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Abstract—Although people’s legs are capable of a broad range 
of muscle-use and gait patterns, they generally prefer just two, 
walking and running. A popular hypothesis regarding legged 
locomotion is that humans and other large animals walk and 
run in a manner that minimizes the metabolic energy 
expenditure for locomotion.  Here, a mathematical model for a 
simple two-dimensional planar kneed walker with point feet 
and two bended knees is discussed. An energy-effective gait is 
designed by using piecewise torque method. Then, the robot 
model can exhibit a natural and reasonable walk on a level 
ground. The results can prove that the proposed optimal 
energy-effective gait is suitable for this kneed biped walking 
robot. And we also discover some walking rules maybe true 
through the results of optimization. 

Keywords- biped robot; optimization ; energy-effective 

I.  INTRODUCTION 

Why do people not walk or even run with a smooth level 
gait[1,2], like a waiter holding two cups brim-full of boiling 
coffee? Why do people select walking and running from the 
other possibilities? We address such questions by modeling a 
person as a machine describable with the equations of 
newtonian mechanics. We hope to find how a person can 
move steadily with the least muscle work. 

However, Walking is inherently an underactuated 
problem [3,4,5], which means walking systems possess less 
actuators than degrees of freedom. In the case of two-legged 
walking, it is particularly difficult to achieve both stability 
and efficiency. For a smaller polygon of support, bipeds need 
to constrain their motion considerably to achieve static 
stability at all times during their walking cycle. This results 
in high energylosses during walking and very slow and 
awkward movement overall. Bipeds are also not capable of 
walking over any sort of rough terrain, as keeping a foot flat 
on the ground is essential to exert the torques at the ankles. 

In this paper, a mathematical model for a simple two-
dimensional planar kneed walker with point feet and two 
bended knees is discussed. An energy-effective gait is 
designed by using piecewise torque method. At the same 
time, the tracking problem with energy-effective gait can be 
solved by using ‘Optimized Piecewise Torque’ method. As a 
result, the stability of the closed-loop system and the 
reduction of the cost are both attained. Finally, in order to 
demonstrate the efficiency of our design approach, the 

numerical result that is based on the biped robot manipulator 
system is given. 

II. MODEL OF A KNEED BIPED 

This section addresses the walking robot model. In this 
paper we deal with a planer biped model which has knee 
joints[6]. Fig. 1 shows the model of a kneed biped walking 
robot and Table I lists its notations and numerical settings for 
simulations. The robot consists of four links. 

From the figure, we note that all angles are defined 
globally from the vertical axis. Each leg has two point 
masses, mt for the upper leg (thigh) and ms for the lower leg 
(shank). There is also a mass at the hip, mH. Also, the link 
lengths are composed as follows: length L = lt +ls, ls = a1+b1 
and lt = a2+b2. 

The total walking process can be divided into four stages: 
3-link phase, Active knee-lock off, Stance knee-strike, swing 
knee-strike, heel strike. Between them, the four time periods 
are tks1, tks2, tks3, tks4 separately. The Fig. 2 shows the walking 
manner in a step cycle. 

 
Figure 1.  Four -link kneed biped model. 

At the start of each step, the stance leg is modeled as a 
locked knee leg with an angle θ  between two links, while 
the swing leg is modeled as two links connected by a 
frictionless joint. The system is governed by this dynamics 
until the stance legs knee is unlocked at the optimized 
moment. Then, the stance leg straightens out and the swing 
legs come forward. When the stance leg is fully extended, 
stance knee- strike occurs. After that the stance legs knee is 
locked and the swing legs straighten out, the system is 
governed by its unlocked swing knee dynamics until the 
swing leg is extended to a bended angle θ  between its two 
links, then the swing knee-strike occurs. At the two knee-
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strike point, the velocities change instantly due to the 
collision. And immediately afterwards, we switch to a two-
link system in its locked knee dynamics phase. 

TABLE I.  NOTATIONS AND NUMERICAL SETTINGS 

Numer
ical 

Setting 

Notations 

Name Number Unit 

mt 
ms 
mH 

a1 
b1 
a2 
b2 

g 
q1 

q2 

q3 

q4 

u1 

u2 
u3 

u4 

Thigh mass 
Shank mass 
Hip mass 

Shank length (below point mass) 
Thigh length (above point mass) 
Shank length (below point mass) 
Thigh length (above point mass) 

Gravity acceleration 
Stance shake leg angle 
Stance thigh leg angle 
Swing thigh leg angle 
Swing shake leg angle 

Ankle torque 
Stance knee torque 

Hip torque 
Swing knee torque 

0.5 
0.05 
0.5 

0.375 
0.125 
0.175 
0.325 
9.81 

 
 
 
 
 
 
 
 

kg 
kg 
kg 
m 
m 
m 
m 

m/s2 

rad 
rad 
rad 
rad 
rad 

N ⋅ m 
N ⋅ m 
N ⋅ m 
N ⋅ m 

The system remains in its locked-knee phase until the 
swing foot hits the ground. We model a heel-strike event 
here with the appropriate velocity changes. After this 
collision, the system returns to its initial unlocked swing 
knee phase. 

 

 
Figure 2.  Walking process in a step cycle. 

The robot with the suitable parameter choice is able to 
walk on the level ground by the effect of “virtual gravity 

field[7]” and additional stance knee torque toward the 
horizontal direction (Fig. 1).  

The modeling assumptions are listed as follows. 
(1) Mass: Concentrated at five points (hip, thigh and shank 

of  stance leg and swing leg). 
(2) Actuation: Full-control, i.e., a rotational actuator is 

assumed to be implemented at each joint as well as the 
contact point. 

(3) Collision (heel-strike): The impact of the swing leg 
with the ground is assumed to be completely inelastic and 
without sliding. 

A. Dynamic  Equations 

1) 3-link phase Dynamics 
During the 3-link phase, the system is a three-link 

pendulum with bended stance leg[8]. The full equations of 
motion for such a system are derived using Lagrangian 
formulation, which is clearly described in [9]. The dynamics 
are shown in the standard form of planar manipulator 
dynamics in Equation (1). The specific inertia, velocity-
dependent and gravitational matrices for the three-link 
pendulum are given in Equation (2). 
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And TJ λ  is the constraint force at knee-joint. τ  is the 
control input and 

cτ  is the vector due to the environmental 

forces of the robot.  
Given appropriate mass distributions and initial 

conditions, the swing leg bends the knee as it swings forward. 
At the optimized instant the stance leg knee is unlocked, the 
stance leg straightens out and at the same time, the swing leg 
comes forward. 

2) Active knee-lock off Dynamics 
After the optimized stance leg knee unlocked moment, an 

additional control torque should be added on knee of the 
stance leg. The system is a four-link pendulum and the 
dynamics for the new unlocked system are shown in 
Equation (3) for completeness. 

At the instant the stance upper leg straightens out and 
aligns with the lower leg, a stance leg knee strike collision is 
modeled. 
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3) Stance Knee-Lock Dynamics 
After the stance leg knee-strike, the swing lower leg 

straightens out until it is extended to a bended angle θ  with 
the upper leg. During this swing phase, the system is a three-
link pendulum. The dynamics are shown in Equation (4) for 
completeness. 
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At the instant the lower leg straightens out and extends to 
a bended angle θ  with the upper leg, a swing leg knee-strike 
collision is modeled. 

4) 2-link phase Dynamics 
After the swing leg knee-strike, the two knees remain 

locked and we switch to double-link pendulum dynamics. 
The remainder of the swing phase occurs with one straight 
leg and one bended leg. The dynamics for the new-locked 
system are exactly those of the compass gait dynamics but 
with a different mass configuration. They are shown in 
Equation (5) for completeness. 

When the swing foot touches the ground, we model 
another discrete event, the heel-strike collision. After this, 
we switch the stance and swing legs. This completes a full 
step, and we begin a new step using the three-link with 
bended stance leg unlocked dynamics. 
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5) Stance  knee-strike Dynamics 
We model the stance leg knee strike as a discrete 

collision event in a four-link chain and switch to three-link 
chain model afterwards. Since the only external force on this 
system is at the stance foot, angular momentum is preserved 
for the entire system about the stance foot and for the swing 
leg about the hip and for the lower link of swing leg about its 
knee. Looking at the upper link of stance leg, however, the 
Stance knee-strike acts as an external impulse. Therefore, 
angular momentum is not conserved about the stance leg 
knee. 

Using these conservation equations, we obtain the post-
collision velocities for the fist and the last two joint angles. 
The second joint angle corresponding to the knee is locked 
after the collision. Therefore, its post-collision velocity will 
be that of the first link. We express the change in velocities 
as: 
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6) Swing Knee-strike Dynamics 
We model the swing knee-strike as a discrete collision 

event in a three-link chain and switch to the compass gait 
model afterwards. Since the only external force on this 
system is also at the stance foot, angular momentum is 
preserved for the entire system about the stance foot and for 
the swing leg about the hip. 

Using these conservation equations, we obtain the post-
collision velocities for the first two joint angles of the three-
link chain. The third joint angle corresponding to the swing 
knee is locked after the collision. Therefore, its post-collision 
velocity will be that of the second link. We express the 
change in velocities as: 
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2 1q q+ +=        3 4q q+ +=   

7) Heel-strike Dynamics 
The heel-strike is modeled as an inelastic collision about 

the colliding foot. This heel-strike event is, again, identical 
to the heel strike for the compass gait. Since the only 
external force occurs at the point of impact, there are no 
moments created around this point and therefore, no 
external torques act on the system. Angular momentum is 
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then conserved for the entire system about the colliding foot 
and for the swing leg after impact about the hip. 

Right after the event, the model switches both legs and 
the impact foot becomes the new stance foot. The model also 
switches back to the bended stance leg three-link dynamics 
to start a new step cycle. The third joint angle starts with θ  
angular difference position and the same velocity as the 
second one. This collision event is expressed in Equation (8). 
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2 1q q+ +=        3 4q q+ +=    

B. The Optimized  Numerical Simulations Result 

By using the ‘SNOPT’ software and according to the 
optimizing target and constraint condition, we can get the 
result which makes the total actuator’s torque energy 
minimal. 

A limit cycle for the upper link of one leg is shown in 
Figure 3. 

The instantaneous velocity changes from the stance 
kneestrike, swing kneestrike and heelstrike events can be 
observed in this limit cycle as straight lines where the cycle 
jumps with the instantaneous velocity changes while the 
positions remain the same. 

 
Figure 3.  Limit cycle trajectory for the upper link of one leg 

On the other hand, the kneeunlocked event will happen 
just before the upper link of the stance leg become 
perpendicular to the level ground, the optimized 2unlockq is 

approximately 2.06°. the kneeunlocked event and the 
additional piecewise torque 

2 piecewiseu produce a push off 

effect on the knee, and following this, the stance kneestrike 
event will happen just after the upper link swing angle 

2q  

pass across the 0°. 
We see that the limit cycle closely resembles that of 

the compass gait. There is a swing phase (top half of the 
curve) and a stance phase (bottom half of curve) for each leg. 

In contrast with the compass gait, however, in addition to the 
two heel-strikes, there are four more instantaneous velocity 
changes produced by the stance kneestrikes and swing 
kneestrikes and a knee push off by piecewise torque 

2 piecewiseu . This limit cycle is traversed clockwise. 

And Fig. 6 shows the actuator’s torques of the four joint 
torques of the piecewise control in one step. 

 
Figure 4.  The actuator’s torques of the system with piecewise control 

In these figures the walking gait is an inverted 
pendulum with heel-strike and push-off stages, and we can 
see that if we use the piecewise function on the ankle’s 
torque u1, and the period piecewise function on the stance 
knee torque u2 to drive, there are not only the heel-strike 
torque, but also the ankle push-off torque and knee push-off 
torque. And in this case, the knee push-off torque is very 
helpful for reducing the consuming power during biped 
walking. On the other hand, the hip’s torque u3 and the 
swing knee’s torque u4 are both constant, this is very 
important feature for the stability of biped robot’s posture. 

Indeed, real human ankle joint should have heel-strike 
and push-off toques at the beginning and ending of one step 
[10]. The stance knee has a push-off toque before the upper 
link of the stance leg become perpendicular to the level 
ground. And the hip joint does approximately perform a 
positive constant-like torque during one step. The swing 
knee joint torque of the swing leg should also be 
approximately constant before the knee is locked. 

III. CONCLUSIONS AND FUTURE  WORK 

A popular hypothesis regarding legged locomotion is 
that humans and other large animals walk and run in a 
manner that minimizes the metabolic energy expenditure for 
locomotion. 

And in this thesis, a hybrid model for a passive 2D 
walker with knees and point feet is presented. An energy-
effective gait is designed by using piecewise torque method. 
The stability of the closed-loop system and the reduction of 
the cost are both attained. At low speeds, the optimization 
discovers a natural and reasonable walk on a level ground. 
The results can prove that the proposed optimal gait is 
effective and stable for this kneed biped walking robot. 
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