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Abstract

Considering the kinematics of the moving frame associated with a constant mean cur-
vature surface immersed in S3 we derive a linear problem with the spectral parameter
corresponding to elliptic sinh-Gordon equation. The spectral parameter is related to
the radius R of the sphere S3. The application of the Sym formula to this linear
problem yields constant mean curvature surfaces in E3. Independently, we show that
the Sym formula itself can be derived by an appropriate limiting process R→∞.

Integrable nonlinear equations in 1 + 1 dimensions are distinguished by the existence
of the linear problem or spectral problem, i.e., an associated system of linear equations,
containing the so called spectral parameter (see, for instance, [16]). The integrability
conditions for the linear problem are equivalent to the considered nonlinear system. Inte-
grable systems played an important role in the classical differential geometry [12], and are
more and more important in the modern differential geometry [5, 20, 21]. Some integrable
systems are of geometric origin [3, 13, 18, 19].

Given a spectral problem we can construct a local immersion by the so called Sym
formula [6, 19]. For instance, starting from the spectral problem for the sine-Gordon
equation we get pseudospherical surfaces. The Sym approach gives probably the best
correspondence between the geometry and spectral problems [7, 19]. The spectral problem
is necessary for the application of various methods of the soliton theory, like the inverse
scattering method, the Darboux-Bäcklund transformation or algebro-geometric solutions
in terms of Riemann theta functions. The Sym formula allows one to use all these methods
in differential geometry.

In the differential geometry of immersed submanifolds we have always a typical pair:
the linear system of Gauss-Weingarten equations and their compatibility conditions, the
nonlinear system of Gauss-Codazzi-Ricci equations. To obtain a linear problem of the
soliton theory we need to insert a spectral parameter into the Gauss-Weingarten equations
under consideration (for more details and references see, for instance, [6]).

In this paper we consider surfaces of constant mean curvature H 6= 0. Constant mean
curvature surfaces immersed in 3-dimensional Euclidean space E3 appear in the problem
of soap bubbles if the (constant) outer pressure on both sides of the bubble surface is
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different (if the pressure is the same on both sides, we get minimal surfaces, i.e., H = 0).
The Gauss map for constant mean curvature surfaces in E3 is harmonic, i.e., the normal
vector N satisfies the equation

N,xx +N,yy +(N,2x +N,2y )N = 0 , N2 = 1 , (1)

where x, y are curvature coordinates (or their conformal equivalents). This is the 2-
dimensional Euclidean O(3) σ-model which appears in the classical field theory [17] and
also describes static solutions of 2 + 1-dimensional continuum classical Heisenberg ferro-
magnet equation

S,t = S × (S,xx +S,yy ) , S2 = 1 . (2)

Here we use the approach proposed by Doliwa and Santini [10] which has been success-
fully applied to the case of submanifolds of negative constant sectional curvature [2, 9].
The Gauss-Weingarten equations for surfaces of constant mean curvature immersed in the
sphere S3 ⊂ E4 contain explicitly the radius R of the sphere S3. The main result of this
paper is to show that R plays the role of the spectral parameter (or, more precisely, R is
a function of the spectral parameter).

We consider an immersion in the sphere S3 ⊂ E4 (of radius R) defined by the position
vector r = r(x, y). The unit vector r/R is orthogonal to S3 and we choose the second
normal vector n to be tangent to S3. The immersion has 2-dimensional normal space
spanned by r/R and n. We can always consider conformal coordinates, i.e., such that the
first fundamental form is proportional to dx2 + dy2, while the second fundamental form
associated with n is arbitrary:

I := dr · dr = e2ϑ(dx2 + dy2) ,

II := −dr · dn = b11dx2 + 2b12dxdy + b22dy2 .
(3)

Moreover, the second fundamental form II ′ associated with the normal r/R is proportional
to the metric. Indeed,

II ′ := −dr · d(r/R) = − 1
R

dr · dr = −k0e
2ϑ(dx2 + dy2) , (4)

where we denoted k0 := 1/R.
We denote unit tangent vectors by E1 ≡ e−ϑr,x, E2 ≡ e−ϑr,x, and the normal vectors

by E3 ≡ n, E4 ≡ r/R. The so called mean curvature vector (see, for instance, [1, 4]) is
given by

~H = hE3 − k0E4 , (5)

where

h :=
1
2

(b11 + b22) e−2ϑ . (6)

We recall that in d-submanifold case (d > 2) the covariant constancy of ~H is a natural
generalization of the condition H = const.
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Kinematics of the adapted frame (Gauss-Weingarten equations or structural equations)
can be expressed in terms of the coefficients of the fundamental forms:

r,xx = ϑ,x r,x−ϑ,y r,y +b11n−R−2e2ϑr ,

r,xy = ϑ,y r,x +ϑ,x r,y +b12n ,

r,yy = ϑ,y r,y −ϑ,x r,x +b22n−R−2e2ϑr ,

n,x = −b11e
−2ϑr,x , n,y = −b22e

−2ϑr,y .

(7)

Note that n ≡ E3 and E4 ≡ k0r are covariantly constant. Therefore ~H is covariantly
constant iff h = const.

We can rewrite the equations (7) in the matrix form:

∂
∂x


E1

E2

E3

E4

 =


0 −ϑ,y b11e

−ϑ −k0e
ϑ

ϑ,y 0 b12e
−ϑ 0

−b11e
−ϑ −b12e

−ϑ 0 0
k0e

ϑ 0 0 0




E1

E2

E3

E4

 ,

∂
∂y


E1

E2

E3

E4

 =


0 ϑ,x b12e

−ϑ 0
−ϑ,x 0 b22e

−ϑ −k0e
ϑ

−b12e
−ϑ −b22e

−ϑ 0 0
0 k0e

ϑ 0 0




E1

E2

E3

E4

 .

(8)

Denoting (E1, E2, E3, E4)T ∈ SO(4) by Φ and standard generators of the matrix Lie
algebra so(4) by fjk, we have

Φ,x = ÛΦ ≡
(
−ϑ,y f12 + b11e

−ϑf13 − k0e
ϑf14 + b12e

−ϑf23

)
Φ ,

Φ,y = V̂ Φ ≡
(
ϑ,x f12 + b22e

−ϑf23 − k0e
ϑf24 + b12e

−ϑf13

)
Φ .

(9)

The system of Gauss-Codazzi equations (identical with the compatibility conditions for
the above system of matrix linear equations) is given by

ϑ,xx +ϑ,yy +(b11b22 − b2
12)e

−2ϑ + k2
0e

2ϑ = 0 ,

b12,x = b11,y −ϑ,y (b11 + b22) ,

b12,y = b22,x−ϑ,x (b11 + b22) .

(10)

Introducing complex variables z = x + iy, z̄ = x− iy and a complex function

Q :=
1
4

(b11 − b22)−
1
2
ib12 , (11)

known as the Hopf differential (compare [3] where the case of surfaces in E3 is discussed
in detail), we may rewrite the Gauss-Codazzi equations as

4ϑ,zz̄ +(h2 + k2
0)e

2ϑ − 4QQ̄e−2ϑ = 0 ,

Q,z̄ = 1
2h,z e2ϑ .

(12)
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If h = const, then r(x, y) describes constant mean curvature surfaces immersed in E4

and the system (12) reduces to

ϑ,zz̄ +
1
4
H2e2ϑ −QQ̄e−2ϑ = 0 , Q = Q(z) , (13)

(i.e., Q(z) is an analytic function) where

H2 = h2 + k2
0 . (14)

The system (13) can be transformed into the elliptic sinh-Gordon equation

u,XX +u,Y Y = − sinhu coshu (15)

by the change of variables z → Z ≡ X + iY and θ → u, where

dZ =
√

8HQ(z) dz , u = ϑ− ln(2H−1|Q(z)|) . (16)

Note that the sign on the left hand side of (15) is negative. Both cases, positive and
negative, have some applications in physics, and both are integrable (see, for instance,
[14]). The equations (13) can also be interpreted as Gauss-Codazzi equations for surfaces
of constant mean curvature H immersed in E3.

By virtue of (14), for any fixed H linear equations (9) form a one-parameter family of
equations (the linear problem with the spectral parameter) parameterized by κ, where

h = H cos κ , k0 = H sinκ , (17)

or, even better, h and k0 can be expressed in terms of ζ = eiκ, i.e.,

h =
H

2

(
ζ +

1
ζ

)
,

1
R
≡ k0 =

H

2i

(
ζ − 1

ζ

)
. (18)

We point out that the spectral parameter ζ takes values in the unit circle. The coefficients
bij appearing in equations (9), can be expressed in terms of Q and ϑ (compare (6) and
(11)):

b11 = he2ϑ + 2ReQ , b12 = −2ImQ , b22 = he2ϑ − 2ReQ . (19)

Finally, we have the following SO(4)-valued spectral problem

Φ,x = ÛΦ ≡
∑
i<j

uijfijΦ , Φ,y = V̂ Φ ≡
∑
i<j

vijfijΦ , (20)

where

Û =
ζH

2
eϑ(f13 + if14) +

H

2ζ
eϑ(f13 − if14) + Û0 ,

Û0 := −ϑ,y f12 + 2e−ϑf13ReQ− 2e−ϑf23ImQ ,

V̂ =
ζH

2
eϑ(f23 + if24) +

H

2ζ
eϑ(f23 − if24) + V̂0 ,

V̂0 := ϑ,x f12 − 2e−ϑf23ReQ− 2e−ϑf13ImQ

(21)



A geometric interpretation of the spectral parameter for surfaces ... 511

The compatibility conditions for the linear problem (20), (21) are given by (13). For our
purposes it is very convenient to use the isomorphism so(4) ' spin(4), i.e.,

fij ←→ 1
2
eiej , (22)

where ej are so called Clifford numbers (see, for instance,[15]), satisfying

e2
j = 1 (j = 1, 2, 3, 4) , eiej = −ejei (i 6= j) . (23)

The group Spin(4) is the double covering of SO(4). Using the above isomorphism we
immediately obtain the following Spin(4)-valued spectral problem

Ψ,x = UΨ =
1
2

∑
i<j

uijeiejΨ ,

Ψ,y = V Ψ =
1
2

∑
i<j

vijeiejΨ ,
(24)

where uij and vij are defined by (20), (21), i.e.,

2U = Heϑe1(e3 cos κ− e4 sinκ)− ϑ,y e1e2 + 2e−ϑ(e1ReQ− e2ImQ)e3 ,

2V = Heϑe2(e3 cos κ− e4 sinκ) + ϑ,x e1e2 − 2e−ϑ(e1ImQ + e2ReQ)e3 .
(25)

One can easily check that the matrices of the spectral problem (25) have the following
property:

U(−κ) = e4U(κ)e−1
4 , V (−κ) = e4V (κ)e−1

4 . (26)

Therefore we can confine ourselves to solutions Ψ satisfying

Ψ(−κ) = e4Ψ(κ)e−1
4 (27)

Actually, κ is defined as a positive quantity (compare (17)). Therefore, the equations (26)
can be treated as an extension of the obtained spectral problem on negative values of κ
(note that κ < 0 formally means that R is negative as well).

The frame Ek associated with the immersion r can also be expressed in terms of Clifford
numbers, namely

Ek ←→ Ek := Ψ−1ekΨ . (28)

Note that Ek form an orthonormal basis in the 4-dimensional linear space W spanned by
e1, e2, e3, e4. We define Φ := (E1,E2,E3,E4)T and compute

Ek,x = (Ψ−1ekΨ),x = Ψ−1[ek, U ]Ψ , (29)

and similar expression for the y-derivative. By virtue of

[ek, U ] =
∑
j>k

ukjej −
∑
i<k

uikei , (30)
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we get again the considered SO(4) spectral problem (defined on the space W ' E4). Thus
we proved that Φ satisfies (20), (21) provided that Ψ solves (24) (compare an analogical
discussion for pseudospherical surfaces [2, 9]).

In particular, using W ' E4, we can express by Ψ the position vector r ∈ E4 of the
considered immersion of constant mean curvature (r ' r):

r = RE4 ≡ RΨ−1e4Ψ (31)

Finally, we define (compare [9]):

F = lim
R→∞

(r−Re4) . (32)

We expect that F should be an immersion into E3 (for R → ∞ the sphere S3 locally
becomes E3). The subtraction of Re4 in the definition (32) means that we choose a more
convenient origin of the reference frame (a fixed point of the “blowing” sphere instead of
the center of the sphere). This is the North pole or (for R < 0) the South pole.

The limit R → ∞ means that ζ → 1, κ → 0 and k0 → 0. In this limit the matrices
U, V given by (25) do not contain e4. From (27) it follows that

Ψ0e4 = e4Ψ0 , Ψ′0e4 = −e4Ψ′0 , (33)

where Ψ0 := Ψ(x, y, 0) (i.e., Ψ evaluated at κ = 0) and the prime means differentiation
with respect to κ. Thee limit (32) can be computed as follows:

F = lim
R→∞

R(Ψ−1e4Ψ− e4) = lim
k0→0

Ψ−1e4Ψ− e4

k0
. (34)

Applying L’Hospital’s rule, and (17) and (33), we get

F = (−Ψ−1Ψ,k0 Ψ−1e4Ψ + Ψ−1e4Ψ,k0 )|k0=0 = 2H−1e4Ψ−1Ψ,κ |κ=0 . (35)

Thus we derived the Sym formula. The factor e4 turns out to be quite convenient because
it assures that F = F (x, y) describes an immersion in the space E3 spanned by e1, e2, e3.

We expect that the fundamental forms for the immersion F can be obtained from the
fundamental forms for r in the limit k0 → 0. Indeed, we compute

F,x = 2H−1e4Ψ−1
0 U,κ (0)Ψ0 = −e4e

ϑΨ−1
0 e1e4Ψ0 = eϑẽ1 ,

F,y = 2H−1e4Ψ−1
0 V,κ (0)Ψ0 = −e4e

ϑΨ−1
0 e2e4Ψ0 = eϑẽ2 ,

N = Ψ−1
0 e3Ψ0 = ẽ3 ,

N,x = Ψ−1
0 [e3, U(0)]Ψ0 = −Heϑẽ1 − 2e−ϑ(ẽ1ReQ− ẽ2ImQ) ,

N,y = Ψ−1
0 [e3, V (0)]Ψ0 = −Heϑẽ2 + 2e−ϑ(ẽ1ImQ + ẽ2ReQ) ,

(36)

where ẽk := Ψ−1
0 ekΨ0. Taking into account that ẽ1, ẽ2, ẽ3 form an orthonormal frame in

E3, we obtain the fundamental forms (3), (19):

I = e2ϑ(dx2 + dy2) ,

II = (he2ϑ + 2ReQ)dx2 − 4ImQ dxdy + (he2ϑ − 2ReQ)dy2 .
(37)
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Computing the mean curvature (according to the formula (6)) we verify that the obtained
F is a surface of constant mean curvature in E3.

It is interesting that the presented geometric interpretation yields constant mean curva-
ture surfaces in E3 when the Sym formula is applied directly to Spin(4) spectral problem.
Usually one expects to get surfaces in E3 from some Spin(3) (i.e., SU(2)) spectral problem.
It turns out that such approach is possible in our case as well. Namely, we can use the
well known isomorphism so(4) ' so(3)⊕ so(3) . For instance, we can define

2f1 = e1e2 − e3e4 , 2f2 = e1e3 + e2e4 , 2f3 = e1e4 − e2e3 ,

2g1 = e1e2 + e3e4 , 2g2 = e2e4 − e1e3 , 2g3 = e1e4 + e2e3 .
(38)

One can easily check that

[f1, f2] = f3 , [g1, g2] = g3 , [fj , gk] = 0 , (39)

etc., which means that f1, f2, f3 and g1, g2, g3 span two copies of commuting Lie algebras
so(3). The projector

P :=
1
2

(1 + e1e2e3e4) (40)

projects so(4) onto so(3) spanned by f1, f2, f3, while I − P projects so(4) on the second
copy of so(3). Namely

Pe1e2 = f1 , Pe1e3 = f2 , Pe1e4 = f3 ,

Pe3e4 = −f1 , Pe2e4 = f2 , Pe2e3 = −f3 .
(41)

Note that Pfk = fk and Pgk = 0 for k = 1, 2, 3.
Performing the projection (40) we transform the spectral problem (24), (25) into

2U = Heϑ(f2 cos κ− f3 sinκ)− ϑ,y f1 + 2e−ϑf2ReQ + 2e−ϑf3ImQ ,

2V = Heϑ(−f3 cos κ− f2 sinκ) + ϑ,x f1 + 2e−ϑf3ReQ− 2e−ϑf2ImQ .
(42)

The projection I − P , applied to (24), (25), yields

2U = Heϑ(−g2 cos κ− g3 sinκ)− ϑ,y g1 − 2e−ϑg2ReQ− 2e−ϑg3ImQ ,

2V = Heϑ(g3 cos κ− g2 sin κ) + ϑ,x g1 − 2e−ϑg3ReQ + 2e−ϑg2ImQ .
(43)

The spectral problem (43) can be obtained from (42) by a simple transformation, namely:
g2 → −f2, g3 → −f3, κ→ −κ.

We can apply the Sym formula F = 2H−1Ψ−1Ψ,κ to the linear problems (42) and (43).
Now we do not confine ourselves to κ = 0. In both cases we get the same κ-family of
surfaces of constant mean curvature H, characterized by the following fundamental forms:

I = e2ϑ(dx2 + dy2) ,

II = (He2ϑ + 2(cos κ ReQ + sinκ ImQ))dx2

+ 4(sinκ ReQ− cos κ ImQ)dxdy

+ (He2ϑ − 2(cos κ ReQ + sinκ ImQ))dy2

(44)
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The coefficient 2H in the Sym formula, the same as in (35), is not very important, but
is necessary to get the mean curvature H. Note that for κ = 0 we get the fundamental
forms (37).

Therefore, we derived spectral problems (25) and (42), containing the spectral parame-
ter, associated (by the Sym formula) with surfaces of constant mean curvature in E3. The
2× 2 spectral problems presented in the existing literature can be reduced to the spectral
problem (42) by some obvious gauge transformations and changes of variables (like (16)),
compare [3, 7, 11].

It turns out that the role of Clifford algebras and Spin groups is quite important in
the derivation of the Sym formula (compare the above results with [9]). It would be very
interesting to extend our approach on the submanifolds asociated with spectral problems
defined in terms of Clifford algebras [8].
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