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Abstract

In this paper we want to characterize nonlinear differential equations that describe
processes allowing a localization operation in each subdomain of domain in which we
consider the process. We formulate this localization condition by means of visual rep-
resentations and give this operation a mathematical sense. Then we obtain a general
form for such equation as well as put in it certain general physical contents, taking
into account the fact that nonlinear operators from physically intelligent equations
satisfy this condition.

In many problems of mechanics and physics we often meet a situation when a physical
process running in a medium allows a localization in each subdomain to the extent that the
influence of external to the subdomain processes and forces can be replaced by boundary
forces (boundary conditions) so that inside of the subdomain the process runs in the same
way as it would run without such intervention. Below we offer a mathematical formulation
of possibility of such replace (see below the condition (L)) which we call a condition of
physical localization, and explain what equations satisfy this condition.

Let O ∈ Rn be a domain filled out a medium and let function u be a characteristic of the
process, which will be called an amplitude; f be external influences, which will be named
forces, and let the equation describing the process has the form (t− time, aαβ...γ ∈ C)

u′t − Pu = f, (1)

where

Pu =
∑

aαβ...γ(Dαu)kα(Dβu)kβ · ... · (Dγu)kγ

is a polynomial of derivatives of the function u, aαβ...γ ∈ C are constant coefficients, Dβ−
partial derivative of order β (multiindex) and let P0 = 0. Instead of (1) one can consider
the equations of forms Pu = f, u′′ − Pu = f or systems. It is clearly that if uj → u0 in
C∞(O) then Puj → Pu0 in C∞(O). Let Ω is any subdomain with smooth boundary in
O, θΩ = 1 in Ω, θΩ = 0 outside Ω , θΩ,j = θΩ ∗δj , ∗ is the convolution, δj is a δ-sequence,
i.e. C∞0 (O) 3 δj → δ in D′(O), δ(x) is the Dirac measure.
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We offer the following condition of physical localization:

for each smooth solution of equation (1) and each subdomain Ω
there exists a distribution f∂Ω, supp f∂Ω ⊂ ∂Ω with property

(∂/∂t+ P )(u · θΩ,j)
j→∞−→ f · θΩ + f∂Ω in the space D′(O)

or (forgetting the term ∂u/∂t) so:

for each smooth in O function u and each subdomain Ω
there exists a distribution f∂Ω, supp f∂Ω ⊂ ∂Ω with property

P (u · θΩ,j)
j→∞−→ Pu · θΩ + f∂Ω in the space D′(O).

(L)

Physically it means that for each subdomain Ω and small nighborhood V of its boundary
∂Ω, for any amplitude there exist forces which are nonzero only in V such that correspond-
ing amplitude equals to zero outside of V ∪ Ω, but inside of Ω \ V the amplitude of the
process is the same as without such intervention of these forces. In other words, there
exists a force wall not influencing upon process in Ω and not releasing it from Ω.

One can understand a mathematical sense of this condition as that for each subdomain
Ω with smooth boundary the influence of external to Ω part of a solution onto interior
part of the solution may be replaced by a setting of boundary values of this solution and
its derivatives as in linear case. Here we have in mind the following. If we will continue a
solution u of some linear differential equation Lu = f in Ω by means of zero outside of Ω,
substitute the function ũ = u θΩ (let u ∈ C∞(Rn)) in the equation, multiple the equation
on an arbitrary smooth φ and integrate then we will obtain

(Lũ, φ)L2(Rn) =
∫
Ω

fφ dx+
∫
∂Ω

l−1∑
q=0

L l−1− qu ∂
q
ν φds, l = degL

with some linear differential expressions Lpu of the order p and normal derivatives ∂ν in
the right part side which can be understood as the boundary part of the Green formula
for the operator L. Here the boundary values (which should be coordinated with f and
among themselves) of a smooth u give us a generalized function with support on ∂Ω in the
right side of the equation in Rn. And it is not difficult to see that any linear operator P
satisfies condition (L). A mathematical sense of the condition (L) is to allocate nonlinear
operators P for which such construction holds.

Note that in the formulation (L) we could use any other solution of the equation (1)
instead zero solution outside Ω, i.e. the condition (L) could be written as

for each two smooth solutions u, v of equation (1) in the domain O and
each subdomain Ω there exists a distribution f∂Ω, suppf∂Ω ⊂ ∂Ω such that
(∂/∂t+ P )(u · θΩ,j)− (∂/∂t+ P )(v · (1− θΩ,j)) −→

j→∞
f + f∂Ω in D′(O).

or (forgetting term ∂u/∂t) so:

for each two smooth in O functions u, v and each subdomain Ω there
exists a distribution f∂Ω, supp f∂Ω ⊂ ∂Ω with property: in D′(O)

P (u · θΩ,j)− P (v · (1− θΩ,j))
j→∞−→ Pu · θΩ − P (v · (1− θΩ)) + f∂Ω.
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Now one can understand a mathematical sense of the condition (L) simply:
The operator P is determined on jumps.

Consider for simplicity the case of one variable.
Theorem 1. Nonlinear ordinary differential operator P with constant coefficients

satisfies condition (L) if and only if it has the form

Pu =
∑
k,m

bkm(uk)(m) (2)

where uk is a power and (m) means a m-derivative as usually.

Proof. Consider an ordinary differential operator with constant coefficients

Pu = P [u] =
∑

a

aαu
α0(u′)α1(u′′)α2 · ... · (u( l))αl = : Q(u, u′, ..., u( l)),

where Q is a polynomial, aα ∈ C. Here and below α = (α0, α1, ..., α l) is a multiindex of
powers, |α| = α0 +α1 + ...+αl is its degree, ||α|| = α1 +2α2 +3α3 + ...+ lαl is a nonlinear
order. Let χ ∈ X mean that χ ∈ C∞(R) and χ(x) = 0 for x ≤ −1, χ(x) = 1 for
x ≥ 1. Then, it is evident, for χ ∈ X

d

dx
χ

(x
ε

)
ε→0−→ δ(x) in D′(R).

Let’s read the condition (L) as follows:

∀u ∈ C∞(R) and ∀χ ∈ X there exists lim
ε→ 0

P
[
u(x)χ

(x
ε

)]
in D′(R). (L′)

Intuitively, the condition (L) is not satisfied if among terms of P there are terms (u′)k,
k > 1 and similar as far as δk doesn’t exist there.

Sufficiency is almost evident. Indeed,(
θΩ ∗ χ

(x
ε

))k ε→0−→ θΩ, because θΩ ∗ χ
(x
ε

)
ε→0−→ θΩ.

The action of a linear operator Lk =
∑
m
bkm

(
d
dx

)m upon product v · θΩ inside Ω is reduced

to the action upon the function v:

Lk[v θΩ] =
∑
m

bkmD
m−1(θΩ ·Dv + v ·DθΩ) = ... = θΩ

∑
m

bkmD
mv + f∂Ω,

where f∂Ω is a distribution with a compact support lying in ∂Ω. By virtue of continuity
of the linear operator Lk in the space D′(R) we obtain the condition (L′).

Necessity. Let the condition (L) be fulfilled. At first, we allocate a part which depend
only on u, i.e. we find a polynomial R0(u) such that Q0 = Q − R0 has the property
Q0(u, 0, ..., 0) = 0. Then for any function ψ ∈ C∞(R) and u ≡ 1 there exists the limit

I[ψ] = lim
ε→0

∫
R

{
P

[
χ

(x
ε

)]
−R0

(
χ

(x
ε

))}
ψ(x)dx.
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In particular, for ψ(x) = xr for each r ∈ Z+ = N ∪{0} there exists the limit

I[xr] = lim
ε→0

∑
‖α‖> 0

aα

ε‖α‖

∫
R

(
χ

(x
ε

))α0

· ... ·
(
χ(l)

(x
ε

))αl

xrdx =

= lim
ε→0

∑
‖α‖> 0

aα

ε‖α‖− 1−r

∫
R
(χ(y))α0 · ... · (χ( l)(y))αlyrdy = lim

ε→0

∑
‖α‖> 0

aαQ̃αr

ε‖α‖− 1− r
,

where Q̃αr =
∫

R(χ(y))α0 · ... · (χ( l)(y))αlyrdy.
Because the limit exists then all numerators for each m = ‖α‖ > 1 + r, r ≥ 0 must

vanish and we obtain for such m∑
‖α‖=m

aαQ̃αr = 0, ∀χ ∈ X. (3)

Let r = 0, at first. Terms of the order ‖α‖ ≤ 1 in P [u] have the form R0(u) +R1(u)u′,
where R0 and R1 are polynomials of one variable, i.e. such terms can be represented in
the form (2). For these terms the condition (L) is fulfilled as we have seen in sufficiency
therefore these terms may be removed from equality (3). For the rest

Q00(χ0, χ1, ..., χl) :=
∑
‖α‖≥2

aαχ
α0
0 χα1

1 · ... · χαl
l

for u ≡ 1 from the condition (L′) we have∫
R
Q00(χ, χ′, χ′′, ..., χ(l))dy = 0, ∀χ ∈ X. (4)

Now we will use the following
Lemma. Let S =

∑
aαx

α0
0 xα1

1 · ... · xαl
l be a polynomial with the properties:

S(x0, 0, ..., 0) = 0; ∀χ ∈ X,
∫ +∞

−∞
S(χ, χ′, ..., χ(l)(y))dy = 0. (5)

Then there exists a polynomial T (x0, x1, ..., xl−1) such that for each smooth function ψ the
equality

S(ψ(y), ψ′(y), ..., ψ( l)(y)) =
d

dy
T (ψ,ψ′, ..., ψ( l−1))

is fulfilled.

Proof. (Lemma): Substitute in (5) instead of χ the function χ+ tψ, where ψ ∈ C∞0 (R),
t ∈ R. Differentiating on t and throwing derivatives we obtain the Euler-Lagrange equation

S′χ −
d

dy
S′χ′ +

d2

dy2
S′χ′′ − ...+ (−1)l d

l

dyl
S′

χ(l) = 0.

Proof of the lemma is completed by use of results of paper [1]. �
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Applying this lemma to the equality (4) we obtain there exists a polynomial
Q1(x0, x1, ..., xl−1) with the property

∀u, Q(u, u′, ..., u( l))−R0(u)−R1(u)u′ =
d

dx
Q1(u, u′, ..., u(l−1)).

In the polynomial Q1(u, u′, ..., u(l−1)) we select terms of the form R2(u)u′ which have a
view of the type (2) which satisfy the condition (L′) by above sufficiency, therefore the
rest in P [u] satisfies the condition (L′) also and its terms have ‖α‖ ≥ 2. We will denote
Q10(u, u′, ..., u(l−1)) = Q1 − R2(u)u′. Its first derivative satisfies the condition (3) with
r = 1, i. e.∫

R

y
d

dy
Q10(χ, χ′, ..., χ(l−1)(y)dy = 0.

We transfer the derivative and make sure the fulfillment of lemma conditions, which using
gives existence of a polynomial Q2(x0, x1, ..., xl−2) with property: for each smooth function
u it is fulfilled

Q(u, u′, ..., u(l))−R0(u)−R1(u)u′ − (R2(u)u′)′ =
(

d
dy

)2
Q2(u, ..., u(l−2)).

Decomposing

Q2 = R3(u)u′ +Q20(u, u′, ..., u(l−2)),

we see that ‖α‖ ≥ 2 for summands Q20, therefore terms in d2

dy2Q2 have minimal order
‖α‖ ≥ 4 and for these terms we can again use relations (3) with r ≥ 2.

In general, on k-th step we have

Q(u, ..., u(l))−R0(u)−
k∑

κ=1

(Rκ(u)u′)(κ−1) =
(
d

dy

)k

Qk(u, u′, ..., u(l−k)).

Decompose the polynomial Qk : Qk = Rk+1(u)u′ + Qk0(u, u′, ..., u(l−k)) and obtain for
summands in Qk0 the order is ‖α‖ ≥ 2, therefore the expression(

d

dy

)k

Qk0(u, u′, ..., u(l−k))

has terms of the minimal order ‖α‖ ≥ 2 + k and we may use relations (3) with r ≥ k as
far as the terms Rk+1(u)u′ may be removed. We transfer derivatives upon yk and then,
using that the derivatives of the function χ are compactly supported, we obtain∫

R
Qk(χ, χ′, ..., χ(l−k)(y)) dy = 0, Qk(x0, 0, ..., 0) = 0

and one may again apply the lemma. The proof is finished. �
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Transition to case of many variables is not in principal difficult and, practically only
complicating above proof, we can prove the following statement.

Theorem 2. A single nonlinear differential operator

Pu =
∑

αβ...γ

aαβ...γ(Dαu)kα(Dβu)kβ · ... · (Dγu)kγ , P0 = 0, Dα = ∂α1
x1
...∂αn

xn

satisfies condition (L) if and only if there exist linear operators L1, ..., Lm such that

Pu =
m∑

k=1

Lk(uk) (6)

where uk is a power.

Proof. Proof of sufficiency can be led in just the same way as in the theorem 1 with
evident modifications. Namely, apply the operator P from (6) to product uθΩ,j ∈ C∞(Ω).
Then in the space D′(Ω) (uθΩ,j)k tends to ukθΩ. From the continuity of the linear operator
Lk in the space D′(R) we obtain the condition (L).

Proof of necessity will be passed by using the result of the theorem 1 on one-dimensional
case. First, we will prove the necessity for an operator that acts on functions of the form
u(x1, ..., xn) = u1(x1) · ... ·un(xn), the set of such functions on appropriated rectangular do-
main R will be called Y. Indeed, in expression for Pu with u ∈ Y we may take x2 =const,
..., xn =const and apply the theorem 1 to the function u1 of variable x1 because condition
(L′) with one variables follows from the condition (L) for several variables. We obtain the
derivatives with respect to x1 are removed outside of powers: Pu =

∑m
k=1 L

1
k(u

k
1). Con-

stants coefficients of operators L1
k contains functions u2(x2), ..., un(xn) and their deriva-

tives. Moreover, the term L1
k contains function u2(x2) and their derivatives so that sum of

its powers α0 + ...+ αl in expression ãαu
α0
2 (u′2)

α1(u′′2)
α2 · ... · (u( l)

2 )αl is equal to k because
this term appears after substitution u = u1(x1) · ... · un(xn), where functions u1, ..., un are
incomming with the same powers. The same is valid for other functions uj(xj), j = 3, ..., n.

Analogous expansion for variable x2 has analogous form Pu =
∑m

k=1 L
2
k(u

k
2). Besides,

the term L2
k contains function u1(x1) and their derivatives so that sum of its powers is

equal to k, another terms don’t contains such power, therefore L1
k(u

k
1) = L2

k(u
k
2), i.e. the

derivatives with respect to x2 in this term are removed outside of powers. It means that
L1

k(u
k
1) = L2

k(u
k
2) = L12

k (uk
1u

k
2) with some linear differential operator L12. Continuing so

we obtain the necessity on functions from Y.
The second step of the proof is to make sure of correctness on arbitrary functions. Let

remember a well-known formula L2(Ω1 × Ω2) = L2(Ω1) ⊗ L2(Ω2) from what we include
that each smooth function u(x1, ..., xn) ∈ L2(R) may be approximated by products of
smooth functions of view u1(x1) · ... · un(xn) in the topology L2. Therefore the expression
Pu may be approximated by products of smooth functions of view u1(x1) · ... · un(xn) in
the topology D′(R). �

Note also that in the case of systems of the equations one should in the beginning to
write each equation of the system as single, substituting instead of each components of
amplitude vector the same function, but then for each single equation to use the foregoing
condition (L).
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Examples 1. The operator (u2)′′/2 = (u′)2 + uu′′ satisfies the condition (L) but its
summands are not. The same may be said on operators (u2)′′′/2 = u′′′u + 3u′u′′ and
(u3)′′/3 = 2(u′)2u+ u2u′′.

2. Well-known nonlinear physical equations with observed amplitudes satisfy the con-
dition (L). These are the Navier-Stokes, Korteveg-de Vries, Yang-Mills, Einstein of gravi-
tation, Kadomtsev-Petviashvili, Burgers, Bussinesq equations and many others.

3. Many equations of not nature origin don’t satisfy the condition (L). These are
some geometrical equations: the Monge-Ampere, Liouville, mean curvature equations and
also many invented equations, for example, the second equation from Lax hierarchy ([2]):
qt + 6qxxxxx + 5α2q2qx + 20αqxqxx ∓ 10αqqxxx.

If we add the requirement of relativistic invariance to the condition (L) of physical
localization and condition of space homogeneity (of coefficients constancy) and if we will
consider only scalar equations of the second order then we will have remained only the
following type of equations

�Q(u) + uR(u) = f,

where Q and R are some polynomials (functions, generally speaking) with constant coef-
ficients.
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