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Abstract— The visual inspection of ceramic tile surface is an 

important factor which may influence the perceived surface 

quality of the product. While manual labor offers an alternative 

in the task of visual inspection, human limitation related 

problem such as fatigue and safety may pose an undesirable 

inspection performance when applied in mass production 

industry. This study attempted to automate the process of 

ceramic quality inspection through computerized image 

classification. Specifically, a dimensionality reduction technique 

called Principal Component Analysis and classification 

technique Artificial Neural Network were incorporated in the 

study to classify five categories of surface quality: normal, 

crack, chip-off, scratch and dry spots. Given 400 principal 

components as the input layer and three hidden layers consisting 

150 hidden units each, the model was trained under 19,696 

training images by using Adam Optimization. By performing 

prediction on the test set consisting of 4,256 images, the trained 

model was able to achieve the classification accuracy of 90.13%. 

Keywords—Artificial Neural Network, Industrial Visual 

Inspection, Principal Component Analysis, Surface Quality 

I. INTRODUCTION 

In ceramic tile’s manufacturing industry, surface quality is 
one of the important aspects in determining the perceived 
quality of the product [1], [2]. One process that may influence 
surface quality of tiles is the process of visual inspection 
which involves rejecting tiles with unwanted faults within the 
surface [3]. In practice, the task of visual inspection is often 
done manually by operators [3]–[6] due to human capability 
to distinguish between accepted and defected tile surface. 
Unfortunately, utilization of human operators for visual 
inspection may hold several disadvantages. In the case where 
tiles are mass produced, it is laborious to manually inspect 
each surface of the tile. To handle this, sampling methods 
using Military Standards 105E was found to be an alternative 
inspection method [7]. However, the downside of using 
sampling method is the risk of letting defected product to pass 
through the inspection process [8]. Another disadvantage of 
manual inspection is related to human factors of the operator. 
In inspection task which require monotonous and repeating 
activities, the occurrence of human error would likely to 
increase due to fatigue and repetition [9]. Furthermore, The 

working environment of tiles inspection can be found to be 
hazardous and unhealthy which may also contributes 
significantly to human error [9]. 

In order to overcome the issues arise from manual quality 
inspection, an attempt to automate the visual inspection has 
been utilized in several studies by using Artificial Intelligence 
(AI) and Machine Learning techniques [5], [6], [10], [11]. A 
fuzzy logic system [12] with Gray-Level Co-Occurrence 
Matrix (GLCM) feature extraction was utilized by Putri et al. 
[6] to detect ceramic tile surface defect. The study was able to 
correctly classify 12 out of 13 test images and thus giving an 
accuracy rate of 92.31%. Sharma and Kaur [13] employed 
several machine learning techniques i.e. K-Nearest Neighbor, 
Support Vector Machine, and Bayesian Classifier to detect 
defect of ceramic tiles. Using 24 samples of test set, the study 
was able to get 70.84% of accuracy for each model. 

Among Machine Learning algorithms, one of the models 
which capable of drawing complex non-linear decision 
boundaries is Artificial Neural Networks (ANN) [14]. Due to 
this property, extensive studies on the utilization of ANN 
approach on visual inspection system can be found in several 
literatures and researches  [5], [11], [15], [16]. An example of 
such application can be found in [16] where a  classification 
system using ANN was employed to automatically classify 
weld defects using 49 for testing examples with accuracy of 
97.96%. Another related study [5] specifically in ceramic tiles 
inspection utilized ANN for surface defect detection by using 
GLCM feature extraction as preprocessing techniques. Given 
32 samples as a training set and 13 samples for test set, an 
accuracy of 92.3% was obtained during the real time testing 
[5]. Furthermore, Mishra and Shukla [11] have employed 
Probabilistic Neural Network to ceramic tile inspection by 
trying to model the probability distribution of each class. With 
50 tiles samples, the model was capable of reaching average 
accuracy of 98.20%. 

While several studies found that ANN was a capable 
model for ceramic tile defects detection, further improvements 
can be done by evaluating the preprocessing stage carried out 
to the dataset [17]. Such improvement to the model can be 
achieved by finding a lower dimensional representation of the 
image while still keeping the important information consisted 
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within the dataset [18]. This can be achieved by one of the 
dimensionality reduction techniques called Principal 
Component Analysis (PCA) [17]. While reducing the 
dimensionality of the data, PCA can extract important features 
consisted in the dataset and compress the data size to reduce 
computational cost [17]. Several studies have employed PCA 
as a feature extraction technique for visual inspection [19], 
[20]. In one of the studies in leaf classification, PCA was 
found to outperformed the GLCM feature extraction with the 
accuracy of 98% and 78% respectively [21]. 

Given the problem of automatic visual inspection of 
ceramic tiles surface quality, this study aims to create a multi-
class classification system which enables the classification of 
five different classes of ceramic tile surface: Normal, Crack, 
Dry Spots, Scratch, and Chip-off. This system was 
constructed by combining a dimensionality reduction 
technique i.e. PCA and non-linear classification model i.e. 
ANN. 

II. DESIGNING CERAMIC TILE SURFACE QUALITY CLASSIFIER 

SYSTEM VIA PCA AND ANN 

In order to construct a machine learning system which 
capable of surface defect classification and detection, this 
study propose a scheme which consist of three main stages: 
data pre-processing, training and hold out cross validation, 
and performance evaluation. Note that these stages were 
conducted in sequential manner as an overall process. 

A. Data Pre-processing Stage 

Using camera resolution of 1920x1080, each raw image 

of ceramic tile sample was captured at grayscale which 

consist of 1920x1080 different pixel values. For a given 

grayscale, image cropping with size of 50x50 was conducted 

across the tile image. The purpose of having 50x50 images 

patches as dataset was to enable the task object detection of 

the defected surface within the local region via sliding 

window algorithm [22]. Hence by applying this procedure 

throughout all samples, training set, validation set, and test 

set with the size of 2462, 521, and 532 respectively were 

acquired during the acquisition of images as shown in Table 

I. 

TABLE I.  IMAGE PATCHES ACQUIRED DURING THE ACQUISITION PROCESS 

No Class 
Training 

set size 

validation 

set size 

Test set 

size 

1 Normal 1,615 345 345 

2 Chip off 144 33 41 

3 Crack 269 26 26 

4 Dry spots 366 111 96 

5 Scratch 68 16 24 

Total 2,462 531 532 

 

In order make the number of dataset even larger, data 

augmentation was carry out to prevent the problem 

overfitting of the model by adding more artificial training 

examples [23]. Given the square window images of 50x50 

pixels, augmentation was carry out by taking the rotational 

combinations (90̊, 180̊, 270̊) and transpose of each rotations 

(including transpose of the original images) as illustrated in 

Fig.1. Given the previous size of the original image, this 

process was able to increase the size of the dataset by the 

factor of 8 and therefore the training set, validation set, and 

test set size of 19,696, 4,248, and 4,256 respectively were 

obtained. 

 

 
Fig. 1. Data Augmentation on a dryspot image 

The next step in the preprocessing stage is to represent 

these image patches in the form of matrices. Given image 

patches of 50x50 pixels, the ith training case is represented by 

an vector of the unrolled version of the image  𝑥(𝑖) ∈ ℝ𝑛, 

where 𝑛 is the number of pixels in the image i.e. 2,500. Each 

of 𝑥(𝑖) is paired with label 𝑦(𝑖) ∈ {1,2,3,4,5} which represent 

the surface quality. Therefore by stacking the whole 𝑚 data 

points in column, a matrix of training set 𝑋 ∈ ℝ𝑛𝑥𝑚   and 

vector 𝑦 ∈ ℝ𝑚 are constructed from 𝑚 data points (19,696 

data points). 

B. Training Stage 

In this stage, training set and validation set from the 

augmentation result were utilized to train the machine 

learning system. The first step in this stage involving 

representation learning which conducted by PCA to reduce 

the dimensionality of the image patches. In the second step, 

the compressed representations of both training set and 

validation set are given to the ANN for training and hold-out 

cross validation procedure. 

1) Dimensionality Reduction via PCA 

Given the training set 𝑋, the output of PCA is to transform 

the dataset of each example of 𝑥 ∈ ℝ𝑛  into a compressed 

representation of 𝑧 ∈ ℝ𝑘 where 𝑘 is the number of principal 

component such that 𝑘 ≤ 𝑛 . This transformation can be 

obtain with minimal reconstruction error using simple matrix 

multiplication as in (1) [18]. Where 𝑈 ∈ ℝ𝑛𝑥𝑛  is a matrix 

consisting principal component vectors stacked in column 

which can be obtained from the left singular vector of 

singular value decomposition (SVD) of the covariate matrix 

of X [18]. Thus, 𝑈𝑟  is obtained by taking every element in 

first until the k-th column of the matrix 𝑈 . Note that by 

computing SVD of the covariate matrix of X , a diagonal 

matrix S consisting the singular values 𝜆𝑖,𝑖 can be obtained as 

shown in (2) [24]. 

 

z(𝑖) =  𝑈𝑟
𝑇 x(i) (1)  

𝑆 = diag{𝜆1,1, 𝜆2,2, 𝜆3,3 … 𝜆𝑛,𝑛} (2)  

 

CPV(𝑘) =
∑ 𝜆𝑖,𝑖

𝑘
𝑖=1

∑ 𝜆𝑖,𝑖
𝑛
𝑖=1

 𝑥 100% 
(3)  

 

One of the properties of SVD is that matrix S is 

constructed in such a way that 𝜆𝑖,𝑖 is placed from the greatest 

variance to the smallest. Consequently, the value of 𝜆 is also 

decreasing for each column towards the last column. Hence, 

in order to evaluate how much information is retained for a 

given number of principal component 𝑘, Cumulative Percent 

Variance (CPV) (3) was utilized to expressed the amount of 

variance retained [24]. 
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Fig. 2. Choosing the number of principal component 𝑘 

 The computation of CPV (3) was then performed under 
ranged values of k which was then plotted in Fig.2. Note that 
the result shown in Fig.2 revealed that the variance retained 

increase smoothly and flattens towards 𝑘 =  2500. Hence 
given the plot, there is no clear boundary regarding what 

number of principal component 𝑘 to keep. While increasing 

value of 𝑘  lead to higher computational cost and noise, 
decreasing 𝑘 to some extent would also throw away important 
information. One practical solution in determining the value 

of 𝑘 is by choosing the smallest 𝑘 in which able to keep the 
variance to some threshold value. In this study, a commonly 
used threshold of 99% variance retained was used to choose 

𝑘 [24]. As seen in Fig.4, the smallest number of principal 

component 𝑘  that fulfil the criterion was 400 with 99% 
variance retained. 

 To evaluate how 400 principal components with 99% of 
variance retained may represent the original image patches of 
the ceramic quality, PCA is able to reconstruct the compressed 
representation into the approximation of the image. This 
approximation can be obtained by applying reconstruction 

function 𝑔(𝑧) as in [18]: 

𝑔(𝑧(𝑖)) = 𝑈𝑟𝑧(𝑖) (4)  

Given the reconstruction, visual comparison of the original 
and the approximation image was obtained as shown in Fig.3. 
Notice by retaining 99% of the variance, the reconstruction in 
Fig.3b was almost identical to the original image in Fig.3a. 
Hence, images in Fig.3.b can be interpreted as the 
representation that holds in the compressed representation  

𝑧 ∈ ℝ𝑘 where 𝑘 is equal to 400. 

 

Fig. 3. PCA reconstruction: (a) Original Image (b) Reconstruction Image 

2) ANN Training and Hold-out Cross-validation 
In this study, feedforward and fully connected architecture 

of ANN [14] was utilized to perform the classification task as 
in Fig.4. Specifically, the architecture comprises three 
different kinds of layer: input layer, hidden layer, and output 

layer.  Each layer 𝑙 consists of artificial neurons. The number 
of neurons in the input layer and output layer were determined 
by the input dimensionality and the number of classes 
respectively. In contrast, the number of hidden layer and the 

number of neurons n𝑙−1  in the hidden layer are 

hyperparameters which can be specified to affect the 
performance of the model. 

 

Fig. 4. Principal Component Analysis and Feedforward Neural Network 

architecture for ceramic curface quality classification 

Given the lower dimensional representation of the image 
patches of tile’s surfaces by PCA, training of ANN was 

conducted by using 𝑧 ∈ ℝ𝑘 as the input layer of the network. 

The first step in generating prediction for given 𝑧(𝑖)   is to 
obtain the pre-activation function for a given layer by 
computing the weighted sum of over the number of neuron in 

the previous layer n𝑙−1 as in (5)[14]:  

𝜂𝑗
(𝑙)

=  ∑ 𝑤𝑗𝑖
(𝑙)

n𝑙−1

𝑖 =1

𝑎𝑖
(𝑙−1)

+ 𝑏𝑗
(𝑙)

 

 

(5)  

Where 𝜂𝑗
(𝑙)

  is the 𝑗-th pre-activation function in layer 𝑙, 𝑎𝑖
(𝑙−1)

 

is the activation function in 𝑙 − 1, 𝑤𝑗𝑖
(𝑙)

 and 𝑏𝑗
(𝑙)

 is the weight 

connecting the 𝑖-th neuron in layer 𝑙 − 1 to the 𝑗-th neuron in 

layer 𝑙 . Given 𝜂(𝑙)  as the pre-activation vector across all 

neurons in layer 𝑙, activation function 𝑎𝑖
(𝑙)

 is computed as the 

nonlinear transformation of 𝜂(𝑙)(6). Specifically, this study 
used the Rectified Linear Unit (ReLU) activation function as 
in (7) which was found to outperform log-sigmoid and tan-
hyperbolic activations [14], [25]. To make the notation 

simpler, 𝑎(0) notation is assigned to the input layer of the 

network i.e. 𝑎(0) is equal to compressed representation 𝑧.  

𝑎 
(𝑙) =  𝑅𝑒𝐿𝑈(𝜂(𝑙)) (6)  

𝑅𝑒𝐿𝑈(𝜂) = max (0, 𝜂) (7)  

Finally in the output layer, 𝑎(𝐿)  or the prediction 𝑦  is 
computed by an activation function called Softmax (8) which 

squash the pre-activation in the output layer 𝜂(𝐿)  into 

probability distribution of surface quality 𝑦  given the 
compressed training case 𝑧 i.e. 𝑃(𝑦|𝑧;W) as in(8)[18] : 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜂(𝐿)) =  
exp (𝜂(𝐿))

∑ exp (𝜂
𝑗

(𝐿)
)

n𝐿
𝑗

 
(8)  

Thus, to make prediction given some input, forward 

propagation is applied by performing (5) then (6) for 𝑙 = 1 to 
𝑙 = 𝐿 − 1  and (8) for 𝑙 = 𝐿 . Once Softmax compute the 
probability distribution of classes 𝑦  given 𝑧 , final 
classification was done by taking the class that has the highest 

probability 𝑃(𝑦|𝑧; 𝑊, 𝑏). 
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 Given the prediction  𝑦 = 𝑃(𝑦|𝑧; 𝑊, 𝑏), the objective of 
the neural network can therefore be formulated as an 
unconstrained optimization which minimize some cost 

function 𝐸(𝑊, 𝑏) with respect of all weights 𝑊 and biases 𝑏. 
In the case of classification by using softmax (8), cost function 
𝐸(𝑊, 𝑏)  can be defined as the cross-entropy loss which 

expressed as in (9) [18]. Where  𝑦𝑐 is the probability of the 
true class target 𝑦𝑐  given 𝑧 . Equation (9) is then modified 
further by adding a weight decay regularization term to 
prevent overfitting, hence the regularized cost function 

𝐸𝑟(𝑊, 𝑏) is given by (10) [26]. Where 𝜆 is the regularization 
parameter which influence the complexity of the decision 
boundary of the prediction 𝑦. In order to obtain an appropriate 

parameters of 𝑊  and 𝑏  which minimize the cost function 
𝐸𝑟(𝑊, 𝑏), some training procedure need to be conducted. One 
such method is by iterative learning that takes the gradients of 

the cost function 𝜕𝐸(𝑤(𝑙), 𝑏(𝑙)) 𝜕𝑤(𝑙)⁄  and 

𝜕𝐸(𝑤(𝑙), 𝑏(𝑙)) 𝜕𝑏(𝑙)⁄  and use that information to update 𝑤(𝑙) 

and 𝑏(𝑙)  for each layer. Specifically, in order to obtain 

𝜕𝐸(𝑤(𝑙), 𝑏(𝑙)) 𝜕𝑤(𝑙)⁄  and 𝜕𝐸(𝑤(𝑙), 𝑏(𝑙)) 𝜕𝑏(𝑙)⁄  

backpropagation was implemented on every iteration of 
training [27]. These gradients were then given as the 
information to calculate the first moment and the second 

moment estimates of Adam Optimization to update  all 𝑤(𝑙)’s 

and 𝑏(𝑙)’s [28]. Hence, an iteration of training using Adam 
Optimization was carry out by performing forward 
propagation, backpropagation, and weights update according 
to the moment estimates. 

𝐸(𝑊, 𝑏) =  −
1

𝑚
∑  log (𝑦̂𝑐

(𝑖)
)

𝑚

𝑖=1

 
(9)  

𝐸𝑟(𝑊, 𝑏) = 𝐸(𝑊, 𝑏) +  
1

𝑚
𝜆 ∑ ∑ ∑ (𝑤𝑗𝑖

[𝑙]
)2

𝑛𝑙−1 

𝑖=1

𝑛𝑙 

𝑗=1

𝐿 

𝑙=1

 
(10)  

 The result of the training is shown in Fig.5 where the 
model was trained on three hidden layers ANN with 150 
hidden neurons in each layer. Due to the considerably large 
training set of 19,696 images, the training was carry out by 
randomly dividing the training set into mini-batches of 1,024 
images to reduce computational cost [29]. Hence, the cross 
entropy in Fig.5 appears to be fluctuating due to some mini-
batches were slightly harder to predict that the other. Note that 
despite the fluctuations, the cross entropy was still revealing 
the sign of converging to the local optima. 

 

Fig. 5. Training result of Adam Optimization 

 In contrast with the internal parameters 𝑊  and b, the 

regularization parameter 𝜆  is not learnable. One way to 
choose an appropriate parameter of 𝜆 was by performing a 
grid search over a hold-out validation set [18]. This can be 
performed by training the model several times over ranged 

values of 𝜆. Specifically, a vector of logarithmically spaced 

values of 𝜆’s was generated. For each value of 𝜆, training was 
performed and then evaluated by measuring the cross entropy 
of the training set and the validation set. The result of this 

procedure can be seen in Fig.6 where the optimal 𝜆 was found 
at 0.75 at the minimal validation loss. Notice that the training 
result in Fig.5 was carried out by using the optimal 𝜆  and 
therefore corresponds to the minimal validation loss. 

 

Fig. 6. Grid search over weight decay regularization parameter 𝜆 

C. Performance Evaluation 

 In the performance evaluation stage, predictions over the 

test set were employed to gain the accuracy of the model. The 

overall accuracy was obtained by calculating the percentage 

of the correctly classified labels over the whole test set. It was 

found that the model were able to reach the overall accuracy 

of  90.13%  by correcly classified 3,836 test images out of 

4,256 samples. Note that this evaluation metric is only 

assessing in terms of the number of correcly classified images 

over the whole samples in test set. Hence this metric does not 

evaluate the average performance in each class. 

 In order to assess the average performance of each class, 

this study used the second evaluation metric by calculating 

the macro-averaged F1- score [30]. The value of F1-score in 

each class can be obtained by calculating the harmonic mean 

of the precision 𝑃 and recall 𝑅  as in (11). By counting the 

number of true positives ( 𝑡𝑝 ), true negatives ( 𝑡𝑛 ), false 

positives (𝑓𝑝 ), and false negatives (𝑡𝑛 ) in the prediction, 

precision and recall can be obtained as in (12) and (13). Thus 

by averaging the value of  F1-score of the five classes, the 

model was able to obtained the macro-averaged score of 0.78 

out of 1. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑃𝑅

𝑃 + 𝑅
 

(11)  

𝑃 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

(12)  

𝑅 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

(13)  

III. CONCLUSIONS 

An attempt to automate visual inspection of ceramic tile 

surface quality was conducted by applying an image multi-

class classification technique. In this study, the combination 

of PCA and ANN were proposed in order to classify 5 distinct 

classes of ceramic tile surface quality: normal, chip-off, 

crack, dry spots and scratch. The creation of such model was 
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carried out in three main stages: data pre-processing, training 

and hold-out cross validation, and performance evaluation. 

In the pre-processing steps, data augmentation was 

employed to the dataset consisting grayscale image patches 

of ceramic surface. By performing simple rotation and 

transpose operations, training set of 19,696 images was 

obtained in the augmentation process. By using larger dataset, 

the model was able to generalize better due to the 

regularization effect of the augmentation.  

The training was started by the representation learning of 

PCA which able to reduce the amount of dimensionality from 

2,500 to 400 with 99% variance retained. Due to the relatively 

large size of dataset, the training in the batch manner was 

computationally expensive due to large matrix size needed to 

be processed in each update. Hence this study also utilized 

Adam Optimization under mini-batch update. The training 

was performed under a three hidden layer neural network 

with 150 hidden units in each layer. With the weight decay 

regularization of 0.75 obtained from the hold-out cross 

validation, the result shows that the optimization was able to 

find the point near the local optima.  

Given the parameters resulted from the training, test 

images were than employed to the model to evaluate the 

performance. The proposed model was able to achieve an 

overall accuracy of 90.13% on 4,256 test images were 

obtained with macro-averaged F1-score of 0.78. Thus given 

the results of the model, this study is able to provide an 

alternative method for visual inspection of ceramic tiles 

surface quality. 
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