-series data acquired by large amount of smart sensors.

ACKNOWLEDGMENT

This work was supported by the Science and Technology
Project of SGEPRI (State Grid Electric Power Research
Institute) entitled “Research on the Information Processing
and Typical Applications for Electric Internet of Things”, the
Science and Technology Projects of State Grid Corporation
of China entitled “Research on the Integrated Supporting
Technologies for Intelligent Marketing Business based on
the International IEC-CIM/CIS Standard” and “Research on
the Technologies of Analysis and Pre-Warning for Company
Operation”, the NSFC under Grant No. 61070042, and the
NSF of Zhejiang Province under Grant No. Y1090096.

REFERENCES
[1] G. Chen and L. Li, “An Optimized Algorithm for Lossy Compression

of Real-Time Data”, Proceedings of the 2010 IEEE International
Conference on Intelligent Computing and Intelligent Systems (ICIS
10), IEEE Press, Dec. 2010, pp. 187–191.

[2] A. Singhal and D. E. Seborg, “Effect of Data Compression on Pattern
Matching in Historical Data”, Industrial & Engineering Chemistry
Research, vol. 44, Mar. 2005, pp. 3203–3212.

[3] David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina
Panigrahy, Matthew S. Levine, and Daniel Lewin, “Consistent
Hashing and Random Trees: Distributed Caching Protocols for
Relieving Hot Spots on the World Wide Web”, Proceedings of the
29th ACM Symposium on the Theory of Computing (STOC 97),
ACM Press, May 1997, pp. 654-663.

[4] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek, and
Hari Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup Service
for Internet Applications”, Proceedings of the ACM SIGCOMM 2001
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM 01), ACM
Press, Aug. 2001, pp. 149-160.

[5] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The
Google File System”, Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP 03), ACM Press, Oct. 2003, pp.
29-43.

[6] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters”, Proceedings of the 6th USENIX
Symposium on Operating System Design and Implementation (OSDI
04), USENIX Association, Dec. 2004, pp. 137-150.

[7] Michael Burrows, “The Chubby Lock Service for Loosely-Coupled
Distributed Systems”, Proceedings of the 7th USENIX Symposium
on Operating System Design and Implementation (OSDI 06),
USENIX Association, Nov. 2006, pp. 335-350.

[8] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Michael Burrows, Tushar Chandra, Andrew
Fikes, and Robert E. Gruber, “Bigtable: A Distributed Storage System
for Structured Data”, Proceedings of the 7th USENIX Symposium on
Operating System Design and Implementation (OSDI 06), USENIX
Association, Nov. 2006, pp. 205-218.

[9] Tengjiao Wang, Bishan Yang, Allen Huang, Qi Zhang, Jun Gao,
Dongqing Yang, Shiwei Tang, and Jinzhong Niu, “Dynamic Data
Migration Policies for Query-Intensive Distributed Data
Environments”, Proceedings of the Joint Conference of the 11th Asia-
Pacific Web Conference and the 10th International Conference on
Web-Age Information Management (APWeb/WAIM 09), Apr. 2009,
pp. 63-75.

[10] Edward P. Holden, Jai W. Kang, Dianne P. Bills, and Mukhtar
Ilyassov, “Databases in the Cloud: A Work in Progress”, Proceedings
of the 10th ACM SIGITE International Conference on Information
Technology Education (SIGITE 09), ACM Press, Oct. 2009, pp. 138-
143.

[11] Ashraf Aboulnaga, Kenneth Salem, Ahmed A. Soror, Umar Farooq
Minhas, Peter Kokosielis, and Sunil Kamath, “Deploying Database
Appliances in the Cloud”, IEEE Data Engineering Bulletin, vol. 32,
Mar. 2009, pp. 13-20.

[12] Daniel Abadi, Michael J. Carey, Surajit Chaudhuri, Hector Garcia-
Molina, Jignesh M. Patel, and Raghu Ramakrishnan, “Cloud
Databases: What's New?”, Proceedings of Very Large Data Base, vol.
3, Sep. 2010, p. 1657.

[13] Chun Chen, Gang Chen, Dawei Jiang, Beng Chin Ooi, Hoang Tam
Vo, Sai Wu, and Quanqing Xu, “Providing Scalable Database
Services on the Cloud”, Proceedings of the 11th International
Conference on Web Information Systems Engineering (WISE 10),
Springer, Dec. 2010. pp. 1-19.

[14] Edward P. Holden, Jai W. Kang, Geoffrey R. Anderson, and Dianne P.
Bills, “Databases in the Cloud: A Status Report”, Proceedings of the
12th ACM SIGITE International Conference on Information
Technology Education (SIGITE 11), ACM Press, Oct. 2011, pp. 171-
176.

[15] Magdalena Balazinska, Bill Howe, and Dan Suciu, “Data Markets in
the Cloud: An Opportunity for the Database Community”,
Proceedings of Very Large Data Bases, vol. 4, Oct. 2011, pp. 1482-
1485.

[16] Maximilian Ahrens and Gustavo Alonso, “Relational Databases,
Virtualization, and the Cloud”, Proceedings of the 27th International
Conference on Data Engineering (ICDE 11), IEEE Press, Apr. 2011,
p. 1254.

[17] PengCheng Xiong, Yun Chi, Shenghuo Zhu, Hyun Jin Moon, Calton
Pu, and Hakan Hacigümüs, “Intelligent Management of Virtualized
Resources for Database Systems in Cloud Environment”, Proceedings
of the 27th International Conference on Data Engineering (ICDE 11),
IEEE Press, Apr. 2011, pp. 87-98.

[18] Hoang Tam Vo, Sheng Wang, Divyakant Agrawal, Gang Chen, and
Beng Chin Ooi, “LogBase: A Scalable Log-structured Database
System in the Cloud”, Proceedings of Very Large Data Bases, vol. 5,
Jun. 2012, pp. 1004-1015.

[19] Chao-Rui Chang, Meng-Ju Hsieh, Jan-Jan Wu, Po-Yen Wu, and
Pangfeng Liu, “HSQL: A Highly Scalable Cloud Database for Multi-
user Query Processing”, Proceedings of the 5th IEEE International
Conference on Cloud Computing (CLOUD 12), IEEE Press, Jun.
2012, pp. 943-944.

[20] Carlo Curino, Evan P. C. Jones, Raluca A. Popa, Nirmesh Malviya,
Eugene Wu, Samuel Madden, Hari Balakrishnan, and Nickolai
Zeldovich, “Relational Cloud: A Database Service for the Cloud”,
Proceedings of the 5th Biennial Conference on Innovative Data
Systems Research (CIDR 11), Jan. 2011, pp. 235-240.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2427

