
On an Algorithm for Solving Nonlinear Boundary-
value Problem of Structural Analysis 

Murtazaliyev Gelani Murtazaliyevich 
Grand PhD in Engineering sciences, Professor 

Dagestan State Technical University 
Makhachkala, Russia 

murtazaliev.gelani@mail.ru 

Magomedov Rasul Magomedovich 
PhD in Engineering sciences, Associate Professor 

Dagestan State Institute of National Economy 
Makhachkala, Russia 

ventav@mail.ru 

Payzulayev Magomed Murtazaliyevich 
PhD in Engineering sciences, Associate Professor 

Dagestan State Technical University 
Makhachkala, Russia 

smdstu@mail.ru 

Akayev Abduldzhafar Imamuseynovich 
PhD in Engineering sciences, Associate Professor 

Dagestan State Institute of National Economy 
Makhachkala, Russia 

aabduldzhafar@mail.ru

Dibirgadzhiyev Anvar Magomedovich 
 Assistant lecturer 

Dagestan State Technical University 
Makhachkala, Russia 
d.a.m.-001@mail.ru 

 

Chikayev Magomed Akhmedovich 
Senior lecturer 

Dagestan State Institute of National Economy 
Makhachkala, Russia 

chikaev.magomed@mail.ru

Abstract— The emergence of modern high-strength materials 
leads to the creation of thin-walled structures in various fields of 
technology. To obtain the necessary information about their 
behavior under load, it is necessary to analyze all the 
characteristic features encountered at all stages of their loading - 
at the initial (initial) stage of their work, considering one or 
several types of non-linearities, to find possible critical states, and 
to study the nature of the initial stage of postcritical deformation. 
The solution of such a general problem associated with 
discontinuous phenomena is based on mathematical ideas 
formulated in the branching theory of solutions of nonlinear 
equations.  

Keywords— nonlinear solutions, sustainability, branching 
decisions, catastrophe theory, post-critic behavior. 

I. INTRODUCTION 
The fundamental mathematical concepts of the branching 

theory for solutions of nonlinear problems are considered in 
detail in the three main parts of this theory, indicated in Fig. 1. 

In accordance with this scheme, the solution of the general 
nonlinear boundary-value problem of structural analysis 
associated with discontinuous phenomena is carried out 
because of the algorithm indicated in Fig. 2. 

When calculating thin-walled structures, the study of the 
stability of equilibrium forms acquires special significance. In 
view of the variety of tasks being solved, the following 
classification of problem statements is possible here (Fig. 3). 

II. PURPOSE OF STUDY 
The system of two nonlinear differential equations in 

partial derivatives of the mixed type, written relative to 
deflection function W and force function F, describing the 
case of geometrically nonlinear deformation of depressed 
shells under the action of transverse load of intensity q 
(dimensional values are marked by the wave) is taken as the 
basic one: 

Branching theory of solution of nonlinear equations Branching theory of solution of nonlinear equations 

Theory of existence

Solution of the initial nonlinear task and values of 
strain-stress state parameters, during which branching 

occurs

Theory of multiplicities 

Determination of the number of solutions in the 
vicinity of the branchpoint

Spectral theory 

Study of behaviour of solutions of “minor form” in 
the vicinity of the branchpoint.

 
 

Fig. 1. Branching theory for solutions of nonlinear problems 
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Branching theory of solution of nonlinear equations General task of structural calculations

Analysis of the initial (original) basic process of 
deformation

· Identification of possible equilibrium forms of 
the system by solution of the initial nonlinear 
boundary problem.

· Determination of the boundary of existence of 
each obtained possible form of equilibrium of 
the basic process.

·  Identification of the possible methods of 
transition of the system from one obtained form 
of equilibrium into another.

Study of the initial process stability

· Finding the values of loading parameters, under 
which bifurcation (branching) occurs of 
equilibrium forms of the basic process.

· Determination of the number of branching 
solutions and their multiplicity.

· Identification of configurations of equilibrium 
forms of the bypass process.

Study of the nature of the initial stage of post-
critical behaviour

· Study of the nature of the initial stage of post-
bifurcational behaviour

 
Fig. 2. General problem of structural analysis 

Branching theory of solution of nonlinear equations Possible statements of bifurcational problems

1. A linear basic process and linearized statement of 
problems of stability of the initial equilibrium form of the 
basic process, determining the bifurcation point (of branching) 
of the initial equilibrium form of the basic process, a 
corresponding value of the parameter of the critical loading and, 
within the accuracy of the scale, the proper function of the 
problem, describing the system configuration at the moment of 
stability loss.

2. A linear basic process and nonlinear statement of the problem of 
stability of the initial equilibrium form of the basic process, allowing one 
to reveal additionally the “nature” of the critical point of bifurcation, and, 
consequently, the character of the initial stage of post-critical (after 
branching of equilibrium forms) deformation of the construction.

3. A nonlinear basic process and linearized statement of the problem of 
determination of critical loadings of bifurcation by finding the bifurcation points on 
curves or surfaces of equilibrium states without revealing the “nature” of these points.

4. A nonlinear basic process and nonlinear statement of the problem of stability of initial 
equilibrium forms of the basic process revealing the “nature” of the bifurcation point (of 
branching) of initial equilibrium forms of the basic process characterizing the initial stage of post-
critical behaviour of the construction.

 
Fig. 3. Possible statements of bifurcation problems 

In this work, because of an algorithm combining 
approximate analytical and numerical methods, one model 
problem is solved. It is the study of the peculiarities of 
behavior under load of a thin-walled spherical shell, by 
solving 4 types of problems from the ones shown in Fig.3. 

The system of two nonlinear differential equations in 
partial derivatives of the mixed type, written relative to the 
deflection function W and the force function F, describing a 
case of geometrically nonlinear deformation of shells under 
the action of a transverse load of intensity q (the wave size is 
observed) is taken as the main: 
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where к
2( ), L( ) – differential operators having in polar 

coordinates the form: 
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Replacing (3) F with W is the operator L (W, W). 

The solution of these equations in a closed form, giving 
complete information about the features of the shell at all 
stages of loading is impossible. Therefore, in this article, the 
study of the behavior of the shell is divided into three stages, 
which can also be considered as separate tasks: 

· nonlinear task of determining the stress-strain state at 
the initial - axisymmetric stage of work; 

· determination of critical (bifurcation) load values; 

· analysis of the nature of post-bifurcation behavior. 

III. METHODS 
1. In the case of axisymmetric deformation of the shell, the 

functions W and F, and hence the components of the stress-
strain state, do not depend on the polar angle . If, moreover, 
К1=К2=К, then the above formulas (1)(3) are greatly 
simplified: system (1) can be integrated and its first integral 
takes the form: 
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12  – Laplace operator in polar 

coordinates for an axisymmetric problem; 
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In the generally accepted dimensionless parameters and 
notation (Murtazaliyev G.M., 2004), the axisymmetric 
deformation equations (4) take the form: 
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where    .40 prdrr                                                 (6) 

In the case of loading the shell with a pressure of intensity 
p applied to a circular region of radius r1 centered at the top of 
the dome: 
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a
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In this case, the equations can be written in a uniform 
form: 
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The system of equations (8) describes the elastic-nonlinear 
axisymmetric deformation of rotation shells; and together with 
the corresponding boundary conditions, they constitute a 
complete system of equations for solving problems. 

This system can be solved by different methods. The main 
difficulty is to obtain a continuous curve of equilibrium states, 
since numerical methods become divergent in the vicinity of 
singular points. Previously, the authors of this work solved this 
problem based on an algorithm that combines the method of 
finite differences of increased accuracy with the method of 
differentiation by a parameter representing a “step-by-step” 
procedure. The procedure was used to change the leading 
parameter in the vicinity of singular points, which allowed one 
to construct continuous curves for different parameters of 
curvature and load, defining each point of each curve by 
solving a system of nonlinear equations. 

The use of algebraic tools and geometric images of the 
theory of catastrophes is more effective. It allows presenting 
the behavior of entire classes of structures with a single clear 
geometric picture (Murtazaliyev G.M. 2004.). This procedure 
can significantly reduce subsequent calculations. 

 
Fig. 4. Variety of assembly catastrophe. Surface of the equilibrium states of 
shell 

 

 

Fig. 5. Mapping of an assembly crash onto the plane of control parameters K 
and q 

In fig. 4 and 5, the manifold assembly catastrophe is 
shown: the surface of the equilibrium states of the shell and 
the mapping catastrophe of the assembly on the plane of the 
control parameters K and q*, giving complete qualitative and 
quantitative information about the behavior under load of an 
entire class of shells. 

To calculate the critical loads of bifurcation, the function 
of deflection W and effort F at the moment of loss of stability 
in the form is presented: 
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where Wo(r) и Fo(r) – values characterizing the 
axisymmetric behavior of shell; 

W1(r,) and F1(r,) – increments of deflection functions 
and effort with a possible transition of the shell to adjacent 
asymmetrical forms; 

ξ – infinitely law value. 

Substituting (10) into the original equations (1), 
considering equations (8) and the subsequent linearization 
with respect to  leads to the equations:  
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These equations, besides the trivial solution (W1=F1=0), 
for some values of the parameter of the external load included 
in the values of Θ and Ф, have nontrivial solutions. 

The functions W1 and F1 were taken in the following form: 
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where n – number of circumferential waves (the cases n=0 
и n=1 are special cases). 

Considering (12), (11) turn into an infinite system of 
homogeneous ordinary differential equations for the functions 
W1n(r) and F1n(r): 
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The system of equations by the method of finite 
differences of increased accuracy is reduced to a system of 
algebraic equations. The equality of the determinant to zero 
from the coefficients of the system of equations (13), in which 
the load parameter enters the values of Θ and Ф and 
determines the critical value of the load, at which the initial 
axially symmetric state turns into possible asymmetric forms.  

3. To determine the nature of the initial stage of the post-
bifurcation state, we present: 
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where W0 and F0 – parameters of the original axisymmetric 
deformation; 

W1 and F1 – normalized values of own functions 
characterizing the deflection; 

W2 and F2 – functions characterizing the initial stage of the 
postcritical behavior of the shell to be determined;   – a small 
parameter. 

Substituting expressions (14) into the original equations 
(1), equating the coefficients with the same powers of the 
parameter  in the right and left sides, considering equations 
(8) and (11), we obtain the following equations: 
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(15) 

Equations (15) and the corresponding boundary conditions 
describe the post-bifurcation behavior of the shell in the initial 
part of the secondary equilibrium branch, i.e. in the vicinity of 
the branch point (bifurcation) of the original equilibrium form. 

The analysis of the initial stage of post-bifurcation 
behavior is that of establishing the relationship between the 
parameter of the current load and the amplitude of the arising 
adjacent asymmetric shape of buckling. In this article, a 
variant of the general theory of stability and postcritical 
behavior of structures previously developed by V.T. Koyter. 
The algebraization of linear differential equations (15) is 
carried out by the finite differences method of increased 
accuracy with the subsequent solution of the resulting systems 
of equations using standard programs. 

Because of such an algorithm, specific problems were 
solved, the values of the coefficients characterizing the initial 
stage of post-bifurcation behavior of the shells, and the 
relationships between the critical and limiting values of loads 
were obtained. 

It is shown that depending on the area of the loaded part of 
the shell surface, the nature of the initial stage of postcritical 
deformation changes not only quantitatively but also 
qualitatively.  

IV.  CONCLUSION 
1. The proposed method for solving a general nonlinear 

boundary-value problem of structural analysis, 
consisting of three interconnected and successive 
stages, makes it possible to identify all the 
characteristic features of behavior under the load of 
thin-walled systems that lose their stability. 

2. The most effective in solving problems associated with 
discontinuous phenomena are combinations of 
approximate analytical ones — catastrophe theories of 
catastrophes and numerical methods that do not require 
complicated, time-consuming, and significant 
computational volumes. 

3. The analysis of the nature of the initial stage of post-
bifurcation behavior of structures allows one to assess 
the danger degree of reaching the critical state and, 
depending on the consequences, the guarantee against 
its occurrence must be different. It is achieved by 
considering the values of the corresponding reliability 
coefficients in the calculations. 

 

Advances in Engineering Research, volume 177

541



References 

 
[1] V. I. Arnold. Catastrophe theory. Moscow, 2016. 
[2] V. G. Bazhenov, E. G. Gonik, A. I. Kibets, D. V.  Shoshin, Stability and 

limiting states of elastoplastic spherical shells under static and dynamic 
loads, Journal of Applied Mechanics and Technical Physics, vol. 1(55), 
2014, pp. 13-22. 

[3] A.I. Borodin, N.N. Novikova, N.N. Shash, “Use of synergistic methods 
and catastrophe theory”, Effective crisis management, vol. 2(89), 2015, 
pp. 84-90. 

[4] M. S. Ganeyeva, V. E.  Moiseyeva, Nonlinear bending and stability of 
spherical and ellipsoidal shells under nonaxisymmetric loading, Strength 
of Materials, vol. 75, 2013,. pp. 105-114. 

[5] K. S. Malykh, A. A. Novichkov, I. S. Pridatko, “Stability of spherical 
shells considering the initial irregularities of the form”, In Proceedings 
of the 6th All-Russian Youth Scientific-Technical Conference. Saint-
Petersburg. pp. 62-64, 2014 [Youth. Technology. Space, 2014] 

[6] G.M. Murtazaliyev, Methods of catastrophe theory in shell stability 
problems. Makhachkala, 2004. 

[7] G.M. Murtazaliyev, A.M, Dibirgadzhiyev, M.A. Chikayev, “Methods of 
catastrophe theory in shell stability problems”, Bulletin of the Dagestan 
State Technical University. Technical sciences, vol. 2 (44), 2017, pp. 
162-172. 

[8] G.M. Murtazaliyev, M.M. Payzulayev, “Methods of catastroph theory in 
structural mechanics”, November 27-28, 2015. Makhachkala: 
Tipografiya RIZO-PRESS, p. 132 [Theory of structures: achievements 
and problems: a collection of articles on the materials of the II All-
Russian scientific-practical conference, 2015]. 

[9] G.M. Murtazaliyev, M.M. Payzulayev, S.V. Guseynova, “Geometric 
images of the catastrophe theory in nonlinear problems”, Theory of 
structures: achievements and problems., November 19-20, 2012, 
Makhachkala. Makhachkala: Izd-vo DGTU. [Collection of articles based 
on the materials of the All-Russian scientific-practical conference, 2012, 
p. 126] 

[10] V. A. Ostreykovskiy, Analysis of the dynamic systems’ stability and 
controllability by the methods of the catastroph theory of: A manual for 
university students. Moskva: High School Publishing, 2005. 

[11] V. V. Petrov, I. V.  Krivoshein, “Influence of material inhomogeneity on 
the stability of nonlinearly deformable shallow shells of double 
curvature”, Bulletin of the Saratov State Technical University. pp. 20-25, 
2014. 

[12] V. V. Pikul, “Shell Resistance”, Problems of engineering and 
automation. 2. pp.81-87, 2012. 

[13] V. V. Semko, I. V.  Krivoshein, “Modeling the influence of the type of 
boundary conditions on the stability of nonlinearly deformable shallow 
shells”, Mathematical methods in engineering and technology, Nizhny 
Novgorod, pp. 53-55, 2013 [Proceedings of the 26th International 
Scientific Conference, 2013]. 

 

Advances in Engineering Research, volume 177

542




