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Abstract—Building up graph models to simulate scale-free 
networks is an important method since graphs have been used 
in researching scale-free networks and communication 
networks, such as graph colorings can be used for 
distinguishing objects of communication and information 
networks. In this paper we determine the avdtc chromatic 
numbers of some models related with researching networks. 
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I. INTRODUCTION 

In the communication network, to prevent the network 
between different site signal frequency of resonance, it must 
ensure that between different sites have different emission 
frequency. Frequency assignment problem produced in the 
rapid development of mobile communication. Because of 
the customer have increased dramatically, leading to a 
confliction between the increasing customer and the limited 
expansion of communication network resources outstanding. 
To solve the frequency assignment problem, the domestic 
scholars put forward the concept of adjacent vertex 
distinguishing edge coloring for the first time [6]. In 1993, 
Burris introduced the notation of vertex distinguishing edge 
coloring in his Ph. D. Dissertation. 

Graph coloring theory is one of the most actively branch 
in graph theory. It involves in many fields, such as such as 
physics, chemistry, computer science, network theory, 
social science, etc in a wide range of applications. For 
example, time tabling and scheduling, frequency assignment, 
register allocation, labeling a point set, computer security, 
electronic banking, coding theory, communication network, 
and logistics and so on. These coloring is presented in the 
environment about how to solve the practical problems meet 
in computer science (such as the description of contacting 
between point and point in space database), up to now, it is 
concerned by more and more researchers. Vertex-disting-
uishing total coloring and adjacent vertex distinguishing 
total coloring are studied in [5]-[7].  

Conjecture 1. [7] Every simple graph G on order n≥2 has 
its adjacent vertex distinguishing total chromatic number 
(avdtc chromatic number) χ″as(G)≤Δ(G)+3. 

It seems quite difficult to settle down this conjecture, 
since it has been verified by several special classes of 

graphs up to now. Meanwhile, no counterexamples to the 
conjecture were found. For simple graphs having maximum 
degree three. Chen [2], Wang [3] and Hulgan [4], indepen-
dently, confirm positively the conjecture by showing the 
avdtc chromatic numbers of simple graphs having maximum 
three is at most 6. However, Hulgan [4] pointed out: 
although complete graphs of odd order show the conjecture 
bound is sharp for even maximum degree, many maximum 
degree three graphs, including the K4,K3,3 and Petersen 
graphs, have avdtcs with only 5 colors.  

He proposed a problem: For a graph G with Δ(G)=3, is 
the bound χ″as(G)≤Δ(G)+3 sharp? In our knowledge, no 
graphs having maximum degree three and avdtc chromatic 
number six were reported in current literature. 

We use standard terminology and notation of graph 
theory. Graphs mentioned are finite, undirected, and have no 
multiple edges and loopless, we call them simple graphs 
herein. By [m, n] we denote a set of consecutive integers {m, 
m+1, …, n} with n>m≥0; and N(u) indicates the set of 
vertices adjacent to a vertex u, Ne(u) is the set of edges 
incident to the vertex u in a graph. A Δ-vertex of a graph is a 
vertex of maximum degree. For a simple graph G we call a 
mapping f : V(G)∪E(G)→{1, 2, … , k} a proper total k-
coloring of G if f(u)≠f(v) for adjacent or incident u, 
v∈V(G)∪E(G). Let C(f, u)={f(e): e∈Ne(u)}, Cf, u= {f(x): 
x∈N(u)} {∪ f(u)}, C[f, u]=C(f, u) {∪ f(u)}, andC2[f, u]= C(f, 
u)∪Cf, u. Furthermore, let C{ f, u }={C(f, u),Cf, u, C[f, 
u], C2[f, u]} for every u∈V(G). We define the distinguishing 
constraints as: 

(1) Typical local-constraint: for an edge uv∈E(G) the 
notation C{f;u}≠C{f;v} stands for the four proper 
distinguishing constraints C(f, u)≠C(f, v), Cf, u≠Cf, v, C[f, 
u] ≠C[f, v] and C2 [f, u]≠C2 [f, v] holding at same time. 

(2) Complete local-constraint C2{f; uv}={A≠B: A∈C{f;u}, 
B∈C{f;v}} for every edge uv∈E(G). 

Definition 1. Let f: V(G)∪E(G) → [1, k] be a proper 
total coloring of a simple graph G. If C[f, u]≠C[f, v] for 
every edge uv∈E(G), then we called f an adjacent vertex 
distinguishing total k-coloring (k-avdtc) of G. The minimum 
number of k colors required for which G admits a k-avdtc is 
denoted as χ″as(G). 

Definition 2. A bicyclic graph G=G[Cm,Cn] is a graph 
which it satisfies: 
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(a) G is planar and contains a cycle Cm= x1x2…xmx1 and a 
cycle Cn=y1y2…ymy1, |V (Cm)| =m, |V(Cn)|=n; 

(b) E(G)= E(Cm)∪E(Cn) and |V(G)|≤m+n−2; 
(c) If u∈V(Cm)∩V(Cn)), then dG(u)=4, otherwise, dG(u)=2. 
Obviously, a bicyclic graph G has Δ(G)=4, δ(G)=2 and 

no vertex of degree 1 and vertex of degree 3. 

 
Figure 1. (a) A bicyclic graph has no double ear; (b) A intersecting cycle 

G=G[Cm,Cn]. 

Definition 3. A bicyclic graph G=G[Cm,Cn] is an 
intersecting cycle if it holds: 

(a) If |V(G)|=m+n−2, then G contains a single inner ear 
and a single external ear; 

(b) If |V(G)|<m+n−2, G contains two single ears, others 
are all double ears. 

 
Figure 2. (c) A bicyclic graph has double ear and at least 3 single ears; (d) 

A intersecting k-cycle. 

Definition 4. An intersecting k-cycle Hk=Hk[Cm,Cni] 
(i∈[1, k], k ≥ 2) holds: 

(a) Hk is a connected planar graph and contains cycles Cn1, 
Cn2 , … , Cnk and Cm; Δ(Hk)=4; 

(b) Cni ⊆ Cni+1, i∈[1,k−1],V(Cni)∩V(Cnj)=Ø, i≠ j. 
(c) E(Hk) =(∪E(Cni))∪E(Cm),|V(Hk)|≤m−2k+∑ni; if u∈ 

V(Cm)∩V(Cni), then dG(u)=4, otherwise dG(u)=2; 
(d) G=G[Cm,Cnj]=Hk−∪ i≠j(E(Cni)∪V(Cni)), for each 

cycle Cnj . 
Definition 5. Let f : V(G)∪E(G) →[1, k] be a proper 

total coloring of a simple graph G. We call f to be a [4]-
adjacent vertex distinguishing total k-coloring (k-[4]-avdtc 
for short) of G if C{f, x}≠C{f, y} for every edge xy∈E(G). 
The minimum number of k colors required for which G 
admits a k-[4]-avdtc is denoted by χ″[4]as(G), and called the 
[4]-avdtc chromatic number of G. 

Definition 6. Let f: V(G)∪E(G)→[1, k] be a proper total 
coloring of a simple graph G. We call f to be a complete 
adjacent vertex distinguishing total k-coloring (complete k-
avdtc for short) of G if it has C2{f; xy} for Every edge 
xy∈E(G) The minimum number of k colors required for 

which G admits a complete k-avdtc is denoted by χ″ca(G), 
and called the complete avdtc chromatic number of G. 
Clearly, for a simple graph G, we have 

χ″as(G) ≤χ″[4]as(G), χ″cas(G)≤χ″cas(G) 

by the above definitions. 
Definition 7. A generalized Petersen graph P(n, k) for 

n≥3 and 1≤k<n/2 is a graph with vertex set V={u0, u1, 
… ,un−1, v0, v1, …, vn−1}, and edge set E ={uiui+1, uivi, vivi+k | 
i∈[0, n−1], where subscripts are taken modulo n. Observe 
that the generalized Petersen graph induced over the set {v1, 
…, vn−1} is the union of g disjoint cycles of length p, where 
g=gcd(n, k) and p=n/g. 

II. MAIN RESULTS 

Lemma 1. [5] Let G be a simple graph, if G contains 
adjacent Δ-vertices, then χ″as(G) ≥Δ(G)+2 . 

Lemma 2. Let uv be an edge of an intersecting cycle G 
=G[Cm,Cn]. Replacing uv by a path uwv, w is not in V(G), 
results a new graph, denoted as H. If G has no adjacent Δ-
vertices, then χ″as(H) ≤ χ″as(G). 

Lemma 3. Let uv be an edge of an intersecting k-cycle Hk. 
Replacing edge uv by a path uwv, w is not in V(Hk), results a 
new graph, denoted as H′. If Hk has no adjacent Δ-vertices, 
then χ″as(H)≤ χ″as(Hk). 

Lemma 4. If an intersecting cycle G=G[Cm,Cn] has no 
adjacent Δ-vertices and each vertex of degree 2 is adjacent 
to two vertices of degree Δ, then χ″as(G)=5. 

Lemma 5. If an intersecting k-cycle Hk (k≥1) has no 
adjacent Δ-vertices and each vertex of degree 2 is adjacent 
to two vertices of degree Δ, then χ″as( Hk)=5. 

Lemma 6. [8] χ″as(P(n,k))=5. 
By the definition of a generalized Petersen graph, we can 

obtain Lemmas 7, 8 and 9. 
Lemma 7. For a generalized Petersen graph P(n,k), n≥3 

and 1 ≤ k < n/2, if n is odd, then p and g are odd. 
Lemma 8. For a generalized Petersen graph P(n,k), n≥3 

and 1 ≤ k < n/2, if n is even, p is even, then g is either even 
or odd. 

Lemma 9. For a generalized Petersen graph P(n,k), n≥3 
and 1 ≤ k < n/2, if n is even, p is odd, then g is even. 

Lemma 10. [9] Let G be a simple graph with n≥3 vertices 
and no isolated edges as well as at most one isolated vertex. 
Then G admits a total coloring f with Cf, u=Cf, v for 
distinct vertices u,v∈V(G) (resp. for every edge uv∈E(G)) if 
and only if N(u)∪{u}≠N(v)∪{v} for distinct u,v∈V(G) 
(resp. for every edge uv∈E(G)). 

Generalized Petersen graphs P(n,k) have complete k-
avdtcs by Lemma 10. 

Lemma 11. χ″cas(P(3,1))=6. 
Theorem 12. Let G=G[Cm,Cn] be an intersecting cycle, if 

G has no adjacent Δ-vertices, then χ″as(G)=5. 
Theorem 13. Let Hk (k≥2) be an intersecting k-cycle, if 

Hk has no adjacent Δ-vertices, then χ″as (Hk)=5. 
Theorem 14. If n ≥ 3, 1≤ k <n/2, then 6≤χ″[4]as(G) ≤7. 
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Theorem 15. If n ≥ 3, 1≤ k <n/2, then 6≤χ″cas(G) ≤8. 

 
Figure 3. An example of Theorem 15, χ″cas(P(15,1))=7 and χ″cas(P(16, 

4))=7. 

III. PROOFS 

Proof of Lemma 2. Let f be an avdtc of an intersecting 
cycle G=G[Cm,Cn], and min f(V(G)∪E(G))= χ″as(G)=|C|. 
Set f(uv)=α. Consider the following two cases. 

Case 1. G contains a path xuv, dG(x)=dG(v)=4 and 
dG(u)=2. Replacing edge uv by a path uwv, obtained a new 
graph H, w is not in V(G). In H, we consider the coloring 
only in vertex w and its two incidence edges uw,wv, and 

define a proper total coloring g of H as: g(uw)=a1, a1∈ C (u, 
f); g(wv) =α; g(w)∈C\{α, a1, g(u), g(v)}; g(t)=f(t), 
t∈(S1\{uv}) ⊆ (S2\{uw, w, wv}), where S1=V(G)∪E(G), 

S2=V(H)∪E(H). Clearly, C(t0,g)=C(t0, f), t0∈V(H)\{u,w}, 
C(u, g)={a1, g(u), g(ux)}, C(w, g)={α, a1, g(w)}, since 
α∈C(w, g), but α is not in C(u,g). Therefore, C(u,g)≠C(w,g). 
Since dH(x)=dH(v)=4, dH(u)=dH(w)=2, so C(w,g)≠C(v,g), 
C(x,g)≠C(u,g). Hence, g is an avdtc of H, and χ″as(H)≤ 
χ″as(G). 

Case 2. G contains a path xuvy, dG(x)=dG(y)=4 and 
dG(u)=dG(v)=2. Replacing uv by a path uwv enables us to 
obtain a new graph H, w is not in V(G).In H, we consider 
the coloring only in vertex w and its two incidence edges 
uw,wv, and then define a proper total coloring h of H as: 

h(wv)=b1, b1∈ C (v,f); h(w) =α; h(uw)∈C\{α, b1, h(u), 
h(ux)}; h(t)=f(t), t∈(S1\{uv}) ⊆ (S2\{uw, w, wv}), where 

S1=V(G)∪E(G), S2=V(H)∪E(H). For such a structure h, 
C(t0,h)=C(t0, f), t0∈V(H)\{w,v}, C(u,h)={h(ux), h(u), h(uw)}, 
C(w,h) ={α, b1, h(uw)}, C(v,h)={b1, h(v), h(vy)}, since 
α∈C(w,h), but α is not in C(u,h), therefore, C(u,h)≠C(w,h). 
And α∈C(w,h), but α is not in C(v,h), therefore, C(w, 
h)≠C(v,h), C(x, h)≠C(u,h) and C(y,h)≠C(v,h) for 
dH(x)=dH(y)=4 and dH(u)= dH(v)=2, Hence, h is an avdtc of 
H, and χ″as(H) ≤χ″as(G). The Lemma is covered. 

Proof of Lemma 4. Case 1. Two cycles Cm
 and Cn 

intersect only one time. To distinguish, Cm is represented by 
Cm

1, Cn is represented by Cn
1. Let Cm

1 =x1x2x3x4x1, Cn
1 

=y1y2y3y4y1, dG(xi)=dG(yi)=4, odd i∈[1,4]; dG(xi)=dG(yi)=2, 
even i∈[1,4]. Since Δ(G)=4 and G contains no adjacent Δ-
vertices, we can see χ″as(G)≥Δ(G)+1=5. We show that 

χ″as(G)≤5 in the following. Define a proper total coloring h 
of the intersecting cycle G as: h(x1)=h(y1)=1, h(x3)=h(y3)=2, 
h(y2)=h(y4)=4, h(x2)=h(x4)=3, h(y1y2)=h(y3y4)=3, h(y2y3)=1, 
h(y1y4)=2, h(x1x2)= h(x3x4)=4, h(x2x3)= h(x1x4)=5.  

We have C (x1,h)= C (x3,h)= C (y1,h)= C (y3,h)=Ø, C  

(x2,h)= C (x4,h)={1,2}, C (y2,h)={2, 5}, C (y4,h) ={1, 5}. 
Obviously, C(yi,h)≠C(yi+1, h), i∈[1,3]; C(xi,h)≠C(xi+1, h), 
i∈[1, 3]; C(y1, h)≠C(y4, h); C(x1, h)≠C(x4, h). It follows that 
h is an avdtc of G, therefore, χ″as(G)=5. 

Case 2. Suppose two cycles Cm and Cn intersect β (β>1) 
times, and χ″as(G)=5. To distinguish, Cm is represented by  
Cm

2, Cn is represented by Cn
2. Let Cm

2= x1x2…x4βx1, Cn
2= 

y1y2…y4βy1.By the inductive hypothesis, G has an avdtc φ 
that min φ(V(G) ∪ E(G))= χ″as(G)=5. Without loss of 
generality, we give a φ as follows: φ(xi)=φ (yj)=1, i, j∈[1,4β] 
and i, j ≡1 (mod 4); φ(xi)=φ(yj)=2, i, j∈[1, 4β] and i, j≡3 
(mod 4); φ(yj)=4, for even j∈[1,4β]; φ(xi) =3, for even i∈ 
[1,4β]; φ(yjyj+1)=3, for odd j∈[1,4β]; φ(yjyj+1)=1, j∈[1,4β] 
and j ≡2 (mod 4); φ(y1y4β)=φ(yjyj+1) =2, j∈[1,4β] and j≡0 
(mod 4); φ(xixi+1)=4, for odd i∈[1,4β]; φ(xixi+1)=φ(x1x4β)=5, 
for even i∈[1,4β]. Now we consider two cycles Cm

 and Cn 
intersect β+1 (β>1) times. Denote new cycles as Cm

3, Cn
3, let  

Cm
3= x1x2…x4βx4β+1 x4β+2 x4β+3 x4β+4x1, 

Cn
3= y1y2…y4βy4β+1 y4β+2 y4β+3 y4β+4y1. 

We define a proper total coloring ϕ of two cycles Cm
2 and 

Cn
2 that intersect β+1 (β>1) times as: ϕ(xi)=ϕ(yj)=1, i, 

j∈[4β+1,4β+4] and i, j≡1 (mod 4); ϕ (xi)) =ϕ (yj)=2, i, j∈ 
[4β+1,4β+4] and i, j ≡3 (mod 4); ϕ (yj)=4 for even i∈[4β+ 
1,4β+4]; ϕ (xi)=3, even i∈[4β+1,4β+4], ϕ (yjyj+1)=3 for odd 
j∈[4β+1,4β+4]; ϕ(yjyj+1)=1, odd j∈[4β+1,4β+4] and i ≡2 
(mod 4); ϕ (y1y4β+4) =ϕ (yjyj+1)=2, odd j∈[4β+1, 4β+ 4] and j 
≡0 (mod 4); ϕ(xixi+1)=4, odd i∈[4β+1,4β+ 4]; ϕ(xixi+1)= 
ϕ(x1x4β+4)=5, even i∈[4β+1,4β+4]. The colors of the rest 
vertices and edges keep no change in the coloring φ. 

We observe that C (xi, ϕ)= C (yj, ϕ) =Ø, for odd i, j∈ [1, 

4β+4]; C (xi, ϕ)={1,2}, for even i∈[1,4β+4]; C (yj, ϕ)={2, 

5}, j∈[1,4β+4] and j ≡2 (mod 4), C (yj, ϕ)={1,5}, j∈[1, 
4β+4] and j ≡0 (mod 4). Furthermore, C(yi, ϕ)≠C(yi+1,ϕ), 
i∈[1, 4β+3]; C(y4β+4, ϕ)≠C(y1, ϕ); C(xi, ϕ)≠C(xi+1, ϕ), i∈[1, 
4β+3]; C(x4β+4, ϕ)≠C(x1, ϕ). Therefore, ϕ is an avdtc of G 
with χ″as(G)=5. 

Proof of Lemma 5. Case 1. Two cycles Cm
 and Cni 

(i∈[1,k]) intersect only one time. To distinguish, Cm is 
represented by Cm

4 and Cni is represented by Cni
4. Let Cm

4= 
x1x2…x4kx1, Cni

4=yi,1yi,2…yi,4yi,1,  i∈ [1,k]. Since Δ(Hk)=4, 
and Hk contains no adjacent Δ-vertices, thus, χ″as(Hk)≥ 
Δ(Hk)+1=5. 

We define a proper total coloring ψ of an intersecting 
cycle Hk as: ψ (yi,1)=1, i∈[1,k]; ψ (yi,3)=2, i∈[1,k]; ψ(yi,2)= 
ψ(yi,4)=4, i∈[1,k]; ψ(yi,jyi,j+1)=3, i∈[1,k], odd j∈[1,4]; 
ψ(yi,1yi,4)=2, i∈[1,k]; ψ(yi,2yi,3)=1, i∈[1,k]; ψ(xi)=1, odd 
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i∈[1,2k]; ψ (xi)=2, odd i∈[2k, 4k]; ψ(xi)=3, even i∈[1,4k]; 
ψ(xixi+1)=4, odd i∈[1,4k]; ψ(xixi+1)= ψ(x1x4k)=5, even i∈[1, 

4k]. We have C (xi, ψ)= C (yi,j, ψ)=Ø, odd i∈[1,4k], odd 

j∈[1, 4k]; C (xi,ψ)={1,2}, even i∈[1,4k]; C (yi,2, ψ)={2, 5}, 

i∈[1, k], j≡2 (mod 4), C (yi,4, ψ)={1,5}, i∈[1,k], j≡0 (mod 
4). Furthermore, C(yi,j, ψ)≠C(yi,j+1, ψ), i∈[1,k], j∈[1,3]; 
C(yi,4,ψ) ≠C(yi,1,ψ), i∈[1,k]; C(xh, ψ)≠C(xh+1, ψ), h∈[1, 
4k−1]; C(x4k, ψ)≠C(x1, ψ). Thereby, ψ is an avdtc of Hk with 
χ″as(Hk)=5. 

Case 2. Suppose two cycles Cm and Cni
 (i∈[1,k]) intersect 

β (β>1) times, andχ″as(Hk)=5. To distinguish, Cm is 
represented by Cm

5, and Cni is represented by Cni
5. Let  

Cm
5= x1x2…x4kβx1, Cni

5=yi,1yi,2…yi,4βyi,1, i∈[1,k]. 
By the inductive hypothesis, Hk has an avdtc ζ that min 
ζ(V(Hk)∪E(Hk)) =χ″as(Hk)=5. Without loss of generality, 
we define a coloring ζ as: ζ(yi,j)=1, i∈[1,k], j∈[1,4β] and 
j≡1(mod 4); ζ(yi,3)=2, i∈[1,k], j∈[1,4β] and j≡3(mod 4); 
ζ(yi,j)=4, i∈[1,k], even j∈[1,4β]; ζ (yi,jyi,j+1)=3, i∈[1,k], odd 
j∈[1,4β]; ζ(yi,1yi,4β)=ζ(yi,jyi,j+1)=2, i∈[1,k], j∈[1,4β] and j≡0 
(mod 4); ζ(yi,jyi,j+1)=1, i∈[1,k], j∈[1,4β] and j ≡2 (mod 4); 
ζ(xi)=1, odd i∈[1,2kβ]; ζ(xi)=2, odd i∈[2kβ, 4kβ]; ζ(xi)=3, 
even i∈[1,4kβ]; ζ(xixi+1)=4, odd i∈[1,4 kβ]; ζ(xixi+1)= 
ζ(x1x4kβ)=5, even i∈[1,4kβ]. 

Now we consider the case of two cycles Cm
5 and Cni

5 
(i∈[1,k]) intersect β+1 (β>1) times. Denote new cycles as  
Cm

6, Cni
6. For i∈[1,k], let  

Cm
6= x1x2…x4kβx4kβ+1x4kβ+2…x4kβ+4kx1, 

Cni
6= yi,1yi,2…yi,4βyi,4β+1 yi,4β+2 yi,4β+3 yi,4β+4yi,1,. 

Let π be a proper total coloring of Hk. We define a coloring 
π as: π(yi,j)=1, i∈[1,k], j∈[4β+1,4β+4] and j ≡1(mod 4); 
π(yi,3)=2, i∈[1,k], j∈[4β+1,4β+4] and j ≡3 (mod 4); π(yi,j)=4, 
i∈[1,k], even j∈[4β+1, 4β+4]; π(yi,jyi,j+1)=3, i∈[1,k], odd 
j∈[4β+1,4β+4]; π(yi,1yi,4β+4) =π(yi,jyi,j+1)=2, i∈[1,k], j∈[4β+1, 
4β+4] and j≡0 (mod 4); π(yi,jyi,j+1)=1, i∈[1,k], j∈[4β+1, 
4β+4] and j ≡2 (mod 4); π(xi)=1, odd i∈[4kβ+1,4kβ+2k]; 
π(xi)=2, odd i∈[4kβ+2k, 4kβ+4k]; π(xi) =3, even i∈[4kβ+1, 
4kβ+4k]; π(xixi+1)=4, odd i∈ [4kβ+1,4kβ+4k]; π(xixi+1)=π 
(x1x4kβ+4)=5, even i∈[1,4kβ+4k], the colors of the rest 
vertices and edges keep no change in the coloring ζ. We 

observe that C (xi, π)= C (yi,j, π)=Ø, odd i∈[1,4k], odd j∈[1, 

4β+4]; C (xi, π)={1,2}, even i∈[1,4β+4]; C (yi,j, π) ={2,5}, 

i∈[1,k], j∈[1,4β+4] and j≡2(mod 4); C (yi,4, π)={1,5}, 
i∈[1,k], j∈[1,4β+4] and j≡0 (mod 4). Then we have C(yi,j, 
π)≠C(yi,j+1,π), i∈[1,k], j∈[1,4β+3], C(yi,4β+4, π)≠C(yi,1, π), 
i∈[1,k]; C(xh, π)≠C(xh+1, π), h∈[1, 4kβ+4k−1]; C(x4kβ+4k, 
π)≠C(x1, π). Thereby, π is an avdtc of Hk, and χ″as(Hk)=5, 
which means that χ″as(Hk)=5.  
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