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Abstract—Iterative methods for searching of extreme 
controls (satisfying the maximum principle), which are based on 
the theory and methods of perturbation of necessary conditions 
for optimality, are suggested. The methods are characterized by 
computationally stable alternating solution of phase and 
conjugate systems of variables and the absence of labor-intensive 
operations of convex or needle variation of the improving control. 
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I. INTRODUCTION 

We consider the optimal control problem 

1( ) ( ( )) ( ( ), ( ), ) min
T u V

u x t F x t u t t dt


     (1) 

0
0( ) ( ( ), ( ), ), ( )x t f x t u t t x t x   (2) 

0 1( ) , [ , ]u t U t T t t   , 

wherein 1( ) ( ( ),..., ( ))nx t x t x t  - state vector,  

1( ) ( ( ),..., ( ))mu t u t u t - control vector. As admissible controls, 
we consider the set V  of piecewise continuous functions on 
T  with values in a convex compact set mU R : 

{ ( ) : ( ) , }V u PC T u t U t T     . The initial state 0x  and the 
control interval T  are fixed. 

The following conditions are assumed: 

1) function  ( )x  continuously differentiable on nR ,

function ( , , )F x u t , vector function  ( , , )f x u t  and their 

derivatives  ( , , )xF x u t , ( , , )uF x u t , ( , , )xf x u t , ( , , )uf x u t  

continuous in terms of the variables ( , , )x u t  on the set 
nR U T   ; 

2) function ( , , )f x u t satisfies the Lipschitz condition by

x at nR U T   with constant 0L   

( , , ) ( , , )f x u t f y u t L x y   . 

For admissible control v V  denote ( , ),x t v t T - 
solution of system (2). Conditions guarantee the existence and 

uniqueness of the solution ( , )x t v , t T  system (2) for any 
admissible control v V . 

We consider the Pontryagin function with conjugate 
variable nR   

( , , , ) ( , , ), ( , , )H x u t f x u t F x u t   . 

For admissible control v V  denote ( , ),t v t T  - 
solution of standard conjugate system 

( ) ( ( ), ( ), ( ), )xt H t x t u t t   ,  t T  (3) 

1 1( ) ( ( ))xt x t  

for ( ) ( ), ( ) ( , )u t v t x t x t v  , t T . 

Using mapping 

( , , ) arg max ( , , , )
w U

u x t H x w t 




, 
nR  , 

nx R , t T ,

Pontryagin's famous maximum principle [1] for control 
v V  is represented in a fixed point problem 

( ) ( ( , ), ( , ), )v t u t v x t v t , t T .  (4) 

Boundary-value problem of maximum principle has the 
form 

( ) ( ( ), ( ( ), ( ), ), )x t f x t u t x t t t ,
0

0( )x t x    (5) 

( ) ( ( ), ( ), ( ( ), ( ), ), )xt H t x t u t x t t t   

1 1( ) ( ( ))xt x t   .  (6) 

The boundary-value problem (5), (6) in the state space is 
reduced to the fixed point problem (4) on the set of admissible 
controls. In the general case, the right-hand sides of the 
boundary-value problem are discontinuous and multi-valued in 
phase variables x ,  . 

The differential maximum principle follows from the 
maximum principle (4) in the form 
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( ( , ), ( , ), ( ), ), ( ) 0uH t v x t v v t t w v t  
           (7)  

,w U t T   

We define the mapping w , 0   using the ratio 

( , , , ) ( ( , , , ))U uw x u t P u H x u t     ,          (8)  

nR  ,
nx R , u U , t T , 

wherein UP - projection operator on set U  in Euclidean 
norm. 

Based on the Lipschitz condition for the operator UP  

function w  is continuous in terms 
( , , , ) n nx u t R R U T     . It is fulfilled inequality 

( , , , ), ( , , , )uH x u t w x u t u   
21

( , , , )w x u t u 



 (9) 

Assessment (9) is determined by the properties of the 
projection operation. 

Differential maximum principle (7) for control v V  
using mapping (8) is represented in the form of a fixed point 
problem 

( ) ( ( , ), ( , ), ( ), ), , 0v t w t v x t v v t t t T           (10) 

We note that to fulfill (7), it suffices to check condition (10) 
for at least one 0  . Conversely, condition (7) implies (10) 
for all 0  . 

In the linear control problem (1), (2) (functions 
( , , )f x u t , ( , , )F x u t  linear in u ) the differential maximum 

principle (10) is equivalent to the maximum principle (4). 

Standard methods for the numerical solution of boundary 
problem (5), (6) (shooting method, linearization method, finite 
difference method) even in the case of smoothness and 
uniqueness of the right-hand sides of problems, as a rule, are 
computationally unstable due to the presence of positive real 
values of the eigenvalues of the corresponding Jacobi matrix. 
These difficulties can be circumvented by going to solving 
equivalent operator equations in the space of controls, 
interpreted as fixed-point problems of the constructed control 
operators. 

It is proposed to apply perturbation methods to implement 
the maximum principle (4) and the differential maximum 
principle in projection form (10). 

II. PERTURBATION METHODS 

Parameterize the maximum principle condition (4) using 
the perturbation parameter [0,1]   as follows. 

To do this, we represent the problem (1), (2), highlighting 
in it a special linear-state part with separated variables on state 
and control, in the following form 

0 1 1 1( ) , ( ) ( ( ))u c x t x t   
 

0 0 1( ( ), ( ) ( ( ), ) ( ( ), ( ), )) min
T u V

a t x t d u t t F x t u t t dt


     (11) 

0 0 1( ) ( ) ( ) ( ( ), ) ( ( ), ( ), )x t A t x t b u t t f x t u t t    

0
0( )x t x , ( )u t U , 0 1[ , ]t T t t              (12) 

in which the matrix function 0 ( )A t  and vector function 

0 ( )a t  continuous on T , vector function 0 ( , )b u t  and function 

0 ( , )d u t  continuous in terms of the variables u , t  on the set 

U T , 0c  - constant vector . 

On the basis of the representation (11), (12) we introduce a 
perturbed optimal control problem with a perturbation 
parameter [0,1]   

0 1 1 1( ) , ( ) ( ( ))u c x t x t    
 

0 0 1( ( ), ( ) ( ( ), ) ( ( ), ( ), )) min
T u V

a t x t d u t t F x t u t t dt


     (13) 

0 0 1( ) ( ) ( ) ( ( ), ) ( ( ), ( ), )x t A t x t b u t t f x t u t t   , 

0
0( )x t x , ( )u t U , 0 1[ , ]t T t t  .            (14)  

Problem (13), (14) corresponds to the perturbed Pontryagin 
function 

0 0 0 0( , , , ) , ( ) ( , ) ( ), ( , )H x u t A t x b u t a t x d u t      

1 1( , ( , , ) ( , , ))f x u t F x u t  
, 

perturbed mapping 

( , , ) arg max ( , , , )
w U

u x t H x w t  




, 

nR  , 
nx R , t T  

and perturbed conjugate system 

0 0 1( ) ( ) ( ) ( ) ( ( ( ), ( ), ) ( )T T
xt A t t a t f x t u t t t       

1 ( ( ), ( ), ))xF x t u t t , 

1 0 1 1( ) ( ( ))xt c x t    , t T .               (15) 
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We denote ( , )x t v , t T - solution of the perturbed phase 

system (14) with ( ) ( )u t v t ; ( , )t v , t T  - solution of the 
perturbed conjugate system (15) with  

( ) ( )u t v t , ( ) ( , )x t x t v . 

The condition of the maximum principle for the perturbed 
problem (13), (14) 

( ) ( ( , ), ( , ), )v t u t v x t v t   , t T             (16) 

define as a perturbed condition of the maximum principle 
with the parameter [0,1]   . 

The initial problem in the form (11), (12), the Pontryagin 
function H , mapping u , the conjugate system (3) and the 
condition of the maximum principle (4) are obtained, 
respectively, from the perturbed problem (13), (14), the 
perturbed Pontryagin function H , perturbed mapping u

 , 
perturbed conjugate system (15), and a perturbed condition (16) 
for 1   . 

The unperturbed condition of the maximum principle 
corresponds to the unperturbed optimal control problem 

0 0 1( ) , ( )u c x t  
 

0 0( ( ), ( ) ( ( ), )) min,
T u V

a t x t d u t t dt


            (17) 

0 0( ) ( ) ( ) ( ( ), )x t A t x t b u t t                    (18) 

0
0( )x t x , 0 1[ , ]t T t t   

with unperturbed Pontryagin function 

0 0 0 0 0( , , , ) , ( ) ( , ) ( ), ( , )H x u t A t x b u t a t x d u t    
 

unperturbed mapping 

0 0( , , ) arg max ( , , , )
w U

u x t H x w t 




, 
nR  , 

nx R , t T  

unperturbed conjugate system 

0 0( ) ( ) ( ) ( )Tt A t t a t    , t T , 1 0( )p t c    (19) 

For v V denote 0 ( , )x t v , t T  - solution of the 

unperturbed phase system (18); 0 ( )t , t T  - solution of the 
unperturbed conjugate system (19) . The unperturbed 
condition of the maximum principle is obtained from (16) for 

0   and has the form 

0 0 0( ) ( ( ), ( , ), )v t u t x t v t , t T                (20) 

Unperturbed phase and conjugate systems, Pontryagin 
function 0H , mapping 0u   are obtained from the 
corresponding perturbed for 0  . 

We note that the unperturbed problem (17), (18) is a linear-
convex, for which the maximum principle (20) is a necessary 
and sufficient condition for optimal control [1]. 

The complexity of solving the unperturbed relation (20) is 
determined by solving the Cauchy problem for the conjugate 
system (19) and solving the Cauchy problem for the phase 
system 

0 0 0 0( ) ( ) ( ) ( ( ( ), ( ), ), )x t A t x t b u t x t t t             (21) 

0
0( )x t x , t T .

 

Let 0 ( )x t , t T - solution of the problem (21) and output 

control 0 0 0 0( ) ( ( ), ( ), )v t u t x t t ,  t T is a piecewise 

continuous function . Then 0 0 0( ) ( , )x t x t v , t T  and, 

therefore,  0 ( )v t , t T  is a solution of the unperturbed 
conditions (20). 

The representation of the maximum principle in the form 
of a fixed point problem allows one to apply the developed 
theory and fixed point methods to the search for extremal 
controls. For a example, to solve the perturbed condition (16) 
with the perturbation parameter (0,1]  , the simple iteration 
method [2] can be used 

1 1( ) ( ( , ), ( , ), )k k kv t u t v x t v t     , t T , 0k     (22) 

The unperturbed solution 0v  can be chosen as the initial 

approximation 0v V  of process (22) for 0k  . 

The complexity of each iteration of process (22) 
constitutes two Cauchy problems, similarly to the complexity 
of solving the unperturbed condition (20). 

As a criterion for stopping the iteration process (22), the 
achievement of a predetermined small value of the residual 
index [1] to satisfy the perturbed maximum principle (16) can 
be specified. 

Under some assumptions, it is possible to justify the 
convergence of the iterative process (22) in the space of 
measurable functions ( )L T , similar to [3] . 

The calculation of the perturbed conditions of the 
maximum principle is repeated with a gradual increase in the 
perturbation parameter (0,1]   . In this case, the control 
obtained in the problem with a smaller value of 0   is taken 
as the initial approximation of the iterative process. Reaching 
the value of 1    we obtain the solution of the original 
problem. 

We illustrate another perturbation method for the fixed 
point problem (10). 
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The projection parameter 0   will be considered as a 
perturbation parameter, condition (10) is called perturbed. The 
unperturbed condition is obtained from (10) with 0   and 
any admissible control ( )v t , t T  satisfies it. 

The iterative process for solving problem (10) has the form 

1( ) ( ( ) ( ( , ), ( , ), ( ), ))k k k k k
U uv t P v t H t v x t v v t t    , t T  (23) 

At the initial (zero) iteration, the initial approximation 
0v V   is set. 

The convergence of iterative process (23) to solutions of 
perturbed problems in the space of continuous functions with a 
uniform norm is justified similarly to [3]. 

The projection perturbation method (23) with the 
parameter 0   favorably differ from the perturbation 
method with the artificial perturbation parameter [0,1]   in 
that the solution to the perturbed problem obtained for any 
parameter 0   is extreme. Solving perturbed problems in 
methods with the parameter 1   do not provide, in the 
general case, obtaining extreme control. 

The perturbation approach based on fixed point methods to 
search for extreme controls can be extended to other optimal 
control problems. In particular, for problems of parametric 
optimization of dynamic systems [4], [5]. 

III. CONCLUSION 

The proposed perturbation methods do not guarantee 
relaxation over the target function at each iteration, in contrast 
to gradient methods. Perturbation methods are characterized by 
the absence of a convex or a needle variation operation of the 
control, computational stability, and obtaining computational 
controls that do not contain frequent sections of sharp 
amplitude control changes that are difficult to implement in 
practice. 

These properties are essential factors for improving the 
efficiency and quality of solving optimal control problems. 

The proposed approach opens up new possibilities for the 
effective application of the perturbation method in optimal 
control problems, when it is proposed to use the necessary 
optimality conditions as objects of parametrization.  
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