

Research on Business Performance Evaluation System for Shaanxi Listed Companies Based on EVA-BSC Coupling

Xiaojun Deng

College of Accounting and Finance, Xi'an Peihua University, Xi'an, Shaanxi

Keywords: EVA-BSC coupling; business performance evaluation; listed company; Shaanxi province

Abstract. Integrating advantages of EVA (Economic Value Adding) and BSC (Balanced Score Card), this thesis constructs a business performance evaluation system for Shaanxi listed companies and examines its application value. Based on both EVA, a financial indicator mirroring a company's value creating ability, and BSC, a non-financial but strategic indicator for performance evaluation, an empirical research on financial and performance data from 41 listed companies in Shaanxi province is conducted to examine the system's validity and practical applications. Result shows that EVA-BSC based performance ranking in 15 companies is in substantial agreement with that in EVA based raking while 26 companies see variation, demonstrating EVA-BSC based performance evaluation system's comprehensiveness and practical application value.

1. Situation of Performance Evaluation in Shaanxi Listed Companies

There are 46 listed companies in Shaanxi province up to the end of 2017, including entities in manufacture, finance, mining, wholesale and retail, tourism, accommodation and restaurants, typography, electric and gas and broadcast television industries. Twenty-eight manufacture companies account for 61 percent of the group, while the share of 4 mining companies is 8 percent. Three common issues in performance evaluation can be noticed after analyzing 46 companies' 2017 financial report: (1) Financial indicator is heavily weighted to maximize profits; (2) Cost of equity capital has been overlooked; (3) Non-financial indicator lacks enough attention.

2. EVA-BSC Based Performance Evaluation System for Shaanxi Listed Companies

According to the design principle and ideas of performance evaluation system, EVA-BSC based performance evaluation system is structured based on current operation of Shaanxi listed companies as follows(Table 1), while *Standard Value of Enterprise Performance Evaluation 2016* and methods^[1] at home and abroad are referenced.

Table 1. EVA-BSC I			

		•	-
Grade I	Grade II	Calculation Formula/Meaning	Source & Code
	EVA	NOPAT — Cost of Capital	Model Calculation,X1
Einenee	EVA Return Rate	EVA / Total Adjusted Capital	Model Calculation,X2
Finance	Return on Total Asset	Net Profit / Average Total Assets	Annual Report,X3
	Return On Equity	Net Profit / Owners Equity	Annual Report,X4
	Customer Loyalty	Top Five Customers' Revenue Proportion of Operating	Substitution Variables,X5
Customer	Sales Increase	(Current Sales - Last Year's Sales) /Last Year's Sales	Annual Report,X6
	Total Asset Turnover Ratio	Net Sales / Average Total Assets	www.cninfo.com.cn,X7
Internal Progress	Inventory Turnover	Annual Cost of Sales / Average Stock Balance	www.cninfo.com.cn,X8
	R&D Input	R&D Expenditure / Prime Operating Revenue	Annual Report,X9
	Ratio of Profits to Cost	Total Profit / Total Cost	Annual Report,X10

Cont. to Table 1				
	Employee Quality	College(and above) Educated Employees / Total Employees	Annual Report,X11	
Learning and Growth	R&D Ratio	R&D Employees / Total Employees	Annual Report,X12	
Glowth	Per-capita Education Spending	Educational Expenditure / Total Employees	Annual Report,X13	

Note: Due to objective reasons including considerable empirical sample, complicated data processing and inaccessible data, this thesis brings in top five customers' revenue proportion of operating in place of customer satisfaction.

3. Empirical Examination on EVA-BSC Based Performance Evaluation System for Shaanxi Listed Companies

3.1 Sample selection and data sources

FENGHUO ELECTRONICS

Forty-one Shaanxi listed companies are selected from 46 in Shanghai and Shenzhen Stock Exchanges, getting rid of three undesirable ones and two (XINGHUA CHEMISTRY and HST) facing withdrawal risks. Disclosed data of 41 listed companies in 2107 are mainly required from audited Annual Report 2016 and 2017 published on www.cninfo.com.cn. SPSS22.0 serves for data statistics and analysis.

3.2 EVA calculation

Rules for Assessing Economic Value Added, published by State-owned Assets Supervision and Administration Commission (SASAC) in 2016, shows: EVA = Net Operating Profit After Tax - Capital Cost = Net Operating Profit After Tax - Total Capital*Weighted Average Cost of Capital = NOPAT—TC*WACC.

The equation above demonstrates that EVA can be got after necessary adjustment on conventional accounting profit. Various industries, company scales and other factors require following transformation of EVA in the 41 listed companies:

Net Operating Profit after Tax = Net Profit + (Interest Expense + R&D Cost Adjustment + Depreciation reserves)*(1-25%) + Increase in Deferred Income Tax Liabilities + Decrease in Deferred Income Tax Assets

Adjusted Total Capital = Average Equity + Average Total Liabilities - Average Interest-free Current Liabilities - Average Construction in Progress + Impairment Allowance Adjustment

Weighted Average Cost of Capital Rate = (Cost Ratio of Equity Capital* Proportion of Equity Capital in Total Capital) + (Cost of Debt* Asset-liability Ratio)*(1- Income Tax Rate)

The cost of debt is got by taking a weighted average of interest rates of short term and long term. And cost ratio of equity capital can be worked out based on Capital Asset Pricing Model (CAPM): Cost Ratio of Equity Capital = Risk-free Return Rate $+\beta$ * Market Risk Premium

On the basis of models above, EVA of sample companies is exhibited in Table 2.

219165220.30

Company	NOPAT	Adjusted Total Capital	WACC	EVA	EVA Return Rate
LONGI	2256779251.96	9792413583.89	5.26%	1741729870.67	17.79%
SHCI	4719900332.17	59914995193.07	5.28%	1558356512.96	2.60%
CHINA XD	1757340888.07	22200001884.03	5.60%	514291744.90	2.32%
CCOOP	1857056204.69	26146254792.45	5.30%	470862364.80	1.80%
AECC AVIATION POWER	1908769722.75	28037701851.63	5.19%	453379941.33	1.62%
CRE	475633560.87	2800257434.51	5.26%	328457589.11	11.73%
SHAANXI GAS	626674892.87	7749324125.48	5.23%	221601638.53	2.86%
SHAANGU	538794534.75	7039387401.57	5.22%	171512109.84	2.44%

1301040590.55

5.36%

149395368.90

Table 2. EVA and EVA Return Rate of 41 Shaanxi Listed Companies

11.48%

	Cont. to Table 2					
ҮСНЈ	245997362.64	1899899921.01	5.25%	146159948.49	7.69%	
HNA-CAISSA TRAVEL	276415211.53	3008224841.16	5.13%	122113977.85	4.06%	
ZEMIC	169468879.03	1421147301.21	4.10%	111135649.34	7.82%	
CECEP ENVIRONMENTAL PROTECTION EQUIPMENT	182208825.86	1739836247.21	5.19%	91878963.60	5.28%	
SHAANXI HEIMAO	425082189.36	6412779742.67	5.21%	90882014.56	1.42%	
SCMC	256305892.03	3792749223.50	5.25%	57142175.48	1.51%	
SUNRESIN NEW MATERIALS	79545226.09	662820031.94	4.45%	50050505.99	7.55%	
TYPICAL	113679004.14	1323374748.95	5.40%	42153770.59	3.19%	
CHENXI AVIATION	61864804.48	374086466.80	5.37%	41786526.00	11.17%	
BVEA	56620481.08	545166983.28	5.31%	27695910.87	5.08%	
GLOBAL PRINTING	47340614.70	526147653.27	5.35%	19207056.76	3.65%	
QJCT	86246802.44	1312106241.74	5.32%	16458671.67	1.25%	
SHAANXI JINYE	84618383.00	1306127319.84	5.29%	15549652.34	1.19%	
SXBN	191018199.80	3326096912.24	5.30%	14750818.66	0.44%	
WESTERN METAL MATERIALS	171954861.57	2611001662.68	6.09%	12891834.31	0.49%	
NTERNATIONAL MEDICAL INVESTMENT	234290316.81	4276603314.48	5.29%	8050788.48	0.19%	
TIANHE DEFENSE	73572353.06	1433124283.67	5.34%	-3023516.06	-0.21%	
BUT'ONE	7378268.69	225167070.68	5.06%	-4005118.21	-1.78%	
DAGANG ROAD MACHINERY	33554992.12	852417925.30	4.71%	-6589225.29	-0.77%	
GINWA	40183792.08	954944525.67	5.35%	-10869269.01	-1.14%	
XI'AN CATERING	13887976.12	808677345.54	5.11%	-27472957.44	-3.40%	
XI'AN TOURISM	20440613.07	1060401076.02	5.27%	-35411277.09	-3.34%	
J&R OPTIMUM ENERGY	317317307.96	7379813720.81	5.17%	-64043467.80	-0.87%	
TONG OIL TOOLS	38500973.66	1937568313.42	5.42%	-66590469.59	-3.44%	
LIGEANCE AEROSPACE	-29463948.20	1365451689.54	4.98%	-97468823.06	-7.14%	
BAOTI	234078901.25	6373354510.41	5.24%	-99951502.80	-1.57%	
QINCHUAN MACHINE TOOL	180118854.76	5574325158.35	5.19%	-109276143.83	-1.96%	
AEROSPACE POWER	52316802.63	3170752531.26	5.29%	-115535274.57	-3.64%	
BODE ENERGY EQUIPMENT	108424811.23	4779765118.72	5.02%	-131367142.15	-2.75%	
AVIC AIRCRAFT	895383742.63	19803884327.54	5.20%	-134113861.30	-0.68%	
CDD	-90816127.61	2721737134.98	5.10%	-229564498.43	-8.43%	
JDCMOLY	99346380.46	12306060110.92	5.43%	-569148790.81	-4.62%	

3.3 Examination on Application of EVA-BSC Based Performance Evaluation System

Factor analysis is applied to examine the feasibility and interpretability of EVA-BSC based performance evaluation system for 41 sample companies. In accordance with dimensionality reduction, several factors are brought in to replace intricate multidimensional data on the basis of their internal matrix, simplifying sample data and minimizing data loss.

3.3.1 Feasibility Examination on PCA

Before principal component analysis (PCA), KMO (Kaiser-Meyer-Olkin) and Bartlett's Test of Sphericity ^[2] are conducted to examine PCA's feasibility and results are demonstrated in Table 3, in which KMO= 0.482, closing to 0.5, and chi-square is 348.749 in Bartlett's Test of Sphericity, higher than

the critical value (18.3) with a lower significance level of 0.05. Information above indicates reasonable sample selection and feasible PCA.

Table 3 KMO and Bartlett's Test of Sphericity

KMO		.482
	Approx. Chi-Square	348.749
Bartlett's Test of Sphericity	Df	78
	Sig.	.000

3.3.2 Factor Number

Factor Number is usually in agreement with principal component number in PCA so that principal factors can accumulatively contribute to sample variance to a certain extent. Eigenvalue, eigenvalue contribute and cumulative contribute in Table 4 provides reasonable interpretation for the factor model.

Initial Eigenvalue Extraction Sums of Squared Loadings % of Variance | Cumulative % Factor | Total | Total | % of Variance Cumulative % 4.151 31.930 4.151 31.930 31.930 31.930 2.080 15.999 47.929 2.080 15.999 47.929 3 59.912 59.912 1.558 11.983 1.558 11.983 4 1.250 9.612 69.524 1.250 9.612 69.524 5 .976 7.510 77.034 .962 7.399 84.433 6 5.214 89.648 .678 8 93.805 541 4.158 9 2.802 96.608 364 10 .218 1.673 98.281 .115 .884 99.165 11 12 .100 .769 99,934 13 .009 .066 100.000

Table 4. Total Variance Explained

Eigenvalue of Factor 1(4.151) in Table 4 explains the 31.930% of Variance and present maximum cumulative contribute, indicating its strongest integration capability on original variables, while Factor 2 explains the 15.999% of Variance, 11.983% for Factor 3 and 9.612% for Factor 4, with approximate cumulative contribute of 70%, almost covering 13 components adopted. Above all, 13 components can be reduced to 4 factors.

3.3.3 Factor Analysis

Unrotated factor matrix is showed in Table 5 and rotated factor matrix in Table 6. Normally, the distribution of variables is more dispersed in the factor loading after rotation, meaning better explanation [3] so than further analysis is conducted based on the rotated factor matrix.

Factor 2 3 4 X1 .531 .243 .147 -.545 X2 .778 .514 .028 -.121 X3 .851 .403 .061 -.015 294 -.055 X4 .856 .134 X5 -.344 618 .186 .000 X6 .085 -.185 -.375 -.274X7 .712 -.274 .274 .460 X8 .348 -.323 .590 .395 .304 -.225 X9 -.716 .522 X10 .671 -.205 -.617 .237 X11 -.259 .451 -.140 .597

Table 5. Unrotated Factor Matrix ^a

Cont. to Table 5					
X12	149	.755	255	.306	
X13	052	.056	203	270	

Table 6. Rotated Factor Matrix^a

	Factor				
	1	2	3	4	
X1	.726	097	303	178	
X2	.919	.144	.137	.020	
X3	.893	.240	.101	.157	
X4	.864	.223	023	.207	
X5	.081	554	.457	115	
X6	011	.281	215	363	
X7	.413	.264	288	.738	
X8	.087	.045	215	.820	
X9	255	924	.073	059	
X10	.253	.929	.039	032	
X11	164	026	.777	.122	
X12	.146	108	.826	190	
X13	.033	002	061	340	

According to Table 6, Factor 1 presents high load on X1(EVA), X2(EVA Return Rate), X3(Return on Total Asset), X4(Return On Equity) and X7(Total Asset Turnover Ratio); Factor 2 presents high load on X5(Customer Loyalty), X9(R&D Input) and X10(Ratio of Profits to Cost); Factor 3 presents high load on X1(EVA), X5(Customer Loyalty),X11(Employee Quality) and X12(R&D Ratio); Factor 4 presents high load on X6(Sales Increase), X7(Total Asset Turnover Ratio), X8(Inventory Turnover) and X13(Per-capita Education Spending).

Further, factor score coefficient matrix, which matches factors and corresponding original variables, is showed in Table 7.

Table 7. Factor Score Coefficient Matrix

	Factor				
	1	2	3	4	
X1	.303	187	235	217	
X2	.307	045	.076	062	
X3	.272	.000	.082	.025	
X4	.262	021	.011	.048	
X5	.109	243	.196	014	
X6	006	.136	137	277	
X7	.051	.016	072	.417	
X8	045	045	036	.519	
X9	.047	435	064	.026	
X10	043	.454	.123	074	
X11	089	.098	.485	.185	
X12	.063	.027	.462	045	
X13	.045	001	076	238	

According to Table 7, linear relationship between 4 factors and 13 indicators is as follows:

Y1=0.303X1+0.307X2+0.272X3+0.262X4+0.109X5-0.006X6+0.051X7-0.045X8+0.047X9-0.043X10-0.089X11+0.063X12+0.045X13

 $Y2 = -0.187X1 - 0.045X2 + 0X3 - 0.021X4 - 0.243X5 + 0.136X6 + 0.016X7 - 0.045X8 - 0.435X9 \\ + 0.454X10 - 0.098X11 + 0.027X12 - 0.001X13 \\$

Y3 = -0.235X1 + 0.076X2 + 0.082X3 + 0.011X4 + 0.196X5 - 0.137X6 - 0.072X7 - 0.036X8 - 0.064X9 + 0.123X10 + 0.485X11 + 0.462X12 - 0.076X13

Y4 = -0.217X1 - 0.062X2 + 0.025X3 + 0.048X4 - 0.014X5 - 0.277X6 + 0.417X7 + 0.519X8 + 0.026X9 - 0.074X10 + 0.185X11 - 0.045X12 - 0.238X13

Combining with data from 41 Shaanxi listed companies in 2017, formulas above work out factor scores, which are then weighted by variance, contribute / aggregate variance to get composite score and performance ranking for 41 companies based on formula Y=45.90%Y1+23.00%Y2+12.20%Y3+13.80%Y4.

4. Conclusion

Result demonstrates negative EVA in 16 sample listed companies, illustrating that they get accounting profit without financial value creation. In these companies, TIANHE DEFENSE, TONG OIL TOOLS, BUT'ONE, CDD, LIGEANCE AEROSPACE, BODE ENERGY EQUIPMENT and XI'AN CATERING are in the red, while another 9 companies get positive net profit with extremely low equity capital utilization, such as JDCMOLY and AVIC AIRCRAFT, making up the deficits and getting surpluses by comprehensive income items adjustment. Meanwhile, these 16 companies are experiencing value impairment. For instance, LONGI, working on R&D, production and sales of silicon rod, wafer and battery, bear highest EVA, which stands for increasing market share and extensive prospect. On the other side, 26 companies see ranking variation during the research, especially SXBN, GINWA, BUT'ONE, WESTERN METAL MATERIALS, LIGEANCE AEROSPACE and SCMC, which partly proves the comprehensiveness and actual value of EVA-BSC based performance evaluation system after bringing non-financial indicators into the conventional one.

5. Reference

- [1] Mousui Modak, K hanindra Pathak, Kunal Kanti Ghosh. Performance evaluation of out sourcing decision using a BSC and Fuzzy AHP approach: A case of the Indian coalmining organization[J]. Resources Policy, 2017.
- [2]Ollor W G, Dagogo D W. The Effect of Venture Capital Financing on the Economic Value Added Profile of Nigerian SMEs[J]. Social Science Electronic Publishing, 2009(5).
- [3]Robert S. Kaplan, David P. Norton. Put the Balanced Scorecard into work[J]. Harvard Business Review, 1993