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Abstract—Premature convergence in island model is a conse-
quence of the selection in migration mechanism. It is a process of
migrating several individuals (usually the best one) from a source
into destination island to keep its diversity. The main reason
is the similar characteristic of relocated individual because of
the genetic operator configurations are similar. Localized Island
Model GA (LIMGA) tries to implement different island charac-
teristics (localization strategy) to preserve the islands’ diversity.
By harmonizing standard GA, pseudo GA, and informed GA;
LIMGA could overcome general optimization problem with a
great result and acceptable execution time. Moreover, because of
its success in maintaining the diversity, LIMGA could lead the
current best-known-so-far solver for this case.

Keywords—migration policy, island model, genetic algorithm,
localization strategy

I. INTRODUCTION

Since Fraser introduced Genetic Algorithm (GA) [1] and
Bremermann modified it [2] in late 1950, this optimization
technique had developing rapidly and adapting widely for
many cases. This algorithm has overcame many theoretical
problems such as 3-SAT [3], [4], job shop scheduling [5], and
many-objective optimization [6]. Furthermore, it has tackled a
real-world case like university course timetabling [7], [8] and
wind farm layout optimization [9].

Different cases forced researcher to implement suitable kind
of GA. Among various types of its implementation, island
model (IM) commonly used for solving a lot of cases espe-
cially complex problem which need scalability. Island model
GA intrinsically preserves its population diversity. It creates an
opportunity for its populations (set of solutions) widen their
ranges and finally gives an advantage in system efficiency.
The problem occurred while a whole islands (populations)
tends to converge towards local optimum. Genetic drift forces
this problem to happen. This term refers to the set of gene
values (alleles) frequency change in a population due to a
random sampling of organisms [10]. Because of island model
GA uses finite population sizes, it highly possible leads into
this problem and loss its diversity as the result.

Premature convergence in island model is a consequence
of the selection in migration mechanism. This is a process
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of migrating several individuals (usually the best one) from
source into destination island in order to keep the system
diversity. Yet in implementation, this movement process in
a certain time could cause genetic drift. The main reason is
the similar characteristic of migrated individual because of the
genetic operator configurations are similar.

Naturally, an individual migrates to find a potentially better
living environment [11], [12]. It moves from a place with
particular characteristics to another place with different one
which is potentially better. Ray in [13] stated that living
environment (medium) is one of the challenges to inoculate
natural evolution into artificial media. This is because the
evolutionary process is mainly concerned with adaptation to
the living environment.

A shifting paradigm of an island from just a set of solutions
to become a living environment with different characteristics
(configurations) can be a breakthrough to solve the genetic
drift problem. This configuration difference may higher the
chance to create a different evolution speed or solution range.
It will force each island to generate different characteristic of
individuals that has higher probability to jump into another
local optimum. Finally, this mechanism will preserve the di-
versity among islands and delayed the premature convergence.

This work aims the implementation analysis of different
island characteristics (localization strategy) to preserve the
islands diversity. We call the IM with localization strategy
as Localized Island Model Genetic Algorithm (LIMGA). The
main contribution of this work are (1) to introduce a new
mechanism of preserving diversity by applying localization
strategy and (2) to analyze its effect in handling general
optimization problem.

This paper consist of six sections. Section I explains the
problem background and the explicit statement of goal and
contribution of this research. Section II shows the related
works from previous researchers which contains an explana-
tion of island model genetic algorithm. In Section III, we try to
introduce LIMGA deeper from its main idea, the localization
strategy, until the migration protocol. Next (Section IV) talks
about the implementation of LIMGA while facing a general
optimization problem. Section V discusses the conducted
experiment and the analysis of its result. The last but not the
least, Section VI concludes all of the works and answers of
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the problem explained in the first section.

II. ISLAND MODEL GENETIC ALGORITHM

Island Model Genetic Algorithm (IMGA) is a distributed
model of GA which splits its main computational process into
several computers (islands) instead of running it in only one
machine. This mechanism offers higher scalability and gives
better chance to evade the local optimum trap. As mentioned
in Section I, proposed technique by Gozali [7], Salmah [4],
and Kurdi [5] adapted this kind of distributed GA. Gozali
et.al. implemented asynchronous model to overcame university
course timetabling with different kind of resources (computer).
Salmah et.al. used a synchronous technique to carried out
3SAT, a classical computational problem. Kurdi et.al. proposed
different modification part of island model to solve job shop
problem. Instead of migrating the best one, he prefers to
migrate the worst one in every generations.

This work implemented asynchronous mechanism used
in AIMGA [7]. Figure 1 shows architecture level view of
AIMGA. The slave Island runs all of the computational
processes of the GA and master island controls the distribution
order of each best individual’s islands.

Fig. 1. Architecture level view of AIMGA

We used AIMGA architecture because of its ability to
overcome idle computation problem due to different computer
specifications. This asynchronous model became the core of
LIMGA because in proposed method, we had to implement
not only different computer specifications but also various kind
of GA cores.

III. LOCALIZED ISLAND MODEL GENETIC ALGORITHM

LIMGA is a new paradigm-shift approach which sees an
island as a single living environment of its population. As
the implication, each islands configuration which could be
value of its parameters or even its core algorithm might be
different. This differences could branch into separate evolution
path which could be its speed or chromosome pattern. An
island may evolve quicker or more efficient to produce a better
individual than other islands.

The main idea of LIMGA is to harmonize each island’s
differences. Their combination will lead IMGA preserving its
diversity and get a better solution as the result. This proposed
method has a mechanism called localization strategy. There
are two kinds of islands: master and slave. The master con-
trols migration by setting the IMGA parameter configuration
and deciding the slave island which has to migrate its best
individual to targeted slave. In the other hand, slave island
takes a role in computing or running core genetic algorithm
to produce better individual every generation. Commonly there
is only one master island to control IMGA, but there are more
than one slave islands to do core GA computation.

Before LIMGA, there are several previous researches related
with diversity preservation in island model genetic algorithm
such as dual population (DPGA) [14]–[16], diversity guided
evolutionary programming (DGEP) [17], and ensemble of
niching algorithms [18]. The first method, DPGA, split a
population into two subpopulations: main and reserve. This
approach could make the population more diverse but as long
as the GA core is same, the evolution track would remain
similar and it would lead into premature convergence. The
two last methods, DGEP and ensemble of niching algorithm,
more focused in the greedy approach on the selection process
by measuring the distance between parent candidates.

Moreover in previous researches [19], [20], LIMGA used
three different algorithms as each island’s GA core. This
research applied single machine model such as Standard GA
(SGA) [21] for balance, Pseudo GA (PGA) [22] for speed,
and Informed GA (IGA) [7] for performance. Figure 2 shows
illustration of LIMGA mechanism used in this work. Master
island controls migration by setting the initial parameter
configuration and distributes island’s individual to the expected
island. And the slave islands (SGA, PGA, and IGA) task is
processing main genetic algorithm to produce better offspring
every generation.

Fig. 2. Interaction between Master and Slave Islands

MW is an abbreviation of Migration Window. MW such as a
buffer in master to keep the best individual from every island.
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They are called as migrants. The three slaves communicates
each other under the rule of master island using migration
protocol. Its pseudocode is explained in Algorithm 1.

Algorithm 1 Migration Protocol Pseudocode
Require: an island P send the best individual (pti)

if Bt
s ≥ θ then

if migrant Windows 6= null then
if number of migrants > 1 then

find migrant with furthest HD from pts
migrate that migrant to island P

else
migrate migrant to island P

end if
end if

end if

Migration protocol is a mechanism to control individual
movement by master island using predefined migration pro-
tocol parameter configuration. Previous research adapted Bias
value from forking genetic algorithm [23] to check diversity
of current island’s population. The bias value Bt

s is defined as
the measure of genotypic diversity of population P t and 0.5
≤ Bt ≤ 1.0 when P t

i,j is its allele. Equation 1 shows formu-
lation of the bias value. HD is hamming distance between pti
and !pti.

Bt
s =

1

N × L

L∑
j=1

(∣∣∣∣∣
N∑
i=1

pti,j −
N

2

∣∣∣∣∣+ N

2

)
(1)

IV. LIMGA FOR GENERAL OPTIMIZATION PROBLEM

This work applied LIMGA to solve general optimization
problem. The chosen case for this research is a bound con-
strained numerical optimization problem which is using real
parameters. Because of its complexity, this problem requires
expensive computation in common to achieve a single objec-
tive (usually minimization). This research used similar general
optimization problem as had been used in CEC competition
2015 [24]. And we have no prior knowledge regarding these
problems. Table I shows the summary of this problems.

All test functions are minimization problems defined as
follows:

minf(x), x = [x1, x2, ..., xD]T (2)

where D is the problem dimension. Each function has a
predefined shift data for its global optimum (∗Fi) which is
randomly distributed in [−80, 80]D. All test functions are
shifted and scalable. The same search ranges (x) are defined
for all test functions as [−100, 100]D.

To implement LIMGA for carrying out this general opti-
mization problems, there are several GA modifications espe-
cially in the chromosome structure, IMGA parameters formu-
lation, and genetic operator procedures.

A. Fitness Function

This work used fitness function which is similar with the
objective formulation in equation 2. The optimization goal for
every case is minimization with zero as the most optimum
fitness value.

B. Chromosome Representation

Each islands used floating type encoding chromosome rep-
resentation. The number of genes is the maximum input
variable which equals the dimension number (D). Therefore,
the length for this problem set is 10 or 30. This research used
encoded chromosome structure according to equation 3.

chromosome = [x1, x2, x3, ...xD], D = (10, 30) (3)

C. Bias Value

The previous bias formulation was formulated to mea-
sure the diversity of binary type chromosome representation.
Because this work used floating type instead, we modified
the bias formulation. This research used a modification as
explained in equation 4. Where UB is an upper bound of
the range value which is 100 in this case.

Bt =
1

N × L

L∑
j=1

(∣∣∣∣∣
N∑
i=1

[
pti,j + UB

2× UB

]
− N

2

∣∣∣∣∣+ N

2

)
(4)

D. Hamming Distance

Same as the bias formulation, the hamming distance (HD)
needs to be modified from binary to floating type input
variables. Equation 5 shows the modification of HD used in
this research. Where L is the length of chromosome and UB
is an upper bound of the range value.

HD(x′, x′′) =
L∑

i=1

∣∣∣∣[x′i + UB

2× UB

]
−
[
x′′i + UB

2× UB

]∣∣∣∣ (5)

E. Slave Islands

The main idea of localized strategy is placed on the way
how to choose different living environment. Previously, GA
variant for slave island’s choosing uses classification as speed
and performance [19], [20]. By considering it, pseudo GA
(PGA) and informed GA (IGA) were chosen. For computation-
ally expensive optimization, PGA [22] is still implementable
because of its flexibility. Contrary, IGA is a variant which
depends on the case’s prior knowledge. So, this research needs
another approach to modify IGA into a more general case to
accommodate this problem. We will explain more specification
detail of slave islands later.

1) Standard Genetic Algorithm: The standard GA (SGA)
used in this research applies full GA operation from roulette
wheel selection, crossover, mutation, to elitism recording. Mu-
tation operator used in SGA has to be changed from flipping
(negates one to zero and contrary) into bound constrained ran-
domize within the range [−100, 100]D. The SGA parameters
configuration of the slave islands uses consideration from [20].
According to it, the parameter configuration is Pc = 75% and
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TABLE I
SUMMARY OF THE CEC 2015 EXPENSIVE OPTIMIZATION TEST PROBLEMS

Categories No Functions *Fi

Unimodal functions TF1 Rotated Bent Cigar Function 100
TF2 Rotated Discus Function 200

Simple Multimodal functions

TF3 Shifted and Rotated Weierstrass Function 300
TF4 Shifted and Rotated Schwefels Function 400
TF5 Shifted and Rotated Katsuura Function 500
TF6 Shifted and Rotated HappyCat Function 600
TF7 Shifted and Rotated HGBat Function 700
TF8 Shifted and Rotated Expanded Griewanks plus Rosenbrocks Function 800
TF9 Shifted and Rotated Expanded Scaffers F6 Function 900

Hybrid functions
TF10 Hybrid Function 1 (N=3) 1000
TF11 Hybrid Function 2 (N=4) 1100
TF12 Hybrid Function 3 (N=5) 1200

Composition functions
TF13 Composition Function 1 (N=5) 1300
TF14 Composition Function 2 (N=3) 1400
TF15 Composition Function 3 (N=5) 1500

Pm = 2%. This work used µ = 60 for the sake of division
easiness by three islands.

2) Pseudo Genetic Algorithm: PGA has a quite similar
process with SGA, but it implements no roulette wheel se-
lection and mutation. PGA uses complementary chromosome
[22] which is static-dynamic for initialization and crossover
instead. This mechanism avoids PGA from incest breeding
by creating the complement of a parent chromosome to be
its couple. For the parameter’s value, PGA will use the same
configuration with SGA.

Because of floating type of allele, the complementary pro-
cess must be modified. Previously, complementing is just a
negation of all alleles in a binary chromosome. To map the
range which is symmetric [-100,100] into [0,1], the range must
be divided into [-100,0) and [0,100]. So that, complementary
of allele x is -x and vice versa.

3) Informed Genetic Algorithm: The GA core which has
to be radically modified is IGA. As mentioned previously,
this GA variant needs prior knowledge for doing greedy
initialization and directed mutation. We need to make these
processes more general to handle a problem such as compu-
tationally expensive optimization. Therefore, we make several
modifications to direct individual evolution for better fitness
from generation to generation.

Modified steps of greedy initialization (execute sequen-
tially):

1) for half of the population (scatter individuals distributive):
a) Generate quartile values between [LB, UB].
b) Generate population with individual’s allele sparsity

within those quartile values.
2) for another half of the population (randomly sparse

individuals):
a) Generate population with individual’s allele between

[0,1] randomly.
b) De-normalize allele within [LB, UP] range.

A gene will be treated as a vector which has a direction
to direct the mutation. We adapt this approach from particle
swarm optimization [25] with simplification. A gene will

have value and direction whether UP or DOWN. Figure 3
is the illustration of this chromosome modification. Algo-
rithm 2 shows the modified steps of directed mutation (for
a chromosome). Where δ is a value which shows how far
an allele will be mutated and DMAX is its maximum value
(0 < δ < DMAX).

Fig. 3. Chromosome modification for directed mutation

Algorithm 2 Directed Mutation Pseudocode
Require: a chromosome x

set all genes direction to up {initialization}
for all gene g in chromosome x do
v0 ← fitness(x)
r ← random(0,1)
if r ≤ Pm then
δ ← random(0,DMAX)
if direction(xg) = up then
xg ← xg + 1
v1 ← evaluate(x)
if v0 is better than v1 then

direction(xg) ← down
end if

else
xg ← xg − 1
v1 ← evaluate(x)
if v0 is better than v1 then

direction(xg) ← UP
end if

end if
end if

end for

V. EXPERIMENTAL RESULT

The main goals of the conducted experiments are (1) to
implement LIMGA, a new mechanism of preserving diversity
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in IMGA by applying localization strategy and (2) to analyze
its effect in handling general optimization problem. According
these goals, we did three main experiments:

1) The first experiment objected the LIMGA proof of con-
cept. We implemented general optimization problem for
SGA, PGA, IGA, and LIMGA with same total population
size. For example, if we used µ = 30 for single machine
SGA, PGA, and IGA; for each LIMGA’s slave, we
used µ = 10. All of the experiments used following
LIMGA parameters: migration bias threshold is 0.65 and
DMAX is 20. This first experiment used D10 and D30
unimodal functions (TF1 and TF2) with fitness score
and execution time as its evaluation parameters.

2) The second experiment aimed diversity preservation anal-
ysis of LIMGA. Similar with the first, we run SGA, PGA,
IGA, and LIMGA for TF1 and TF2 with D10 and D30
then comparing the averaged bias value. The evaluation
parameter of this experiment is bias value only (degree
of diversity).

3) The last experiment find the position of LIMGA among
the best-known-so-far general optimization problems
solver. We execute LIMGA to find the optimum value
of TF1 − TF15. Then we compared LIMGA with the
winner of CEC 2015, MVMO [26], but only in their
scores.

Table II represents result of the first experiment. Table
values shows average score of GA method with ten repetitions.
In this table we can see that LIMGA dominates all cases than
other single models. Among these three, IGA leads TF1 results
and PGA gives the best score in TF2. From this statistic, we
can conclude that LIMGA could dominate all result because
its combination of all single algorithms.

TABLE II
THE RESULTS COMPARISON OF EXPERIMENT 1

Function SGA PGA IGA LIMGA
TF1 - D10 3.61E+09 6.21E+09 3.36E+08 1.82E+07
TF1 - D30 2.42E+10 5.49E+10 2.33E+09 6.37E+07
TF2 - D10 5.19E+06 3.35E+04 2.65E+06 2.02E+04
TF2 - D30 1.09E+06 1.01E+05 3.10E+05 8.76E+04

To get these results, LIMGA consumes relatively consid-
erable amount of time. In Figure 4, we can observe that for
smaller dimension which need less execution effort, LIMGA
is more inferior than others. That is because this distributed
model deals with communication cost between islands. How-
ever, LIMGA could get a faster result for more dimensions.
Fewer population size of its slaves could compensate the
communication cost. Regarding this result, we can conclude
that LIMGA has a high potential replacing single model GA. It
could produce better solution with faster execution time along
the problem scalability.

In the second experiment, we analyzed bias value trend
across generations. Figure 5 shows bias value time-line chart
from the first to 1000th generation for every algorithm. To
make the explanation become clearer, Figure 6 draws only
their polynomial function with order=3.

Fig. 4. Experiment 1 Time Comparison

Fig. 5. Experiment 2 Bias Trend-line

From these figures, we could see that PGA has the most
stable (monotonic) trend proven by its standard deviation
which is the smallest among others. However, PGA’s bias
value is always below the predefined diversity threshold (0.65).
IGA and SGA has unstable trend of bias but IGA tends to has
high bias in the end of its generation. The proposed solution,
LIMGA, be able to draw increasing trend of bias value tough
it seems not too stable but still considerable. This experiment
shows LIMGA ability to maintain its diversity in order to avoid
local optimum trap.

Fig. 6. Experiment 2 Polynomial Bias Trend-line

The last experiment measures how far is the position of
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TABLE III
THE COMPARISON BETWEEN LIMGA AND MVMO

Function LIMGA MVMO
D10 D30 D10 D30

TF1 5.88E+06 2.36E+07 1.93E+02 2.09E+03
TF2 9.19E+03 5.23E+04 1.68E-02 6.93E-03
TF3 2.35E+01 2.17E+01 9.40E+00 3.79E+01
TF4 2.57E+02 2.54E+02 4.65E+02 1.43E+03
TF5 5.71E-01 3.08E-01 1.13E+00 1.68E+00
TF6 1.98E-01 4.11E-01 3.26E-01 5.20E-01
TF7 1.74E-01 1.97E-01 6.37E-01 4.39E-01
TF8 1.12E+03 1.14E+07 4.14E+01 4.03E+02
TF9 2.67E+00 1.25E+01 4.01E+00 1.34E+01

TF10 1.57E+05 2.61E+07 4.97E+02 9.29E+04
TF11 8.25E+00 5.72E+01 1.17E+01 1.43E+02
TF12 1.14E+02 1.71E+03 2.00E+02 8.60E+02
TF13 3.19E+02 4.44E+02 3.16E+02 3.44E+02
TF14 1.93E+02 2.27E+02 2.06E+02 2.76E+0
TF15 1.91E+01 1.18E+03 4.76E+02 1.19E+03

LIMGA from the winner of CEC 2015, MVMO. Table III
points the comparison between LIMGA and MVMO. The
result data is extracted from [26]. The comparison evaluation
parameter is an only score (minimum value). The gray cell
means that LIMGA could gets better score among MVMO.
From this table, localization strategy for IMGA can lead
the minimum score 16 times (nine in D10 and seven in
D30). Overall, the success ratio of localization strategy beating
current solver is 0.53. This ratio is higher than MVMO (0.47).
This number means localization strategy can bring IMGA into
significantly better performance among the best-known-so-far
solver with great consistency.

VI. CONCLUSION

This work goal is the implementation analysis of differ-
ent island characteristics (localization strategy) to preserve
the islands diversity. We applied this mechanism into island
model GA to be Localized Island Model GA (LIMGA). This
conducted research contribution is mostly to introduce a new
mechanism of preserving diversity by applying localization
strategy and to analyze its effect in handling general optimiza-
tion problem. As its problems, this work used 15 functions
from CEC 2015 real-parameter single objective computation-
ally expensive optimization competition.

This proposed model used three slave islands: SGA, PGA,
and IGA. By modifying the each GA structures and operators
to meet the cases, LIMGA could give great result while car-
rying out the general optimization cases. The first experiment
shows that LIMGA dominates the result over those three
single models. The execution time is consider as acceptable
yet scalable for more complex problems. In the second test,
LIMGA able to show its ability to maintain the diversity to get
a better solution. The last experiment defines the position of
LIMGA against the best-known-so-far solver (MVMO). The
proposed model could lead more than half problems for both
dimensions with 0.53 success ratio.

Regarding these findings, localization strategy seems
promising and having a high potential for island model. The
harmony of different GA core variants lead LIMGA towards

the unique evolution tracks. As the result, it could maintain
its diversity, has better chance to avoid local optimum, and
finally produce a better results. However, deeper investigation
of LIMGA implementation for more realistic problems are
still needed. In the future, we may analyze the effectiveness
of localization strategy to handle job-shop, flow-shop, course
timetabling, and other real cases.
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