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Abstract—The application of battlefield sensor networks 
needs a simple but efficient method to fuse the data and 
information from multi-sources and generate a cognitive result 
for commanders. However, it is still a challenge to convert the 
sensor data into fuzzy concepts so that people can understand 
easily. In this paper we present a new data processing model 
named Cloud Bayesian Network (CBN), which is inspired by 
fuzzy Bayesian Network but has more advantages. Based on CBN, 
we illustrate some important techniques in this algorithm and 
apply the model to a case study for data processing in battlefield 
sensor networks. Finally, we evaluate the performance of 
proposed model by comparing it with other models and verify its 
effectiveness.  
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I. INTRODUCTION 

Advances in sensor networks have led to the blossom of 
battlefield information and data. Common goals in battlefield 
sensor networks application is to construct the situation with 
the help of observations and support the decision of 
commanders. However, the assistance by data from sensor 
networks is challenging. On one hand, battlefield situation is 
constructed by merging the information from distributed sensor 
networks, it’s difficult to manage information in a simple but 
high-quality manner. On the other hand, the purpose of 
constructing situation is to provide commanders with them, 
thus, the generated information by data fusion should be easy 
to understand and cognitive. Nowadays, there is a growing 
need for such versatile architectures and frameworks capable of 
fusing data from sensor networks [1]. At the core of nonlinear 
techniques is Bayesian Network (BN), which models the 
relationships of data nodes based on probability reasoning. BN 
has been widely used in data processing because of its 
simplicity but complete mathematical basis and strong ability 
to represent knowledge [2]. 

Despite the strong reasoning and data fusion ability of BN, 
the data and information from sensor networks still cannot 
construct a cognitive situation picture. Because the concepts in 
human mind are always fuzzy, like fast, slow, while the data 
from sensor networks are accurate and consistent. It is difficult 
for human to understand the situation with accurate data in 
huge volume. A data fuzzification method should be included 
into BN to solve this problem. A traditional one is using fuzzy 

set theory to make fuzzy classification of data and obtain the 
membership of them [3]. However, owing to the accuracy of 
membership function values, the fuzziness that whether a 
continuous observation belongs to a fuzzy set is strangled, 
which leads to an incomplete fuzzy evaluation and is 
inconsistent with the essence of fuzzy set. Therefore, it is 
inappropriate to use the accurate membership functions to 
represent fuzziness [4]. 

In this paper, we introduce a new fuzzification model 
named membership cloud model to alternate the membership 
functions and discretize data from sensor networks. One of the 
novelty of cloud model is its simplicity. In contrast with 
membership function, the cloud model uses a random number 
rather than an accurate number to represent the membership. 
Besides, cloud model doesn’t require to establish the 
membership function, but builds the fuzzification model by 
numerical characteristics, which is simpler and more efficient. 
Then, the cloud model is combined with BN to process the data. 
As a reasoning model to fuse information, BN is employed 
after data fuzzification and designed to construct the situation 
assessment result for commanders. BN provides great ability to 
conduct probability reasoning. It can transfer the fuzzy 
information of data from the bottom to the top, which ensures 
the result to remain fuzziness and all of the information of data. 
Embedding cloud model into BN, the proposed algorithm not 
only employs the advantage of cloud model in knowledge 
representation, but also combines BN’s inferring capability. 

This paper proposed a data processing architecture for 
distributed sensor networks in battlefield. The model can obtain 
the multi-source data provided by sensor networks and perform 
the data fuzzification by cloud model. BN is then designed to 
fuse the information by reasoning, which helps to construct the 
situation. The remainder of this paper is organized as follows: 
Section 2 introduces the new data fuzzification method, cloud 
model. Section 3 describes how to fuse the data from sensor 
networks. Section 4 presents the case study and Section 5 gives 
the conclusions. 

II. DATA FUZZIFICATION METHOD

After obtaining the observations from battlefield sensor 
networks, it is proposed to conduct data fuzzification by cloud 
model. Cloud model develops from fuzzy set theory but solves 
the problems that fuzzy set theory doesn’t. The membership 
function value in fuzzy set theory is an accurate number, which 
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shows the correlation degree between the input and the fuzzy 
set. However, it is definite that using an accurate number to 
represent fuzziness is impossible and impractical. Therefore, to 
develop the fuzziness and randomness of membership function, 
cloud model is proposed [5]. 

Definition 1. 

Suppose that U is a set of accurate values, named the 
universe of discourse, over which a qualitative concept or a 
fuzzy set A is defined. Let each number x in U  be a random 

instantiation of fuzzy set A  and ( )
A

x   represents the 

membership of x  belonging to A , which is a random number 

with a steady tendency, then the distribution of x over U  is 

called a cloud and ( , ( ))
A

drop x x   represents a cloud drop.  

From the definition of cloud model, membership in 
universe of discourse is not a fixed number, but a probability 
distribution. And this accords with a large number of random 
phenomenon in human society and nature. Because most of the 
data are approximated by normal distribution [6], we choose 
normal cloud model to conduct data fuzzification. 

Normal cloud model is the most widely used cloud model, 
it can use the three numerical characteristics to describe any 
fuzzy concept, which can be written as ( , , )C Ex En He . 

Expectation Ex is the information center of a fuzzy concept, 
which represents the most typical value of the qualitative 
concept. Entropy En is the scope of fuzzy concept and shows 
its uncertainty. Hyperentropy He  represents the randomness 
of membership of different random instantiation in a fuzzy set, 
it is also the uncertain degree of En . Figure 1 shows a normal 
cloud model with =0Ex , =6En , 0.6He   and 1500 drops. 

 
FIGURE I.  NORMAL CLOUD MODEL 

In cloud model, the transformation between sensor data and 
fuzzy concept is achieved by a generator of forward cloud. The 
construction of forward cloud generator is described as 
following [7].  

Input: fuzzy concept A and its numerical characteristics 

(Expectation Ex , Entropy En , Hyperentropy He ), 
quantitative value x  from sensor. 

Output: certainty degree ( )x  of x . 

1) Randomly generate a number 'En  subject to normal 

distribution with expectation En and standard deviation He . 

2) Calculate certainty degree 
2

' 2

( )

2( )( )=
x Ex

Enx e


 . 

3) Output the cloud drop ( , ( ))drop x x . 

If there are several fuzzy concepts, a set of clouds named 
cloud group need to be constructed with each one 
corresponding to a fuzzy concept. The definition of cloud 
group is as follows [8]. 

Definition 2. 

Given a universe of discourse U , and 1 2, , , kU U U is a 

division of that, if the division satisfies the following three 
conditions, it can be called a cloud group. The three conditions 

are: (1) 
1

k

i
i

U U


 ; (2) 
1

k

i
i

U


 ; (3) As for i ix U  and 

j jx U  , if i j ,then i jx x . 

Based on the cloud group, we can design the corresponding 
cloud generators, and calculate certainty degree of an accurate 
sensor observation value belonging to different fuzzy concepts, 
which completes the discretization of sensor data. 

III. BAYESIAN NETWORK BASED DATA FUSION MODEL 

In this part we illustrate the data inference process of 
Bayesian Network. We use it as a data fusion model to 
construct the battlefield situation. As a directed acyclic graph, 
Bayesian Network (BN) has the ability to represent conditional 
and causal relation between nodes. Information can be 
transferred from the observation nodes to target nodes. And in 
fact, this process of information transmission is a way to fuse 
data. The information of data is fused in a form of probability 
reasoning. Thus, the target node contains the whole information 
of the observation data and it can be used to represent the 
situation constructed by sensor data. The essence of Bayesian 
reasoning is to calculate the posterior probability distribution 
under the condition of known observations, which is marked by 

( | )p x e . 
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FIGURE II.  REASONING PROCESS OF BN 

Figure 2 shows the reasoning process of BN. Suppose that 
an unobserved node is X , its parent nodes collection 

is  1 2, , , nU U U U  , child nodes collection is 

 1 2, , , nY Y Y Y  ,e is the set of evidence nodes, and Xe is the 

evidence nodes which connect with X through its parent nodes, 

Xe is the evidence nodes collection which connects 

with X through its child nodes. The posterior probability 
distribution of X  can be represented by [9]: 

( , | ) ( )
( | )= ( | , )

( , )

( | ) ( | ) ( ) ( | ) ( | ) ( )

( , ) ( , )

( | ) ( | ) ( ) ( )

X X
X X

X X

X X X X X

X X X X

X X

p e e x p x
p x e p x e e

p e e

p e x p e x p x p x e p e x p e

p e e p e e

p x e p e x x x  

 
 

 

    

   

 

 

 

  (1) 

 is a normalization constant. ( )x and ( )x are the 
information transferred by parent nodes and child nodes 
respectively. 

Then, the information that updated by parent nodes 
collection marked with ( )x  is:  

1

1
, 1

( ) ( | , ) ( )
n

n

n x i
u u i

x p x u u u 


  




.                  (2) 

The information that propagated from child nodes 
collection written as ( )x is: 

1

( ) ( )
j

m

Y
j

x x 



.                                   (3) 

Synthesize the whole information that is transferred 
to X through its parent nodes collection and child nodes 
collection, the posterior probability of X under the condition of 
observed evidence is: 

1

1
, 1 1

( | ) ( ) ( )

[ ( | , ) ( )][ ( )]
j

n

n m

n x i Y
u u i j

p x e x x

p x u u u x

 

  
 

 

  




     (4) 

Now we can calculate each node’ posterior probability 
distribution. 

IV. DESIGN OF DATA PROCESSING ARCHITECTURE 

In this section, we combine the cloud model with Bayesian 
Network and propose a data processing model named Cloud 
Bayesian Network (CBN). The data processing model aims at 
fusing the data generated from distributed sensor networks in 
battlefield and providing the commander with the fusion result. 
The whole processing model consists of data acquisition, data 
fuzzification and data fusion. In the first stage, it is necessary to 
extract the relevant data from sensors and construct their 
relationship. Once the data that we are interested in are 
obtained, they can be conducted by fuzzification process. The 
final process is to fuse the information and data by BN, which 
can form a situation supported by sensor data. Now we will 
give a detailed illustration to several critical stages in the data 
processing architecture. 

A. Model of Sensor Networks in Battlefield 

Figure 3 shows the topology of distributed sensor networks 

in battlefield [10]. Let 1{ , , }ns s s be a finite set of n 

sensors in battlefield. Sensors obtains different data, such as 
from environment, from radars and so on. The gathered data 
are then fused in fusion node. And the fusion result gives the 
decisions assisted by all of multi-source observations in set s. 

 
FIGURE III.  MODEL OF DISTRIBUTED SENSOR NETWORKS IN 

BATTLEFIELD 

B. Extracting Data from Sensor Networks 

Data extracting is to find the data that we may use and 
determine their relations. Figure 4 shows the relationship of 
data extracted from sensor networks. From Figure 4 we can see 
that the data obtained from sensor networks are divided into 
three types: the sensor data representing battlefield 
environment, the sensor data relevant to deployment and the 
data indicating combat capability. Based on such relationship 
network we can turn it into a Bayesian Network and fuse the 
information from the bottom to the top. The top node is the 
fusion result and represents the battlefield situation.  

Advances in Intelligent Systems Research, volume 164

119



 
FIGURE IV.  RELATIONSHIP OF DATA EXTRACTED FROM SENSOR 

NETWORKS. 

C. Designing Cloud Groups 

In Figure 4, the nodes marked by circle are continuous 
observations. The nodes in square are discrete observations, 
they can be input into BN and fused directly. The continuous 
observations have to be processed by fuzzification, which 
assisted by cloud model. Now we should construct the cloud 
group for continuous nodes in Figure 4. Suppose that the 
universe of discourse is divided based on the meaning of the 
data generated by sensors. We construct a cloud group for each 

node with three cloud models 1 2 3C C C、 、 , each of which 

corresponds to a fuzzy concept {many, medium, few}. Suppose 

the range of value of a node has an upper limit of maxH  and a 

minimum of minH , then the universe of discourse is marked as 

min max[ , ]H H . We design 1C and 3C as half-down normal 

cloud and half-rise normal cloud respectively. Therefore, the 
divisions of universe of discourse are 

max min
min

3
[ , ]

4

H H
H


, max min min max3 3

[ , ]
4 4

H H H H 
 

and min max
max

3
[ , ]

4

H H
H


. The center of each division is the 

most typical value to represent its corresponding fuzzy concept, 
also named as its expectation. Besides, in a normal cloud, 
because the contribution of domain [ 3 , 3 ]Ex En Ex En   
to the fuzzy concept reaches up to 99.74%, the entropy of a 
cloud is usually designed as one-sixth of width of each division. 
What’s more, the hyperentropy of cloud is an order of 
magnitude smaller than the entropy, and it can be set as one-
sixtieth of width of each division. In conclusion, the cloud 

group of a node is max min max min
1 min( , , )

12 120

H H H H
C H

 
,  

max min max min max min
1

+
( , , )

2 12 120

H H H H H H
C

 
and 

max min max min
1 max( , , )

12 120

H H H H
C H

 
. After 

constructing cloud groups of all nodes, we can generate Figure 
5 to represent them. 

 
FIGURE V.  CLOUD GROUPS OF CONTINUOUS NODES 

D. Constructing Cloud Generator 

The step following cloud group designing is to construct 
cloud generators, which are based on cloud groups. For 
simplicity, three states are designated for all continuous nodes. 
The numerical characteristics can be generated as 

1 2 3( , , , , )Ex Ex Ex En He , based on which we can build the 

cloud generators (Table.1). Now we can convert the continuous 
observations into fuzzy concepts and calculate certainty 
degrees. 

TABLE I.  NUMERICAL CHARACTERISTICS OF CLOUD 
GENERATORS 

Entity Mountain Visibility Cloud base height 
Numerical 
characteristics 

(0, 8, 16, 4/3, 
2/15) 

(0, 4, 8, 2/3, 
1/15) 

(0.3, 0.9, 1.5, 0.1, 
0.01) 

Entity Radar Missile area Electronic 
countermeasure area

Numerical 
characteristics 

(20, 60, 100, 
20/3, 2/3) 

(10, 30, 50, 
10/3, 1/3) 

(5, 25, 45, 10/3, 1/3)

Entity Aviation 
force 

Interception 
level 

Fire depth 

Numerical 
characteristics 

(10, 30, 50, 
10/3, 1/3) 

(2, 6, 10, 2/3, 
1/15) 

(20, 60, 100, 20/3, 
2/3) 

E. Probability Conversion 

After conducting data fuzzification, we can obtain the 
certainty degrees of data belonging to fuzzy concepts. However, 
the certainty degrees can not be input directly into BN to fuse. 
They have to be converted into probabilities. We introduce a 
formula to transform the certainty degree into probability in 
Equation (5). 

1

1

1

( ) i
i k

j
j

P C












                                (5) 

where iC means the i th fuzzy concept, i is the certainty 

degree of input belonging to iC , represents the consistency 
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between probability and certainty degree, which is set as 1 in 
this paper. Based on Equation 5, we can get the visual 
probability of the continuous observations and input them into 
BN to finish data fusion. 

V. SIMULATIONS AND COMPARISONS 

A. Case Study 

In the case study, we present the application of proposed 
Cloud Bayesian Network model in battlefield data process. The 
proposed model can be used in the situation that contains 
information and data of battlefield sensor networks in huge 
volume. 

To show how the algorithm works, it suffices to use several 
observations with continuous and discrete states, which are 
shown in Table.2. 

Input all the continuous value into the corresponding cloud 
generator and calculate their certainty degrees. The certainty 
degrees are the symbol that how much the input belongs to the 
fuzzy concepts. We give the certainty degrees in Table. 3. After 
transforming the certainty degrees into probabilities by 
Equation 5, we can get the visual evidence shown in Table. 4.  

 

TABLE II.  OBSERVATIONS OF SITUATION IN BATTLEFIELD 

Observations Mountains Visibility Cloud base 
height 

Radar areas Missile areas Electronic countermeasure 
areas 

Air defense 4 6km 1.2km 40 20 20 

Observations Aviation force Interception level Fire depth Weapon Interference ability Air interception ability 

Air defense 40 5 40km Conventional Medium Medium 

TABLE III.  CERTAINTY DEGREES 

Entity Mountains visibility 
Fuzzy sets little medium many weak medium strong 

Air defense side 0.0174 0.0402 4.453e-30 1.2372e-15 0.0146 0.0026 
Entity Cloud base height Radar 

Fuzzy sets low medium high few medium many 
Air defense side 6.032e-20 0.0149 0.087 0.0633 0.0024 4.447e-11 

Entity Missile area Electronic countermeasure area 
Fuzzy sets few medium many few medium many 

Air defense side 0.0092 0.0099 4.747e-14 4.186e-4 0.4218 1.881e-11 
Entity Aviation force Interception level 

Fuzzy sets few medium many few medium many 
Air defense side 1.771e-23 0.0198 0.0359 1.007e-4 0.396 2.425e-11 

Entity Fire depth    
Fuzzy sets short medium long    

Air defense side 0.0200 0.0104 4.780e-16    

TABLE IV.  VISUAL PROBABILITIES 

Entity Mountains visibility 
Fuzzy sets little medium many weak medium strong 

Air defense side 0.303 0.697 0 0 0.849 0.151 
Entity Cloud base height Radar 

Fuzzy sets low medium high few medium many 
Air defense side 0 0.146 0.854 0.963 0.037 0 

Entity Missile area Electronic countermeasure area 
Fuzzy sets few medium many few medium many 

Air defense side 0.482 0.518 0 0 1 0 
Entity Aviation force Interception level 

Fuzzy sets few medium many few medium many 
Air defense side 0 0.355 0.645 0 1 0 

Entity Fire depth    
Fuzzy sets short medium long    

Air defense side 0.658 0.342 0    

Table.4 shows the visual probabilities of continuous nodes, 
we can input all the evidence into BN and generate the data 
fusion result, as is shown in Figure 6. This simulation is 
supported by GeNIe2.0. 
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FIGURE VI.  ASSESSING RESULT OF AIR DEFENSE SIDE 

In Figure 6, the top node represents the battlefield situation. 
There are three attributes in the top node. Each of them shows 
the situation that air defense side is in. As is seen, air defense 
side is most likely in the attribute of medium situation, whose 
probability is 72%. The probability of situation low is larger 
than the one of situation strong. And it means that the air 
defense side has more entities in low situation than in strong 
situation. Based on the above data fusion result, the 
commander can be assisted to make a decision, that is, to make 
up for the weakness. 

B. Comparisons with Fuzzy Bayesian Network 

The Cloud Bayesian Network (CBN) model is inspired and 
developed based on Fuzzy Bayesian Network (FBN). 
Therefore, the comparison between these two models can show 
us the differences. Using FBN to complete data fusion needs 
designing the membership functions and calculating the 
membership values. Then we input them into BN to complete 
the data fusion. Figure 7 shows the data fusion result by fuzzy 
Bayesian Network and Figure 8 is the comparison between 
them. The results fused by two models are generally the same. 
In CBN model the situation in weak attribute is more likely 
than in the strong one. However, in FBN model the situation 
has the same probability to be in strong and weak attribute. 
Comparing the results to observations in Table 2, which shows 
that there are more observations in weak situation, we can 
conclude that the CBN model represents the reality better. 

The reason why CBN model performed well on this 
problem is that it can represent the fuzziness of data well. The 
data obtained from battlefield sensor networks are mostly 
accurate. The CBN can transform the data into fuzzy concepts 
by calculating their certainty degrees. And the most important 
is the certainty degree is not a constant value like the 
membership but a random number obeying a certain 
distribution. Therefore, the CBN model can express fuzziness 
of sensor data better. And in this extent, it can be verified that 
CBN is more effective than FBN model. 

 
FIGURE VII.  DATA FUSION BY FUZZY BN 

 
FIGURE VIII.  COMPARISON BETWEEN TWO MODELS 

VI. CONCLUSIONS 

A large number of accurate observations and information 
existing in battlefield sensor networks escalate the challenge in 
data fuzzification and data fusion. Traditional data fuzzification 
method uses fuzzy set theory, which is on the basis of 
designing membership functions. However, it is obviously 
inappropriate to use accurate membership value to represent 
fuzziness. Thus, we propose cloud model to conduct data 
fuzzification and replace the membership constant value with 
membership random value. Based on cloud model, we design 
the cloud group and cloud generator, which calculates the 
certainty degree. Then we employ Bayesian Network to fuse 
the data and generate the fusion result which contains the total 
information of sensor data. Finally, we evaluate the 
performance of CBN model by comparing it with fuzzy 
Bayesian Network. In the same situation, the data fusion result 
conducted by CBN is more suitable to the reality. 
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