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Abstract

We investigate the first cohomology space associated with the embedding of the Lie
superalgebra K(2) of contact vector fields on the (1,2)-dimensional supercircle S1|2 in
the Lie superalgebra SΨDO(S1|2) of superpseudodifferential operators with smooth
coefficients. Following Ovsienko and Roger, we show that this space is ten-dimensional
with only even cocycles and we give explicit expressions of the basis cocycles.

1 Introduction

V. Ovsienko and C. Roger [4] calculated the space H1(Vect(S1), ΨDO(S1)), where
Vect(S1) is the Lie algebra of smooth vector fields on the circle S1 and ΨDO(S1) is
the space of pseudodifferential operators with smooth coefficients. The action is given
by the natural embedding of Vect(S1) in ΨDO(S1). They used the results of D. B.
Fuchs [3] on the cohomology of Vect(S1) with coefficients in weighted densities to de-
termine the cohomology with coefficients in the graded module Gr(ΨDO(S1)), namely
H1(Vect(S1), Grp(ΨDO(S1))); hereGrp(ΨDO(S1)) is isomorphic, as Vect(S1)-module, to
the space of weighted densities Fp of weight −p on S1. To compute
H1(Vect(S1), ΨDO(S1)), V. Ovsienko and C. Roger applied the theory of spectral se-
quences to a filtered module over a Lie algebra.

In a recent paper [1], using the same methods as in the paper [4], two of the authors
computed H1(K(1), SΨDO(S1|1)), where K(1) is the Lie superalgebra K(1) of contact
vector fields on the supercircle S1|1 and SΨDO(S1|1) is the space of superpseudodifferential
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operators on S1|1. Here, we follow again the same methods by V. Ovsienko and C. Roger
[4] to calculate H1(K(2), SΨDO(S1|2)). The paper ([4]) contains also the classification of
polynomial deformations of the natural embedding of Vect(S1) in ΨDO(S1). The multi-
parameter deformations of the embedding of K(1) into SΨDO(S1|1) are classified in ([2]).
Our aim is this classification for the case S1|2.

2 Definitions and Notations

Let S1|n be the supercircle with local coordinates (ϕ; θ1, . . . , θn), where θ = (θ1, . . . , θn)
are the odd variables. More precisely, let x = eiϕ, in what follows by S1|n we mean the
supermanifold (C∗)1|n, whose underlying is C \ {0}. Any contact structure on S1|n can be
reduced to a canonical one, given by the following 1-form:

αn = dx+
n∑

i=1

θidθi.

Let K(n) be the Lie superalgebra of vector fields on S1|n whose Lie action on αn amounts
to a multiplication by a function. Any element of K(n) is of the form (see [6])

vF = F∂x +
(−1)p(F )+1

2

n∑
i=1

ηi(F )ηi,

where F ∈ C∞(S1|n), p(F ) is the parity of F and ηi = ∂θi
− θi∂x. The bracket is given by

[vF , vG] = v{F,G}, where {F,G} = FG′ − F ′G+
(−1)p(F )+1

2

n∑
i=1

ηi(F )ηi(G).

The Lie superalgebra K(n) is called the Lie superalgebra of contact vector fields.
The superspace of the supercommutative algebra of superpseudodifferential symbols on

S1|n with its natural multiplication is spanned by the series

SP(n) =
{
A =

∞∑
k=−M

∑
ε=(ε1,...,εn)

ak, ε(x, θ)ξ−kθ̄ε1
1 · · · θ̄εn

n | ak, ε ∈ C∞(S1|n); εi = 0, 1; M ∈ N
}
,

where ξ corresponds to ∂x and θ̄i corresponds to ∂θi
(p(θ̄i) = 1). The space SP(n) has a

structure of the Poisson Lie superalgebra given by the following bracket:

{A, B} = ∂ξ(A)∂x(B)−∂x(A)∂ξ(B)−(−1)p(A)
n∑

i=1

(
∂θi

(A)∂θ̄i
(B)+∂θ̄i

(A)∂θi
(B)

)
. (2.1)

The associative superalgebra of superpseudodifferential operators SΨDO(S1|n) on S1|n

has the same underlying vector space as SP(n), but the multiplication is now defined by
the following rule:

A ◦B =
∑

α≥0, νi=0, 1

(−1)p(A)νi

α!
(∂α

ξ ∂
νi

θ̄i
A)(∂α

x ∂
νi
θi
B). (2.2)

This composition rule induces the supercommutator defined by:

[A, B] = A ◦B − (−1)p(A)p(B)B ◦A. (2.3)
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3 The space of weighted densities on S1|2

Recall the definition of the Vect(S1)-module of weighted densities on S1. Consider the
1-parameter action of Vect(S1) on C∞(S1) given by (here ∂(f) := f ′ df

dx)

Lλ
X(x)∂(f(x)) = X(x)f ′(x) + λX ′(x)f(x),

for any X(x), f ∈ C∞(S1) and a fixed λ ∈ R. Denote by Fλ the Vect(S1)-module structure
on C∞(S1) defined by this action. Note that the adjoint Vect(S1)-module is isomorphic to
F−1. Geometrically, Fλ is the space of weighted densities of weight λ on S1, i.e., the set of
all expressions: f(x)(dx)λ, where f ∈ C∞(S1). We have analogous definition of weighted
densities in the supercase (see [1]) with dx replaced by αn.

Consider the 1-parameter action of K(n) on C∞(S1|n) given by the rule:

Lλ
vF

(G) = vF (G) + λF ′ ·G, (3.1)

for any F, G ∈ C∞(S1|n). We denote such K(1)-module by =λ and the K(2)-module by
Fλ. Geometrically, the space Fλ is the space of all weighted densities on S1|2 of weight λ:

φ = f(x, θ)αλ
2 , f(x, θ) ∈ C∞(S1|2). (3.2)

Remarks 3.1. 1) The adjoint K(2)-module is isomorphic to F−1. This isomorphism
induces a contact bracket on C∞(S1|2) given by:

{F,G} = L−1
vF

(G) = FG′ − F ′G+
(−1)p(F )+1

2

2∑
i=1

(ηiF )(ηiG). (3.3)

2) As a Vect(S1)-module, the space of weighted densities Fλ is isomorphic to

Fλ ⊕Π(Fλ+ 1
2
⊕Fλ+ 1

2
)⊕Fλ+1.

4 The structure of SP(2) as a K(2)-module

The natural embedding of K(2) into SP(2) defined by

π(vF ) = Fξ +
(−1)p(F )+1

2

2∑
i=1

ηi(F )ζi, where ζi = θ̄i − θiξ, (4.1)

induces a K(2)-module structure on SP(2).
Setting deg x = deg θi = 0, deg ξ = deg θ̄i = 1 for all i, we endow the Poisson superal-

gebra SP(2) with a Z-grading SP(2) =
⊕̃

n∈ZSPn, where
⊕̃

n∈Z = (
⊕

n<0)
⊕ ∏

n≥0 and
where the homogeneous subspace of degree −n is

SPn =
{
Fξ−n +Gξ−n−1θ̄1 +Hξ−n−1θ̄2 + Tξ−n−2θ̄1θ̄2 |

F, G, H, T ∈ C∞(S1|2)
} (4.2)
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Each element of SΨDO(S1|2) can be expressed as

A =
∑
k∈Z

(Fk +Gkξ
−1θ̄1 +Hkξ

−1θ̄2 + Tkξ
−2θ̄1θ̄2)ξ−n,

where Fk, Gk, Hk, Tk ∈ C∞(S1|2). We define the order of A to be

ord(A) = sup{k | Fk 6= 0 or Gk 6= 0 or Hk 6= 0 or Tk 6= 0}.

This definition of order equips SΨDO(S1|2) with a decreasing filtration as follows: set

Fn = {A ∈ SΨDO(S1|2), ord(A) ≤ −n},

where n ∈ Z. So one has

. . . ⊂ Fn+1 ⊂ Fn ⊂ . . . (4.3)

This filtration is compatible with the multiplication and the Poisson bracket, that is, for
A ∈ Fn and B ∈ Fm, one has A ◦B ∈ Fn+m and {A,B} ∈ Fn+m−1. This filtration makes
SΨDO(S1|2) an associative filtered superalgebra. Consider the associated graded space

Gr(SΨDO(S1|2)) =
⊕̃

n∈Z
Fn/Fn+1.

The filtration (4.3) is also compatible with the natural action of K(2) on SΨDO(S1|2).
Indeed, if vF ∈ K(2) and A ∈ Fn, then vF (A) = [vF , A] ∈ Fn. The induced K(2)-module on
the quotient Fn/Fn+1 is isomorphic to the K(2)-module SPn. Therefore, the K(2)-module
Gr(SΨDO(S1|2)), is isomorphic to the graded K(2)-module SP(2), that is

SP(2) '
⊕̃

n∈Z
Fn/Fn+1.

Recall that a C∞ function on S1|2 has the form F = f0 + f1θ1 + f2θ2 + f12θ1θ2 with
f0, f1, f2, f12 ∈ C∞(S1) and a C∞ function on S1|1

i (i = 1, 2), where S1|1
i is the supercircle

with local coordinates (ϕ, θi), has the form F = f0 + fiθi (f12 = f3−i = 0) with f0, fi ∈
C∞(S1). Then the Lie superalgebra K(2) has two subsuperalgebras K(1)i for i = 1, 2
isomorphic to K(1) defined by

K(1)i =
{
vF = F∂x +

(−1)p(F )+1

2

2∑
i=1

ηi(F )ηi | F ∈ C∞(S1|1
i )

}
.

Therefore, SP(2) and Fλ are K(1)i-modules.
For i = 1, 2, let =i

λ be the K(1)i-module of weighted densities of weight λ on S1|1
i .

Proposition 4.1. 1) As a K(1)i-module, i = 1, 2, we have

SPn ' Fn ⊕Π(Fn+ 1
2
⊕ Fn+ 1

2
)⊕ Fn+1 for n = 0,−1.

2) For n 6= 0,−1 : a) The following subspaces of SPn are K(1)i- modules, i = 1, 2,
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isomorphic to Fn+1:

SPn, i =

{
B

(n,i)
F = Fθ3−iθ̄3−iξ

−n−1 + θ3−i(η3−i − 1
2ηi)(F )ζiζ3−iξ

−n−2 |

F ∈ C∞(S1|2)

}
(4.4)

b) As K(1)i-modules, we have

SPn/SPn, i ' Fn ⊕Π(Fn+ 1
2
⊕ Fn+ 1

2
), i = 1, 2.

Proof. . First, note that for n = 0, − 1, the K(1)i-module SPn with the grading (4.2) is
the direct sum of four K(1)i-modules, i = 1, 2.

For n = 0, the four K(1)i-modules are (for brevity, we set F := C∞(S1|2))

SP(0, 0) =
{
A

(0, 0)
F = F | F ∈ F

}
,

SP(0, 1
2
, i) =

 A
(0, 1

2
, i)

F = θiF − (1− 2θ3−i∂θ3−i
)(F )θ̄iξ

−1 −

θ3−i∂θi
(F )θ̄3−iξ

−1 + F ′θ3−iθ̄iθ̄3−iξ
−2 | F ∈ F

 ,

S̃P(0, 1
2
, i) =


Ã

(0, 1
2
, i)

F = θi(∂θ3−i
− 2∂θi

+ 2θ3−i∂θ3−i
∂θi

)(F )θ̄3−iξ
−1 +

1
2(3F − (−1)p(F )F )θ̄3−iξ

−1 +

(−1)p(F )(∂θ3−i
− ∂θi

+ θi∂x)(F )θ̄iθ̄3−iξ
−2 | F ∈ F

 ,

SP(0, 1, i) =
{
A

(0, 1, i)
F = Fθ3−iθ̄3−iξ

−1 + θ3−i(η3−i − 1
2ηi)(F )ζiζ3−iξ

−2 | F ∈ F
}
.

For n = −1, the four K(1)i-modules are

SP(−1, 0) =
{
A

(−1, 0)
F = Fξ + (−1)p(F )+1

2

(
η1(F )ζ1 + η2(F )ζ2

)
| F ∈ F

}
,

SP(−1, 1
2
, i) =

 A
(−1, 1

2
, i)

F = Fζi − (θ3−iηi + θi∂θ3−i
)(F )θ̄3−i −

(−1)p(F )∂θ3−i
(F )θ̄iθ̄3−iξ

−1 | F ∈ F

 ,

S̃P(−1, 1
2
, i) =

{
Ã

(−1, 1
2
, i)

F = Fζi + (1− θ3−iηi)(F )θ̄3−i | F ∈ F
}
,

SP(−1, 1, i) =
{
A

(−1, 1, i)
F = Fθ3−iθ̄3−i + θ3−i(η3−i − 1

2ηi)(F )ζiζ3−iξ
−1 | F ∈ F

}
.

The action of K(1)i on SP(n, 0) and on SP(n, 1, i) for n = 0, − 1 is induced by the
embedding (4.1) as follows

vG ·A(n, 0)
F =

{
π(vG), A(n, 0)

F

}
= A

(n, 0)
Ln

vG
(F )

and
vG ·A(n, 1, i)

F =
{
π(vG), A(n, 1, i)

F

}
= A

(n, 1, i)

Ln+1
vG

(F )
,

where F ∈ C∞(S1|2) and G ∈ C∞(S1|1
i ). Therefore, the natural maps

ψi
n, 0 : Fn −→ SP(n, 0)

Fαn
2 7−→ A

(n, 0)
F

and
ψi

n, 1 : Fn+1 −→ SP(n, 1, i)

Fαn+1
2 7−→ A

(n, 1, i)
F

(4.5)
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provide us with isomorphisms of K(1)i-modules.
The action of K(1)i on SP(n, 1

2
, i) and on S̃P(n, 1

2
, i) for n = 0, − 1 is given by

vG ·A
(n, 1

2
, i)

F =
{
π(vG), A

(n, 1
2
, i)

F

}
= A

(n, 1
2
, i)

L
n+1

2
vG

(F )

and
vG · Ã

(n, 1
2
, i)

F =
{
π(vG), Ã

(n, 1
2
, i)

F

}
= Ã

(n, 1
2
, i)

Ln+1
vG

(F )
,

where F ∈ C∞(S1|2) and G ∈ C∞(S1|1
i ). Therefore, the natural maps

ψi
n, 1

2

: Π(Fn+ 1
2
) −→ SP(n, 1

2
, i)

Π(Fα
n+ 1

2
2 ) 7−→ A

(n, 1
2
, i)

F

and
ψ̃i

n, 1
2

: Π(Fn+ 1
2
) −→ S̃P(n, 1

2
, i)

Π(Fα
n+ 1

2
2 ) 7−→ Ã

(n, 1
2
, i)

F

(4.6)

provide us with isomorphisms of K(1)i-modules.
Second, for n 6= 0, − 1, the action of K(1)i on SPn, i is given by

vG ·B(n, i)
F =

{
π(vG), B(n, i)

F

}
= B

(n, i)

Ln+1
vG

(F )
,

where F ∈ C∞(S1|2) and G ∈ C∞(S1|1
i ). Therefore, SPn, i ' Fn+1 as a K(1)i-module.

The induced K(1)i-module on the quotient SPn/SPn, i has the direct sum decomposition
of the three K(1)i- modules, SP(n, 0, i), SP(n, 1

2
, i) and S̃P(n, 1

2
, i), defined by

SP(n, 0 i) =


A

(n, 0 i)
F = Fξ−n + (−1)p(F )

2 ( 1
2n+1θ3−iη3−iηi − ηi)(F )ζiξ−n−1 +

(∂θ3−i
+ 3n+1

2n+1θi∂θ3−i
∂θi

)(F )θ̄3−iξ
−n−1 +

n+1
2n+1(θ3−iη

3
i + ηiη3−i)(F )θ̄3−iθ̄iξ

−n−2 | F ∈ C∞(S1|2)

 ,

SP
(n, 1

2
, i)

=


A

(n, 1
2
, i)

F = (θ3−i∂θ3−i
− 1)(F )ζiξ−n−1 +

1
2n+1(nθiθ3−i∂x − θ3−i∂θi

)(F )θ̄3−iξ
−n−1 +

n+1
2n+1F

′θ3−iθ̄iθ̄3−iξ
−n−2 | F ∈ C∞(S1|2)

 ,

S̃P(n, 1
2
, i) =


Ã

(n, 1
2
, i)

F = (−1)p(F )θ3−i(1 + θi∂θ3−i
− n

2n+1θi∂θi
)(F )ξ−n +

(θ3−i∂θ3−i
− n

2n+1θ3−iηi)(F )θ̄iξ
−n−1 +

(−1)p(F )(θ3−i∂x + η3−i)(F )ζiθ̄3−iξ
−n−2 | F ∈ C∞(S1|2)

 .

The action of K(1)i on SP(n, j, i) and on S̃P(n, 1
2
, i) is induced by the the action of K(1)i

on SPn/SPn, i and a direct computation shows that one has:

vG ·A(n, j, i)
F = A

(n, j, i)

Ln+j
vG

(F )
for j = 0,

1
2

and vG · Ã
(n, 1

2
, i)

F = Ã
(n, 1

2
, i)

L
n+1

2
vG

(F )
,



On the Cohomology of the Lie Superalgebra of Contact Vector Fields on S1|2 529

where F ∈ C∞(S1|2) and G ∈ C∞(S1|1
i ). Therefore, the natural maps

ψi
n, 0 : Fn −→ SP(n, 0, i)

Fαn
2 7−→ A

(n, 0, i)
F

,
ψi

n, 1
2

: Π(Fn+ 1
2
) −→ SP(n, 1

2
, i)

Π(Fα
n+ 1

2
2 ) 7−→ A

(n, 1
2
, i)

F

and
ψ̃i

n, 1
2

: Π(Fn+ 1
2
) −→ S̃P(n, 1

2
, i)

Π(Fα
n+ 1

2
2 ) 7−→ Ã

(n, 1
2
, i)

F

(4.7)

provide us with isomorphisms of K(1)i-modules. This completes the proof. �

5 The first cohomology space H1(K(2),SP(2))

Let us first recall some fundamental concepts from cohomology theory ([3]). Let g = g0⊕g1

be a Lie superalgebra acting on a super vector space V = V0 ⊕ V1. Each c ∈ Z1(g, V ), is
broken to (c′, c′′) ∈ Hom(g0, V )⊕Hom(g1, V ) subject to the following three equations:

(E1) c′([g1, g2])− g1 · c′(g2) + g2 · c′(g1) = 0 for any g1, g2 ∈ g0,

(E2) c′′([g, h])− g · c′′(h) + h · c′(g) = 0 for any g ∈ g0, h ∈ g1,

(E3) c′([h1, h2])− h1 · c′′(h2)− h2 · c′′(h1) = 0 for any h1, h2 ∈ g1.

(5.1)

Proposition 5.1. 1) H1(K(1)i,Fλ)0 '


R3 if λ = 0,
R if λ = 1,
0 otherwise .

The respective nontrivial 1-

cocycles are

C0(vF ) =
1
4
(3F + (−1)p(F )F ), C1(vF ) = F ′, C2(vF ) = η̄i(F ′)θ3−i if λ = 0,

C3(vF ) = η̄i(F ′′)θ3−i if λ = 1,
(5.2)

where η̄i = ∂θi
+ θi∂x, vF ∈ K(1)i and F = f0 + fiθi.

2) H1(K(1)i,Fλ)1 '


R if λ = 1

2 ,
3
2 ,

R2 if λ = −1
2 ,

0 otherwise.
It is spanned by the following 1-cocycles:


C4(vF ) =

1
4
(3F + (−1)p(F )F )θ3−i, C5(vF ) = F ′θ3−i if λ = −1

2 ,

C6(vF ) = η̄i(F ′) if λ = 1
2 ,

C7(vF ) = η̄i(F ′′) if λ = 3
2 .

(5.3)

To prove Proposition 5.1, we need the following result (see [1]).

Proposition 5.2. [1] 1) The space H1(K(1)i,=i
λ)0, i = 1, 2, has the following structure:

H1(K(1)i,=i
λ)0 '

{
Span(c0(vF ) = 1

4(3F + (−1)p(F )F ), c1(vF ) = F ′) if λ = 0,
0 otherwise.

(5.4)
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2) H1(K(1)i,=i
λ)1 '

{
R if λ = 1

2 ,
3
2 ,

0 otherwise.
It is spanned by the nontrivial 1-cocycles c2(vF ) = η̄i(F ′) if λ = 1

2 ,

c3(vF ) = η̄i(F ′′) if λ = 3
2 .

(5.5)

Proof. (Proposition 5.1): Let Fαλ
2 = (f0 + f1θ1 + f2θ2 + f12θ1θ2)αλ

2 ∈ Fλ. The map

Φ : Fλ −→ =i
λ ⊕=i

λ+ 1
2

Fαλ
2 7−→ ((1− θ3−i∂θ3−i

)(F )αλ
1,i, (−1)p(F )+1∂θ3−i

(F )α
λ+ 1

2
1,i ),

where α1,i = dx+ θidθi, i = 1, 2, provides us with an isomorphism of K(1)i-modules. This
map induces the following isomorphism between cohomology spaces:

H1(K(1)i, Fλ) ' H1(K(1)i, =i
λ)⊕H1(K(1)i, =i

λ+ 1
2

).

We deduce from this isomorphism and Proposition 5.2, the 1-cocycles (5.2–5.3). �

The spaceH1(K(2), SP(2)) inherits the grading (4.2) of SP(2), so it suffices to compute
it in each degree. The main result of this section is the following.

Theorem 5.3. The space H1(K(2), SPn) is purely even. It has the following structure:

H1(K(2),SPn) '


R3 if n = −1
R6 if n = 0
R if n = 1
0 otherwise .

For n = −1, the nontrivial 1-cocycles are:

Υ1(vF ) = η1η2(F )ζ1ζ2ξ−1,

Υ2(vF ) = F ′ζ1ζ2ξ
−1,

Υ3(vF ) =
(1

4
(F + (−1)p(F )+1F ) + η2η1(Fθ1θ2)

)
ζ1ζ2ξ

−1,

For n = 0, the nontrivial 1-cocycles are:

Υ4(vF ) =
1
4
(F + (−1)p(F )+1F ) + η2η1(Fθ1θ2),

Υ5(vF ) = F ′,

Υ6(vF ) = η1η2(F ),

Υ7(vF ) = (−1)p(F )
(
η1(F ′)ζ1 + η2(F ′)ζ2

)
ξ−1,

Υ8(vF ) = F ′′ξ−2ζ1ζ2 + (−1)p(F )
(
η2(F ′)ζ1 − η1(F ′)ζ2

)
ξ−1,

Υ9(vF ) = η1η2(F ′)ζ1ζ2ξ−2,

For n = 1, the nontrivial 1-cocycle is:

Υ10(vF ) =
2
3
F ′′′ζ1ζ2ξ

−3 + (−1)p(F )
(
η2(F ′′)ζ1 − η1(F ′′)ζ2

)
ξ−2 + 2η1η2(F ′)ξ−1.
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To prove Theorem 5.3, we need first to proof the following lemma:

Lemma 5.4. Let C be a even (resp. odd) 1-cocycle from K(2) to SPn, n ∈ Z. If its
restriction to K(1)1 and to K(1)2 is a coboundary, then C is a coboundary.

Proof. Let C be a even (resp. odd) 1-cocycle of K(2) with coefficients in SPn such that
its restriction to K(1)1 and to K(1)2 is a coboundary. Using the condition of a 1-cocycle,
we prove that there exists G ∈ SPn such that

C(vf0+fiθi
) = {vf0+fiθi

, G} for any f0, fi ∈ C∞(S1) and i = 1, 2

C(vf12θ1θ2) = {vf12θ1θ2 , G} for any f12 ∈ C∞(S1).

We deduce that C(vF ) = {vF , G}, for any F ∈ C∞(S1|2), and therefore C is a coboundary
of K(2). �

Proof. (Theorem 5.3): According to Lemma 5.4, the restriction of any nontrivial 1-cocycle
of K(2) with coefficients in SPn to K(1)1 or to K(1)2 is a nontrivial 1-cocycle.

Using Proposition 4.1 and Proposition 5.1, we obtain:

H1(K(1)i,SPn) '
{

R7 if n = −1
R6 if n = 0.

In the case n = −1, the space H1(K(1)i,SP−1) is spanned by the following 1-cocyles:

βi
l (vF ) = ψi

−1, 1(Cl(vF )), l = 0, 1, 2,

βi
4(vF ) = ψi

−1, 1
2

(Π(C4(vF ))),

β̃i
4(vF ) = ψ̃i

−1, 1
2

(Π(C4(vF ))),

βi
5(vF ) = ψi

−1, 1
2

(Π(C5(vF ))),

β̃i
5(vF ) = ψ̃i

−1, 1
2

(Π(C5(vF ))).

In the case n = 0, the space H1(K(1)i,SP0) is spanned by the following 1-cocyle:

βi
l+6(vF ) = ψi

0, 0(Cl(vF )), l = 0, 1, 2,

βi
9(vF ) = ψi

0, 1(C3(vF )),

βi
10(vF ) = ψi

0, 1
2

(Π(C6(vF ))),

β̃i
10(vF ) = ψ̃i

0, 1
2

(Π(C6(vF ))),

where the cocycles C0, · · · , C6 are defined by the formulae (5.2)–(5.3) and ψi
n, j , ψ̃

i
n, j are

as in (4.5)–(4.6).
According to the same propositions, we obtainH1(K(1)i,SPn/SPn, i) andH1(K(1)i,SPn, i)

for n 6= 0,−1 and i = 1, 2. By direct computations, one can now deduce H1(K(1)i,SPn).
Second, note that any nontrivial 1-cocycle of K(2) with coefficients in SPn should retain

the following general form: Υ = Υ0 +Υ1 +Υ2 +Υ3 where Υ0 : Vect(S1) −→ SPn, Υ1,Υ2 :
F− 1

2
−→ SPn and Υ3 : F0 −→ SPn are linear maps. The space H1(K(1)i,SPn), i = 1, 2,
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determines the linear maps Υ0, Υ1 and Υ2. The 1-cocycle conditions determines Υ3. More
precisely, we get:

For n = −1, the space H1(K(2),SP−1) is generated by the nontrivial cocycles Υ1, Υ2

and Υ3 corresponding to the cocycles βi
2, β

i
5 and βi

4, respectively, via their restrictions
to K(1)i.

For n = 0, the spaceH1(K(2),SP0) is spanned by the nontrivial cocycles Υ4,Υ5,Υ6, Υ̃7,
Υ̃8 and Υ9 corresponding to the cocycles βi

6, β
i
7, β

i
8, β

i
10, β̃

i
10 and βi

9, respectively, via
their restrictions to K(1)i, where Υ̃7 = Υ7 + Υ9 and Υ̃8 = Υ8 + Υ6.

Finally, for n = 1, the space H1(K(2),SP1) is generated by the nontrivial cocycle Υ10

corresponding to the cocycle ψi
1, 0(C3(vF )) with ψi

1, 0 as in (4.7) via its restriction to K(1)i.
Theorem 5.3 is proved. �

6 The space H1(K(2),SΨDO(S1|2))

6.1 The spectral sequence for a filtered module over a Lie (super)algebra

The reader should refer to [5], for the details of the homological algebra used to construct
spectral sequences for Lie superalgebras, where some new features appear as compared with
non-super case. We will merely quote the results for a filtered module M with decreasing
filtration {Mn}n∈Z over a Lie (super)algebra g so that Mn+1 ⊂ Mn, ∪n∈Z Mn = M and
gMn ⊂Mn .

Consider the natural filtration induced on the space of cochains by setting:

Fn(C∗(g, M)) = C∗(g, Mn),

then we have:

dFn(C∗(g, M)) ⊂ Fn(C∗(g, M)) (i.e., the filtration is preserved by d);

Fn+1(C∗(g, M)) ⊂ Fn(C∗(g, M)) (i.e. the filtration is decreasing).

Then there is a spectral sequence (E∗,∗
r , dr) for r ∈ N with dr of bidegree (r, 1− r) and

Ep,q
0 = F p(Cp+q(g, M))/F p+1(Cp+q(g, M)) and Ep,q

1 = Hp+q(g, Gradp(M)).

To simplify the notations, we set FnC∗ := Fn(C∗(g, M)). We define

Zp,q
r = F pCp+q

⋂
d−1(F p+rCp+q+1), Bp,q

r = F pCp+q
⋂
d(F p−rCp+q−1),

Ep,q
r = Zp,q

r /(Zp+1,q−1
r−1 +Bp,q

r−1).

The differential d maps Zp,q
r into Zp+r,q−r+1

r , and hence includes a homomorphism

dr : Ep,q
r −→ Ep+r,q−r+1

r

The spectral sequence converges to H∗(C, d), that is

Ep,q
∞ ' F pHp+q(C, d)/F p+1Hp+q(C, d),

where F pH∗(C, d) is the image of the map H∗(F pC, d) → H∗(C, d) induced by the inclu-
sion F pC → C.
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6.2 Computing H1(K(2),SΨDO(S1|2))

Now we can check the behavior of the cocycles Υ1, . . . ,Υ10 under the successive differentials
of the spectral sequence. Cocycles Υ1, Υ2 and Υ3 belong to E−1,2

1 , cocycles Υ4, . . . ,Υ9

belong to E0,1
1 and cocycle Υ10 belongs to E1,0

1 . Consider a cocycle in SP(2), but compute
its differential as if it were with values in SΨDO(S1|2) and keep the symbolic part of the
result. This gives a new cocycle of degree equal to the degree of the previous one plus
one, and its class will represent its image under d1. The higher order differentials dr can
be calculated by iteration of this procedure, the space Ep+r,q−r+1

r contains the subspace
coming from Hp+q+1(K(2); Gradp+1(SΨDO(S1|2))).

It is now easy to see that the cocycles Υ1, . . . ,Υ6 will survive in the same form. Com-
puting supplementary higher order terms for the other cocycles, we obtain

Theorem 6.1. The space H1(K(2),SΨDO(S1|2)) is purely even. It is spanned by the
classes of the following nontrivial 1-cocycles, where F (n) ≡ ∂n

xF :

Θ1(vF ) = η1η2(F )ζ1ζ2ξ−1,

Θ2(vF ) = F ′ζ1ζ2ξ
−1,

Θ3(vF ) =
(1

4
(F + (−1)p(F )+1F ) + η2η1(Fθ1θ2)

)
ζ1ζ2ξ

−1,

Θ4(vF ) =
1
4
(F + (−1)p(F )+1F ) + η2η1(Fθ1θ2),

Θ5(vF ) = F ′,

Θ6(vF ) = η1η2(F ),

Θ7(vF ) =
∞∑

n=0

(−1)p(F )+n

n+ 1

(
η1(F (n+1))ζ1 + η2(F (n+1))ζ2

)
ξ−n−1+∑∞

n=0
2(−1)n

n+2 F (n+2)ξ−n−1,

Θ8(vF ) =
∞∑

n=0

(−1)p(F )+n
(
η2(F (n+1))ζ1 − η1(F (n+1))ζ2

)
ξ−n−1+∑∞

n=0(−1)nF (n+2)ζ1ζ2ξ
−n−2 +

∑∞
n=1(−1)nη1η2(F (n))ξ−n,

Θ9(vF ) =
∞∑

n=0

(−1)nη1η2(F (n+1))ζ1ζ2ξ−n−2+∑∞
n=1(−1)p(F )+n n

n+1

(
η1(F (n+1))ζ1 + η2(F (n+1))ζ2

)
ξ−n−1+∑∞

n=1(−1)n n
n+2F

(n+2)ξ−n−1,

Θ10(vF ) =
∞∑

n=1

(−1)n+1 2n
n+ 2

F (n+2)ζ1ζ2ξ
−n−2+∑∞

n=1(−1)p(F )+n 2n
n+1

(
η1(F (n+1))ζ2 − η2(F (n+1))ζ1

)
ξ−n−1+∑∞

n=1 2(−1)n+1η1η2(F (n))ξ−n.
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