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Abstract

In this paper, we discuss the predator-prey model using Holling type Il functional response with the time
delay in facultative stabilization pond. In this research, we discuss the predator-prey model using Holling type 1l
functional response with the time delay, determining the equilibrium point, the stability analysis of predator-prey
model using Holling type Il functional response with the time delay and numerical simulation of the predator-
prey model using Holling type Il functional response with the time delay. The method used to analyse the
problem is by literature study. The steps used are the development of a mathematical model of change of
dissolved oxygen concentration, phytoplankton and zooplankton, mathematical equation solving algorithm, field

data, and simulation using Maple and Mathematica 9 software and validation with research.
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1. Introduction

The research of the interaction of prey-
predator will be done analysing the
mathematical model. Our model based on the
basic of Petrovskii (2015) research  which we
expanded taking into account zooplankton and
considering the influence of
predatphytoplankton-oxygen model of Sekerci
anion on oxygen dynamics and adding the time
delay. This model will be applied facultative
stabilization pond. Hull et al. (2008) investigated
seasonal and daily dynamics of dissolved
oxygen measurements in Mediterranean coastal
lagoons. Another plankton-oxygen model has
been proposed and analysed by Misra (2010)
including the effect of some ‘exogenous’ factors
(such as light, wind intensity, temperature,
phosphorus, eutrophication, etc.), hence leaving
the internal plankton-oxygen dynamics out of
the focus. Misra (2011) proposes and analyses a
non-linear mathematical model for algal bloom
in a lake to account for the delay in conversion
of detritus into nutrients. It is assumed that there
is a continuous inflow of nutrients in the lake
due to agricultural run-off.

2. Model Formulation
2.1. The baseline model

We begin with a simple conceptual model
that only takes into account the temporal
dynamics of the oxygen itself and the
phytoplankton as its main producer:

Phytoplankton
Af()p 9(c,p)p
Oxygen
Figure 1. Interactions between oxygen &
phytoplankton

Phytoplankton produces oxygen through
photosynthesis during the day-time depending
on existence of sunlight and consumes it during

the night
% = Af(©Op - me, (1)
2 = g(c.p)p, @

here ¢ and p the concentration of the
dissolved oxygen and the phytoplankton density
f(c): the amount of oxygen produced per unit
time and per unit phytoplankton mass, g(c, p):
the per capita phytoplankton growth rate, A: a
coefficient that can take into account the effect
of relevant environmental factors and mc:
oxygen losses, e.g. due to its diffusion to the
atmosphere, plankton breathing, etc. Note that
Eqg. (1) is linear with respect to p and indeed we
are not aware about any evidence that the
photosynthesis  rate  can  depend  on
phytoplankton density. On the contrary, Eq. (2)
should normally be nonlinear with respect to p
(hence the dependence of g on p) as the high
phytoplankton density is known to damp its
growth, e.g. due to self shading and or nutrient
depletion. In order to understand what can be the
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properties of functions f and g, we have to look
more closely at the oxygen production and
consumption. Consider f(c) first. Oxygen is
produced inside phytoplankton cells in
photosynthesis and then diffuse through the cell
membrane into the surrounding water. Diffusion
flux always directed from areas with higher
concentration of the diffusing substance to the
areas with lower ones; the larger is the
difference between the concentrations, the larger
is the flux (cf. the Fick law). Therefore, for the
same rate of photosynthesis, the amount of
oxygen that gets through the cell membrane will
be the larger the Ilower is the oxygen
concentration in the surrounding water.
Therefore, f should be a monotonously
decreasing function of c¢. We further assume that
the oxygen flux through the cell membrane tends
to zero when the oxygen concentration in the
water is very large, i.e., in physical terms, is
close to its saturating value ¢ — . The above
features are qualitatively taken into account by
the following parameterization:

C
f@=1- 3)
where c,: the half-saturation constant.
Considering phytoplankton multiplication,
we assume that g(c,p) = a(c) —yp where
a(c): the phytoplankton linear growth and yp:
intraspecific competition for resources. Eq. (2)

for the phytoplankton growth is therefore
essentially the logistic growth equation where %:

plays the role of the carrying capacity, which we
assume does not depend on c. However, the
linear growth rate a should depends on ¢, which
can be seen from the following argument.
Phytoplankton produce oxygen in
photosynthesis during the daytime, but it needs
oxygen for breathing during the night; therefore,
a low oxygen concentration is unfavorable for
phytoplankton and is likely to depress its
reproduction. On the other hand, a
phytoplankton cell cannot take more oxygen
than it needs. Hence a should be monotonously
increasing function of ¢ tending to a constant
value for ¢ — co. The simplest parameterization
for a is then given by the Monod function, so
that for g(c, p) we obtain:

g(e.p) = Z——p, (4)
where ¢,: the half-saturation constant and

B: the phytoplankton maximum per capita
growth rate. With Egs. (3-4), Egs. (1-2) take the

following form.
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dc c
E_A( _c+c0)p_mc' ®)
dp Bc
e C+Cl—yp)p- (6)
t'=tmc =<p =2 =2
] Co;p m’ Co}"
~ B ~
B=—,C1—i.
m Co

Thus, Egs. (5-6) is equivalent to the
following equation.

% =4 (1 - c-i-Cco) p—mc, (7)
% - (ci; - p) p- ®)

Egs. (5-6) have two equilibrium points, i.e.
—c1—1+VQ 2A4B+c;(ci—1)—c1VQ

Ty (0,0) and T1( e - )

where Q = 4AB + (c; — 1)? with the conditions

2AB+c¢;(c;—1)>0 and AB>c¢; with

Jacobian matrix J=
__4r _ A
(c+1)2 c+1 = the J bi
Beyp Be . From the Jacobian

(c+cq1)? cteyq
matrix, Egs. (5-6) calculated at each equilibrium
point obtaining the eigenvalues ., = 0 and 1, =

— [p2—
1 fOI’ TO’AI,Z = —pi 5 il

Ap _
(6+1)2
B¢ ~
—+2p+1 and a=
c+cq
PEQRPEA+APAC, +2E3 +46% +26+4C% ¢y +8Ccy +4cy +26¢, 2 +4c %)
(€+1)2(¢+cy1)?
+ BE(—53—252—E—Ezcl—2.501—51.4-175A)+ﬁ51(ZﬁclA—AB+251)f0r
(6+1)2(6+c1)?
T (—(:1—1+\/§_2 2AB+c;(c;—1)—c1VQ
1 2 ’ 24
Q=44B + (¢, — 12
The simulation results can be shown in
Figure 2.

where p =

) where

= =%
hp o= -

RS

o

Figure 2. The Simulation Results

The solution field and phase portrait of the
oxygen-phytoplankton system at the equilibrium
point T,(0,0)and
T, (—01—21+\/§,2AB+c1(c21A—1)—c1\/ﬁ) where Q =
4AB + (¢; — 1)? with 24AB +¢;(c; —1) >0
and AB > ¢4
2.2. The

model
The corresponding model is described
by the following differential equations:

‘advanced’  three-component
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= Af(Op—c, (9)
2 = g(c,p)p —e(p,2), (10)
a =)~z (11)

where all notations are the same as in
section 2.1. Additionally, here z: the
zooplankton density at time t, and the function
of e(p,z): the per capita zooplankton growth
rate due to predation where u: the zooplankton
mortality rate. In the model above, we assume
that the phytoplankton-zooplankton interaction
is described by the standard prey-predator model
with functional response of Holling type II. The
second negative term of Eq. (10) corresponds to
the grazing of zooplankton on phytoplankton,
hence this predation contributes to predator
(zooplankton) growth term fBe(p,z). We
consider a Holling type Il predator response and
use the following parametrization for predation:

e(p,2) = 2% (12)

where h: the half-saturation constant and g
(dimensionless): maximum per capita growth
rate of zooplankton. With Eq. (1) and Eqgs. (7-8),
then Egs. (9-11) take the following form:

dc c

D _ Bc _ __ Bpz

E_(c+c1 P)VP p+h’ (14)

4z _ Brz _

ac  p+n  H% (15)
t’=tm,c’=f,p’=%,z’=%

0

h=2B=26=21=" 0=t

Thus, Eqs (13-15) is equivalent to the
following equation.

dc c

p_ ¢ _ _ bz
at (c+cl p) p p+h’ )
dz _ Bvz _ (18)

dt p+h
Then by giving the discrete time-delay in
the growth rate of the predator population, the
equation models become

dc_w:A(l_ c(®) )p(t)—C(t) (19)

dt c(t)+1
dp(t) Be(t) p(t)z(t)
Tat  \c+e p(t)> p(®) - p(O+h’ (20)
dz(t) _ Bp(t-1)z(t)
dt ~ pt-1)+h uz(t). (21)
3. Equilibria
Theorem 1.

From the above Eqgs. (16-18), we obtain:

1. Without the condition, Egs. (16-18) have
one equilibrium points ie. the
equilibrium point T, (0, 0, 0).

2.

1)
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If 2AB+c1(c;—1)>0 and AB > ¢;

then Egs. (16-18) have two the

equilibrium points i.e. the equilibrium

point T,(0,0,0) and
—C1—1+\/5 2AB+01(C1—1)—C1\/5

Tl( 2 ’ 24 ’0)

where 2 = 44B + (¢, — 1)2.

4Auh
o)
-1+ /1+4;”£+201 B_

Egs. (16-18) have two equilibrium points
i.e. the equnlbrlum pomt TO(O 0,0) and
)

[aAmh SAuh
i pn{ uB—up |17 -pB+pB [1+7EE S
2 o
B B-wy?| ( +4;%‘ﬁ’+ n)

If 2A4B + c¢i(c; — 1) >0,AB >, >

B<—1+ /1+4A”h>
B-u

If £ > uand " then

u and then Egs.
—1+ 1+4ﬁ‘4“h+2c B_

(16-18) have three equilibrium points i.e.

the equilibrium point

T,(0,0,0), T, (—c1—1+\/5, 2AB+cl(cl—1)—Cl\/5, 0)
— (2 [ aAph /7A [ 4Aph )

111111 % Bl ';fif'y X ';,‘if'u uh | ';,‘if' whey
and T2< ey ] >
Proof.

Egs. (16-18) realizes the equilibrium
point when

c
A(1-=)p-c=o, (22)
Bc Pz __
(c+c1_p)p_m_0' (23)
Bpz _
m—‘uZ—O 3 (24)
From Eq. (24) £ 'sz —uz=0=z=0V
s
© B-u

N BE .\ . Pz
Case 2=0 (6+Cl—p)p—#=o:
p=ove=2a

14
. . ¢\
(@)Case Z =0 and p = 0. A(l—a)p—

¢ =0 & ¢ = 0.So we obtain T, (0,0, 0).

(b)Case 7=0 and 5=&A(1—

B

S)p-e=0ep=tEsn
pecy

Substituting ¢ =

55 into the equation

— Vo2 —

p :Z(f-" 1) we get py , =W,
where 0 = —24AB —c;?+ ¢, and Kk =
AB?

. . - —0—Vo2-4A
—Bc,. Considering = %“ >0,

then 0?2 —44k>0,0<0 and —o —
Vo2 — 44k > 0 & —4Ak < 0, such that
k>0 AB >c;. Considering p=

—o+Vo2—4Ak
_ 0% — 44Kk >

>0 then
2A
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(2)
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0,0 <0 and —0 +Vo2—-44k >0

—4Ak >0, s0 that k <0 & AB < ;.

Therefore, the unique positive root exists
—-o—Vo2-44K

for p= — 0 with the
conditions ¢? —44xk>0,06 <0 and
AB > c;. So we obtain

<—U—\/U2—4AK>C

24 1 — 2_
Ty ) zoverotde g ) with

B+o‘+ ZA_4AK 2A

the conditions 0% — 44k > 0,0 < 0 and
AB > ¢.

Substituting o = —2A4AB — ¢;2 +¢; and

k = AB? —Bc; into the equation
(—cr—«/ a? —4-AK>
2A €1
B+O’+\/ 02—-4Ax we get

2A
(-(-24B-c1?+c1)~(=24B—c,2+c1)2—4A(ABZ-Bcy) )cy _

2AB+(-2AB—c12+¢1)+y(—2AB—c12+¢1)2—4A(AB2-Bc,)
zasind with Q0 =4AB + (¢, —
1)2. Substituting o = —2AB — ¢;% + ¢4
and x = AB?> — Bc; into the equation
# we obtain
—(—=24B-c,%+¢;)—/(=2AB—c;2+c,)?—4A(AB2-Bc;) _

2A

24B+c¢;1(c1-1)—cVQ
—_— So we get

Tl (_61_214.\/5, 2AB+61(621;1)—C1\/5, O)Wher
e Q=44B+(c; —1)? with the

conditions  24AB + c¢;(c; —1) > 0and
AB > ¢.

. un BE . \. PZ _
Case p=77 (e —P)P— 5=

s = (o B¢ _ _uh

0e=z= (B—u + h) (E+c1 B—u)'
Substituting § = ﬂ“—_hu into the Eq. (22) we
obtain A(l —ﬁ)ﬁ—f =0=¢,=
—1+ 142280
fﬁ'”. Then there is
(2T o ﬁwfwﬁ <)\ with
the conditions ﬁ > U and

B( 1+ /1+4A”h>

B-u uh
T T > -
—1+ /1+"’B” +2¢, Bw

. Stability Analysis

Theorem 2.
We have T, T; and T, which three
equilibrium points of the Eqgs. (16-18) as
in theorem 1.

. The equilibrium point T, is not

informative.

2. The equilibrium point T; is node stable

when ¢, =0,4; A=0,42 and node
unstable when ¢; =0,4; A= 0,5 with
B=1y=1,8=1u=05 h=0,1.

. The equilibrium point T, is node stable if

only if —by—by—b;>0,biby+
bib; + byb; — bybs — bgbg > 0 and
b;b3b; — bybyby + b5b6b1 >0 where

———1,b bz =
1= (G+1)2 2= 1 3
Bcip _ B¢ ~ Zh _
(E+cp?’ 7 7 dey @+h2’ 75 T
14 _ _Bhz Bp

A T A T
Proof.
The general Jacobian matrix of Egs. (16-

18) is given by J=
_—Ap_ _ 1 A 0 \
(c+1)2 c+1

Bcy Bc zh
(C+CSZ c+ey - Zp - (p+h)? _ﬁ .
Bhz Bp
\ 0 (prh)? ﬁ_“/
(1)At Ty(0,0,0), the Jacobian matrix is
-1 A O
J(0,0,0) = < 0 0 O > Thus, we
0 0 —u

getA; = —1,4, =0and A3 = —L.

(2)At Ty(¢,p,0), the Jacobian matrix is

J(&p,0) =
AP A
/_(5+1)2_1_A 1 0 \
_ e _

Bcip ~ P
(€+¢1)? é+cy - Zp -4 _E .
0 0 B _ -2

p+h

ﬁp

Thus, we get A, = — UV, =
Aﬁ B¢y

—k+VKkZ—40
———— where k =— .
2 (6+1)2  CG+cq
2p+1 and 0=
AP(—BE2—2Bécy +2PE2+4PEc,+2Pcq?)
(6+1)2(C+cq)?
B( -3¢ C3C1—2C cl—ccl—Aclp)
(c+1)2(c+c1)2

213(?4+2'E3c1+5261 283 44 c142c1%c+¢ +2616)

(E+1)2(C+c1)?

(3)At T,(¢,p,Z) the Jacobian matrix is

J@p,2) =
AP _ A
(6+1)2 1 E+1 0
Bcip BE .  zh P
(E+cy)? é+cy p (p+h)? p+h
_Bhz_ Fp _
0 B+ pn K
—PpA2—ed—p=0. If p=—pu—
Ap B¢ ~ Zh

G102 T re, P T Gz
Bp _ App Béu .
p+h’ " T (6+1)2 H+ é+cq Zpu
Zhu APB¢ 2p%A
P+h)2  (6+1)2(é+cq)  (G+1)2
ApZh Bé - Zh

Gr2(+h2 | ere, P T Gane

_|_
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52 5 sp 52
Ap~B Bp __ BPBC 2BP
@+h)(E+1)2  p+h  (C+cy)(P+h) p+h
ABcip ABP?zZh
~ ~ ) - T 7= ~ -
(E+1)(E+cq)? (6+1)2(p+h)3
BPhZ ABBp?é
~ 3 PTT Y ~
(P+h) (e+1)2(¢+c)(B+h)
2AP3B ABP?Zh
P+h)(E+1)2  (6+1)2(P+h)3
~ ~2 ~
BBp¢ 2BD Bpzh
C+e)@+h) | prh | (p+h)3
ABBp?cy ABcipu
(€+1)(E+c)2(P+h)  (E+1)(E+cq)?
2AP% ApZhu Béu 25
G2 (GH+D2(+n)? | eae,  “PH
Zhu ABpéu
(P+h)2 ~ (6+1)2(C+cq)
So that have the ei | =2
(o] at, we have e eigenvalues 2, —;-}-
1
23(—¢p2-3¢)
1
3(=27p-203 ~9¢pe+3v3\27p +4p$P +18pe—GPel—4e3 )
1
(—Z7p—2¢3—9¢£+3\/§\/27p2+4p¢3+18p¢£—¢2£2—4£3)3
- 1 )
323
¢
=2
273
(1+iv3)(-¢p2-3¢)
1
2 1
3.23(~27p-2¢3 ~9¢pe+3v3\27p +4p$3 +18pe— Pl —4e3 )
1
(1-1v3)(-27p-2¢3~9¢e+33,27p7 +4pd7 +18phe—pZe2—4e7 )
+
6.23
_¢
A3 = 3=
(1-iv3)(=¢*-3¢)
2 1
3.2?(—z7p—z¢3—9¢s+3\/§ Z7p2+4p¢3+18p¢£—¢2€2—4£3)3
1
(1+V3)(~27p-203-9¢e+3V3,27p +app + 18ppe—pZe2—2e3 )
+ . .
6.23
Table 1. Eigenvalues for T, (¢,p,0) and
TZ (C' p, Z)
A
0,1 0,2 0,5 0,9 1
1,66227766 0,7360679785 —0,0857864380
+ 2,566655867{ + 1,5855384i + 0,579470824if —0,00661091 0
1 1,66227766 0,7360679785 —0,0857864380
— 2,566655867{ — 1,5855384i —0,579470824i| —0,88520397] -1
0,548490076 0,588022902 0,818254882 —1,67829583 —0,5
1,516484013 0,625 —0,1581425466
4 2,665100693] + 1,55623745i| +0,4745631983 0 —0,00503747]
0,9 1,516484013 0,625 —0,1581425466
—2,665100693] —1,55623745i| —0,4745631983 -1 —1,09758901
0,544814796 0,586956522 0,875981944 -0,5 —0,14987518]
0,8983466555 0,1088032685
+2,351395796{ + 1,044583016; 0 —0,11462255] —0,14519392{
t 0,5 0,8983466555 0,1088032685
—2,351395796] —1,044583016 -1 —1,38914825y —1,43364146]
0,546177338 0,624089671 —=0,5 0,2596568401  0,2824250799
—0,040588292
4 0,866953062{ 0 —0,246179149 —0,43257148] —0,46265589]
0,2 —0,040588292
—0,866953062{ -1 —1,444051634 —1,55023338] —1,56490455
0,638926727 —0,5 0,337408543 0,3721749594 0,375713622Y
0 —0,181015971| —0,4838571701| —0,63456960( —0,65747993]
01 -1 —1,354625205 [ —1,482206823 —1,532097064 —1,54127589
—0,5 0,3207196333 0,3812872434 0,3928571429 0,3942181144
A
0,1 0,2 0,5 0,9 1
—1,02117347 —1,040657271 —1,091237197 [ —1,145568145 —1,15742328¢
1 —0,2304756354 —0,212166544 | —0,1620324663 —0,09838933761 —0,08100892
0,09674667318] _0,09320487245|_0,08049523843 0,05559742367 | _0,0464721108
—1,02237922 —1,042834909 | —1,095399791 | —1,151122063 —1,16319123¢
0,9 [ _—0,2283509074 —0,208106617§ —0,152601415] —0,0790918906] —0,05614276]
0,09636648285| 0,09236855925] 0,07762984998 0,04575586252 | 0,031605415¢
—1,031646548 | —1,059015298 | —1,123938785 | —1,186178883 | —1,19893930]
05 0,01535615155
S| 02116257131 —0,1763038199 —0,0705023814 -+ 0,0970068827] —1,19893930]
c 0,09317706039] 0,08495600762 0,04245685205( 0,2596568401 0,2824250799
1 —1,058673585 | —1,101121087 | —1,181140174| —1,239343172 | —1,24970633}
0,04095695807| 0,07969248982 | 0,086429988(]
02 | —0,157516010] —0,0628160827 —0,137204142| +0,1838958923 —0,19739445
0,04095695807| 0,07969248982 | 0,086429988(]
0,07997181851] 0,03935748338| —0,137204142| —0,1888958923| — 0,19739445)
—1,092970015 | —1,144911751 —1,217140385 [ —1,253629125 —1,25922614}
0,02883346866| 0,09155959672( 0,1269135054 0,1321782301
0,1 | —00599416719 +0,115798406| +0,198794181] +0,2446811201 +0,25277389
0,02883346866| 0,09155959672( 0,1269135054 0,1321782301
0,03815584751) —0,115798406] —0,198794181] — 0,2446811201] — 0,25277389

Theorem 3
Suppose that the conditions 8 > u and
B(—1+ [1+4A’”‘>

B-u uh . g
— > o are satisfied and
-1+ /1+ G t2c

given T =
1 tan-1 (—b4mk3—b7wk3—bzb3b7mk—b12b4mk—b12b7a)k+b1b2b3mk)
Wi by 2wWg2+b1byb3bs—by*bybs + Wit —wy2bybs+bybswi?

k=012, Where wy, >0 is obtained
from the equation w, = +/z* where z3 +
Bz?+Cz+D=0 and w®+Bow*+
Cw?+D =0, with B=b*+b*+
b,* 4 2b,bs, C = —bs?bg” —

2b,bybybs 4 by®by? + 2b,%byby +
by?b,* + by*b3® + b, %b,%, D =
—2b,bsb,*byby + by2by b, ? +
by2b3%b,* — bs?be®by? — bs*bg? by
with the conditions —b; — b, — b; >
0,byby + byb; + byby — bybs — bshg >
0,byb3b; — bybyb; + bsbgb, > 0 where

—Ap A
= —_—— 1 = — =
17 (e+1)2 b2 c”+1’b3
Bcyp Bé . Zh
= — —— b =
(E+c)2’ "% T Gty P~ Gm2' s
P phz Bp

pin’ 06 = Ganz' P77 T oan M
furthermore T, is the equilibrium of Egs.
(16-18), then

. The interior equilibrium T, of Egs. (16-

18) is stable when t < t;, and unstable
when 7 > 1.

Egs. (16-18) undergo a Hopf bifurcation
at the interior equilibrium T, when t =
Tk-

Proof.

The results of the analysis showed
that the equilibrium point T, is stable. By
giving the time-delay 7 > 0 will cause
the change in the stability of the
equilibrium point T,. To analyze the
stability of the equilibrium point T, with
time-delay, we linearize the model (16-
18) around the equilibrium point T,, then
we obtain the linearized model

% = byc(t) + byp(2), (25)
% = bsc(t) + byp(t) + bsz(t),  (26)
% = bep(t — 1) + byz(¢), (27)
where b; = %— 1,b, = ﬁ'b3 =
= B g b
P _ Phz _ BP

T B+h’ U6 T G 2’7 T B+h
Suppose the solution of Egs. (25-27) is
c(t) = le*,p(t) = me™, z(t) = ne*".
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Substituting Eq. (28) into Egs. (25-27),
then divided e#* such that we get

A =bil+ bym, (29)
mA = bzl + bym + bgn, (30)
nA = bgme™** + bn. (31)

Egs. (29-31) can be written in the
following form.

1 b, b, 0lr1
mA] = [b3 by bs [m]
ni 0 b6e—)ur b7 n
So we get the following characteristic
equation.
by — A b, 0

b, by — A bs [=0

0 bee™™ b,—2
& 23+ (=by — by — by)A% +
(byby + byb; + byb; — bybs —
bsbee *7)A + (bybsb; — bybyby +
bsbebie ™) = 0. (32)
The eigenvalues of the characteristic
equation (32) are either real and negative
or complex conjugate with negative real
parts if only if —by—by—b;>
0,b1by + b1b; + byb; — bybs — bsbg >
0 and byb3b; — bibyb; + bsbgby > 0.
So with the existence of time-delay, the
equilibrium point T, is stable if and only
if both conditions and are satisfied. Such
that the eigenvalues of the equation (32)
we let A=pu+iw with u=0and w >
0 (1 = xiw). To see the change in the
stability of the equation model with time
delay, then that eigenvalues are
substituted into the equation (32) such
that we obtain the roots of the
characteristic equation
A(iw, 7) = byw? + byw? + byw? —
bsbgwsinwt + b,b3b; — bybyb,t +
bsbgbicoswt + i(—w3 + bybyw +
bib;w + byby;w — bybsw —
bsbgwcoswt — bgbgb,sinwt). (33)
Equation (33) is zero if the imaginary and
real part are zero, so we obtain
byw? + byw? + b;w? + bybsb; — bybyb; =
wbshgsinwt — bsbgh, coswt (34)
and —w3 + b;byw + byb;w + byb;w —
bybz;w = wbsbgcoswt + bsbgbysinwt.
(35)
Furthermore, eliminating Eqgs. (34-35) to
T by Squaring both sides gives
b 2w* + by2b3%b,* + 2by by w* —
2b,2bybyw? + 2bybyw* —
2b,°b by w? 4 2b,byw* +

(i)
(i)

1)

2b,2bybyw?—2b,% b byw? +
b12by?bs? + 2bibybsbsw? + byt w* —
2b,bsb, by by + b w* +
2b,bybsb,w? = bs?bg?w?sinwt —
2bs?bg? b, wsinwtcoswt +
bs?bg?by*cos?wt (36)
and
—2b,b;w* + 2b,*byb,w? +
2b,2b1b;w? + w8 — 2b bybybyw? +
2b,%b;byw? — 2bybybsb,w? —
2b4bybsbyw? + by by w? —
2bybyw* + by % b2 w? + by *h, w? +
2b,bsw* + by?b, 2 w? — 2b,byw* =
bs?bw?cos?wt +
2b52b62b1wsinwtcoswt +
bs*bg’ b, sin®wt. (37)
Then adding both Egs. (35-36) and
regrouping by powers of w, we obtain the
following fourth degree polynomial
w®+ Bw*+ Cw?+ D =0, (38)
with

B = b,® + by + b,* + 2b,bs,

C = —bs?bg® — 2bybybybs + by °b,? +
2b,%bybs + b,*b,* + by2bs® + by %b,?,
D = —2b,b3b,*b, by + by *b, b, % +
by%b3?b,? — bs?be?by” — bs*bg? b, 2.
To simplify the calculation suppose z =

w?, s0 Eq. (37) changes to
z3+Bz?+Cz+ D =0, (39)
the root value of equation (38) is
determined by Lemma 1 as follows.
Lemma 1. (Ruan)

Define § = B? — 3D.

If D <0, then Eg. (39) has a unique
simple positive root.

If D>0 and Eq. (39) ¢ <0, then Eq.
(38) do not have real roots.

If D>0 and & >0, then Eqg. (39) has
two positive roots if only if z=
(B +&)>0and h(z) < 0.

3

Suppose that Eq. (39) has a unique
simple positive root denoted by Zz. Then
obtained wy = VZ.

Furthermore substituting w, into the Egs.
(35-36) and solving for 7., we get

bywo3=bywo3—bylfs bywo—by 2bywo—by bywo+by bzbgwu)
b12wo2+by by b3b\-b12bsby+wo*~wo2baby+bybywe?

Ik=itan’1 (7

+22 k=0,1,2, (40)
Wo

Lemma 2

If one of the following is true
¢ < 0and h’(wbif) * 0;
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(2) ¢=0,A>0,z>0andh'(2) <0;

dReA(Tbif)

then * 0,
dTbif

where 1, and w, defined in Eqg. (39).
Further differentiating the Eq. (39) to T,
then we obtain
AA,T) =23+ (=by — by — b))% +
(byby + byb; + byb; — byb3)A +
bybsby; — bybyby — bsbgde T +

bsbgbie 7.
Then
A
ar _ _ oo
dr [
oA

_ (~bsbgA%+bsbgbyA)e™*T
7 32242(~by~bs~b7)2+(b1bs+b1by+bsby—bab3)+(~bsbg+bsbgtA—bsbgh1T)e~ T

Evaluating the real part of this equation
at T = 1y and setting A = iwp;s yield

i — Re (dl)

Atle=zy;y at/le=gy;f

_ ("bifz(3wbif4+2("bif2(b12+b42+b72+2b2b3))
P12+, ?

n pif?(b12by®~2b1byby by +b1?by* +by by ® +by* b3® +2by by by —bs? bg)
P2+0:%

where
P1 = _3(1)bif2 + b1b4 + b1b7 + b4b7 -

babs + Toip ((by + by + by)wyi? +

babsby — bibsb; ) — bsbscoswyirToiy
and
Q= 2(—191 — b, —
b7)wpir+Tpir(—wpif® + (b1by +
biby + byb; — bybg)wyis) +
bsbesinwyifTyif-
Let Z = wp;f?, then
h(z) = x% + (by” + by* + b,* +
2byb3)x? + (by*by” — 2bybybobs +
by*b;* + byb;*)x + (b, bs* +
2bybsb;” — bs?be”)x+by b3’ b, —
2byb3bs%biby + by*by*b,* —
b52b62b12
then
W (Z) = 3x2 + 2(b,* + by + b,* +
2bybs)x + by°b,* — 2bybybybs +
b12b,? + by *b,* + by°bs” +
2b,b3b,% — bs®bg”.
Therefore if h(2) < 0 then h'(w?,;f) #
0.
. Simulations at Equilibrium Point
T, with Time Delay

The numerical simulations of the
phytoplankton-zooplankton-dissolved

oxygen model using Holling Il with time

delay performed to show the effect of time

delay on the equilibrium point T, stability.

The parameter values used for the

simulations at equilibrium point T, with

time delay presented as following.
B=18 =1 u=05y=1;
h=0,1;, A=0,53,;¢; =0,8. Hence
obtained

4Auh 4.0,53.0,5.0,1
1+ ,1+B—u B 1+ /1+ o

™

2 2
= 0,0504358.
~ h 0,5.0,1
p=+t—= =0,1.
B-u 1-0,5
5h(u3—uBJ1+";‘_“:—53+53\/1+";_“:+uh—uh\]1+4;_“:—zuncl)

N

(,B—u)z(—u 1+"E‘f:+2cl)

_ 1.0,1(-0,5.1,8.0,0504358+1.1,8.0,0504358-0,5.0,1.0,05043580,5.0,1.0,8)

- (1-0,5)2(0,0504358+0,8)

= 0,001357488158.

So obtained the equilibrium point
T,(0,0504358;0,1;0,001357488158).

Then from the parameter values, we

obtain
=P _1=_05801 4 - _1048030985.
(6+1)? (0,050454358+1)2
A 0,53
b, = —=—"—"——=10,5045435777.
é+1  0,0504358+1
_ Bap . 180801
by = (6+c1)? ~ (0,0504358+0,8)% 0,1990950535.
b, = B¢ . 2h
47 gy p (P+h)?
- 1,8.0,0504358 _ 20‘1 _ 0,001357488158.0,1 - —0,0966062796
0,0504358+0,8 (0,140,1)2
p 0,1
bs = —t—=— = —0,5.
P+h 0,1+0,1
b _ Bhz _ 1.0,1.0,001357488158
6 ™ (p+h)? (0,140,1)2
= 0,003393720395.
B 1.0,1
b=——u=—""-—-05=0.
7= 5+n M T 01to1 ’

w® + (by® + by* + by + 2bybs)w* +
(=bs’be® — 2bybybybs + by °b,” +
2b,°bybs + by°b,* + by 2bs* +
b,*b;*)w? + (—2byb3b,°bib, +
by’by*b;* + by*b3b,* — bs’bg’by) =
0

< w® + ((—1,048030985)2 + (—0,0966062796)% + 0 +
2.0,5045435777.0,1990950535) w*

+(—(=0,5)2(0,003393720395)2) w?
(—2.(—1,048030985)(—0,0966062796)0,5045435777.0,1990950535)

+(—1,048030985)2(—0,0966062796)%* + 0 + 0

+(0,5045435777)2(0,1990950535)% + 0
+(0+ 0+ 0-(-0,5)%(0,003393720395)%(—1,048030985)?) = 0.

For example z = w?, then equation (39)
becomes

7% +1,308605982% — 0,0000022485z — 0,000003162571633 = 0
© (z+1,308605851)(z + 0,001554653882)(z — 0,001554525311) = 0.

By the condition w, > 0, then selected
Z =0,001554525311. Then obtained
wg =+/0,001554525311 =

+0,03942746899. Because of w, > 0,
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then selected wqy = 0,03942746899.
Then searched the value of 1, by
substituting the values
by, by, b3, by, bs, bg, b, and wq into the
following equation.

—n4mg3—n7mo3—bzn3b7m0—b12b4m0—b12b7m0+b1b2b3m0)

1

- -1

T, =—tan (
L by 2wo2+by by b3by—by 2byby+wot—wo2baby+by b3 wo?

+Zk_”_k =0,1,2,
wo
1

o, =—
k ™ 0,03942746899
— —0-0—(~1,

tan~? ( o

(-1, 2 X 5

1 (~1,048030985 )0,5045435777.0,1990950!
tan

(-1, 2 X E

2.0.r

0,03942746899
< 1 = 0,5264846563.

In this article only discussed the value of
time delay when, before and after the
delay timeout value in the distance k =
0.

In addition to the parameters mentioned
in Table 2, it is necessary to select the
time delay parameters indicated to show
changes in equilibrium point stability. In
this simulation will be provided three
cases to indicate the existence of Hopf
bifurcation.

Table 2. Selection of time delay and
model stability

No Case T Equilibrium

Point Stability
1 T< T, 0,1 stable spiral
2 T=T 0,5264846563 stable spiral
2 T> T 1 Unstable

spiral

000030 | ‘ ‘
000025 |

000020 || | ‘

ooo01s [ | ‘ ‘
|
000010 || |

| ] H
000005 | [ |

n n L
200 300 400

Figure 3. The solution field of predator-
prey system at the equilibrium point T, in
the case
T<Ty,T=Tpandt > 1,

6. Conclusions

From the above discussion, can be
concluded that be based on the non-
dimensional model, we obtain the following
predator-prey model using Holling type Il
functional response with the time delay in
facultative waste stabilization pond.

To analyse the existence of Hopf
bifurcation, the predator-prey population
dynamics was simulated based on three
casses, by increasing the time-delay in the
growth rate of the predator population (ty).
By chossing an exact parameter value (ty),
we can showed the existence of Hopf
bifurcation. In the case 7 = 1), the stable
spiral changed into an unstable spiral and
also observed the presence of limit cycles.
This is known as Hopf bifurcation. Then, to
illustrate the model, simulation model was
carried out using the Maple 12 software and
mathematica 9. The model simulations give
the same result with the analysis.
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