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Abstract. This essay relates mainly to sporadic FC (forecasting) methods and error measures. The 
existing related FC methods of sporadic time series (STS), including the SES (Simple Exponential 
Smoothing), Croston’ s / SBA method and patented WSS method as well as two applicable error 
metrics APE and THEIL'S U are introduced briefly. Then the focus is laid on the analysis and 
presentation of a new forecasting yet unpublished method, SIMFAC (1), which is dedicated to STS 
and includes a new error metric, MEM (Matching Event Metric). For a more comprehensive 
comparison among methods, Cosine Similarity (CS) metric, will be introduced and applied in this 
essay. 
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1. Introduction 

The first method which is applied to STS forecasting is SES method, which was proposed in 1956 
for forecasting data with no zeros and no clear trend or seasonality. But this method proved to be 
strongly biased-especially after a non-zero demand [1]. 

The first sporadic demand specific method was proposed by Croston [2], who applies the 
exponential smoothing method separately to estimate the inter-demand interval (IDI) and demand 
size. Croston’s method is the most widely used approach that addressed the issues related to 
intermittent demand forecasting [3]. After that, many modified Croston’s methods were also proposed. 

Willemain et al. [4] proposed a patented method, called the WSS method, by using bootstrapping 
on observations of non-zero demand to forecast demand over a fixed lead time.  

There are few substantial improvements in sporadic data forecasting except Croston’s-like method 
and WSS methods. Sporadic demand series are difficult to forecast because they usually contain a 
(significant) proportion of zero values, with non-zero values randomly mixed. 

2. Traditional FC Methods and Error Metrics 

There are currently two main branches of forecasting methods for sporadic data, one is based on 
Croston’s method; another is represented by patented WSS method. 

2.1 Existing Forecasting Methods for Sporadic Data 

2.1.1 SES Method  

In SES, the forecast of demand in next period is defined as: 
 

 ܵ௧ାଵ ൌ αܺ௧ ൅ ሺ1 െ αሻܵ௧ (1)

 
where ܺ௧ is the observed value of both zero and nonzero demand, ܵ௧ାଵ is the smoothed average 

as well as the forecast for next period, α is the smoothing parameter, which can be adjusted between 
0 and 1. Higher α will produce a forecast which is more responsive to recent changes in the data, 
whilst also being less robust to any errors that could occur. 

2.1.2 Croston’s Method and Modifications 

In this method, Croston forecasted the inter-demand interval and demand size for the first time 
separately by SES. 

Croston’s method can be expressed as follows: 
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If ݔ௧ ൌ 1, then  

൝
ܼ௧ାଵ ൌ α	ܺ௧ ൅ ሺ1 െ αሻܼ௧
௧ܲାଵ ൌ β	ݍ௧ ൅ ሺ1 െ βሻ ௧ܲ
௧ݍ	 ൌ 1																						

                            (2) 

If ݔ௧ ൌ 0, then 
 

൝
ܼ௧ାଵ ൌ ܼ௧				
௧ܲାଵ ൌ ௧ܲ			

௧ାଵݍ ൌ ௧ݍ ൅ 1
                                (3) 

 
The mean demand per period is then  
 

௧ܻାଵ ൌ
௓೟శభ
௉೟శభ

                                  (4) 

 
Syntetos and Boylan (2005) [5] recommended an adjustment of the Croston method, the SBA 

method (Syntetos-Boylan Approximation), a modified version of equation that is approximately 
unbiased, shown as formula (5), will also be tested in this thesis.  

 

௧ܻାଵ ൌ ሺ1 െ ஑

ଶ
ሻ ௓೟శభ
௉೟శభ

                               (5) 

 
Besides, there are lots of modifications based on the Croston’s method, see Levén and Segerstedt 

(2004) [6], Teunter et al (2011) [7], Wallström and Segerstedt (2010) [8], Segerstedt and Levén (2014) 
[9] etc. 

2.1.3 Patented WSS Method 

WSS uses bootstrapping idea on historical observations of non-zero demand to forecast demand 
distribution over lead time.  In order to avoid forecasting that only take the same values from the 
observation, Willemain et al introduced a so-called “jittering" process, which can produce more 
variation to the historical observation values. A two state Markov Chain model, corresponding to zero 
and non-zero demand observations, is adopted to simulate the autocorrelation in the demand. 

2.2 Applicable FC Error Metrics for STS  

On the one hand, it is about the “demand events”, which includes the number of total positive 
demand events over forecast periods, which represents a big difference when compared with the 
standard time series, and the location or timing of the events on the time axis. No traditional 
forecasting methods have done this before. On the other hand, it is the demand size over forecast 
periods, which can be expressed in terms of the mean demand per forecast period or demand size of 
the demand events.  

THEIL'S U method compares the forecasting quality between specified methods and the Naïve 
method; APE is one of the most intuitive and convenient metrics to measure the difference between 
non-zero values. 

2.2.1 THEIL'S U  

Naïve Method 
The Naïve method is the simplest but not the worst of all forecasting methods. In this method, the 

forecast value of the next period is exactly just the historical actual value of the last period. Even now, 
the Naïve method is widely used as the benchmark method for measuring forecast accuracy because 
it requires little informational data. [10] 

THEIL'S inequality coefficients (THEIL'S U) 
This error measure was presented by THEIL in two different versions, the older version of the 

error metric is called Uଵ, the other is called Uଶ, in this essay THEIL'S U2 is applied, shown as 
formula (6). However, both formulas are originally directed at standard time series, but for STS, if 
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the zero value can be turned into a value which is smaller than one but not zero, then the formula can 
also be applied.  

 

Uଶ ൌ ඪ
∑ ሺ ௧ܻ෡ െ ௧ܻ

௧ܻିଵ
ሻଶ௡

௧ୀଶ

∑ ሺ ௧ܻ െ ௧ܻିଵ

௧ܻିଵ
ሻଶ௡

௧ୀଶ

 (6)

 
Table 1 interprets the index and the corresponding explanation of THEIL'S U. 

 
Table 1. Interpretation of THEIL'S U 

Wert Implication 

U=0 A perfect forecasting method was chosen. 

0<U<1 Chosen method performs better than Naïve method. 

U=1 Two FC methods are the same. 

U>1 Naïve method performs better than chosen method. 

2.2.2 APE (Absolute Percentage Error) 

MAPE (Mean Absolute Percentage Error) cannot be applied in sporadic data although it is one of 
the most popular measures of the forecast accuracy. Moreover, MAPE is the average of absolute 
percentage errors (APE). Therefore, when it comes to measure only one non-zero value, such as the 
average of the forecasting over one year, APE is the most intuitive and convenient metric. 

Before going into the APE, the errors can be defined by the formula (7): 
 
 ݁௧ ൌ ܺ௧ െ ௧ܨ ݐ∀ (7)

 
In this case, ݁௧	denotes a forecast error (residual / deviation) at time t, ܺ௧	represents the actual 

value and ܨ௧  is the forecast values. The absolute percentage error APE then takes place as the 
formula (8): 

 

 APE ൌ
|݁௧|
ܺ௧

ൌ
|ܺ௧ െ |௧ܨ

ܺ௧
∀t (8)

3. SIMFAC (1) and CS 

3.1 SIMFAC (1) for "Demand Events" 

Up to now there is no solution reported, forecasting the number of demand events along a specified 
lead time. SIMFAC (1), developed by Spicher [12], offers a solution for this unsolved problem for 
the first time. SIMFAC (1) can be applied to time series of any (relevant) length and works without 
any pre-set theoretical assumptions, i.e. just using the given historical sporadic data.  

Following is the specific steps of SIMFAC (1) heuristic: 
Given a sporadic time series of length N; V(t) for t=1 to N; 
For some points in time t, V(t) = 0 and V(t) > 0 else. The function 
 

 
ሻݐሺݖ ൌ ൜

0, ݂݅ ܸሺݐሻ ൐ 0
1, ݂݅ ܸሺݐሻ ൌ 0

    (9)

 
identifies the value gaps in the original data. 
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The forecast period of length K has to be specified. 
The algorithm: 
Step 1: Accumulating the zeros along the time axis up to N resulting in a discrete cumulative  
function denoted Z(t) for t=1, …N:  
 
 Z(t) = ∑z(t) for t=1 to N (10)

 
Step 2: Approximation of Z(t) (e.g. linear, polynomial regression, …); the approximation function  
is denoted Z*(t). 
Step 3: Extrapolation of Z*(t) over the forecast period from t=N+1 to t=N+K. 
Step 4: Rounding the values of Z*(t) down to Integers resulting in ZI*(t).  
The result might look like ZI*(t) = {18, 19, 19, 20, 21, 22, 22, 22, 23, …} for t=N+1 to N+K, 

covering the complete forecast period of length K.  
Step 5: Transformation of ZI*(t) into a {0,1, …}-sequence according to:   
If ZI*(t-1) = ZI*(t) then the corresponding function ZI**(t)=1 else ZI**(t)=0.  
The corresponding function is ZI**(t) = {0,1,0,0,0,1,1,0, …} in line with example in step 4. 
Step 6: The estimate of number and timing of events results from the Intersections of Integers and  
approximation function. 

Fig. 1 Schematic of SIMFAC (1) method 
 
All t values with ZI**(t)=1 identify points on the time axis with estimated future demand > 0.  

The sum  
 

 ∑ ZI**(t) for t= N+1 to N+K (11)

 
specifies the forecasted number of “demand events” during the forecast periods.  
The result consists of: 
a)  The number of events during the forecast period; 
b)  Their timely locations (months in this case). 

3.2 Matching Event Metric (MEM) 

The SIMFAC (1) approach, estimating the number of events, the timing and the related values 
require a new quality conception for comparing the accuracy of different time series and of different 
methods.  

Let K be the length of the forecast period. Let E be the number of real events and E* the forecasted 
number of events. Further, let S* be the forecasted number of matching real events i.e. matching the 
real events in time. Then the Matching Error Metric MEM is defined as 
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 MEM = |E - E*| + (E - S*) / K (12)
 
with (E-S*) / K =0 for E= 0. 
In order to explain this problem more clearly, an example is given below.  
Forecast Period of length k with k = N = 12;  
Forecasted Events: E* = 3, in months e.g. {1, 7, 10};  
Real Events: E = 5, in period e.g. {2, 3, 5, 9, 12}; 
No matches; Therefore S* = 0. 
MEM = |5 – 3| + (5 – 0) / 12 = 2,42  
In case of E*=3 with {3, 5, 8}; S*= 2; MEM = 2 + 3/12 = 2.25.  In case of forecasting 5 events 

and 5 matches {2, 3, 5, 9, 12}, then MEM = 0, representing the perfect forecast. 
The result of forecasting the number of events, the number of matches and the related MEM-

Calculation can be seen from table 2. The smaller the MEM error, the better the forecasting quality 
of the number of events.  

 
Table 2. Illustration of MEM                Table 3. FC aspects and error metric for STS 

3.3 SIMFAC (1) for Event-related Values 

The estimation of the future (demand) values is regarded highly speculative. The method of 
estimating the demand values follows in principal the method for event forecasting, but there are 
some modifications. Instead of accumulating the numbers of Zeros now accumulate the (demand) 
values as Step 1. In order to include the structure of (demand) values of history in Step 2 a stepwise 
approximation can be applied using either a polygon shape or stepwise (linear) regression. For 
demonstrating the principle, here a linear approximation is applied. Of course, also the value 
estimations depend on the shape of the approximation function(s).  

In line to forecasting the number of events, now get a set of (demand) value forecasts for each 
forecasted event.  

Let ܨ௜
∗represent all (demand) value forecasts based on histories with forecast period time index i 

(i=1 to k). ܨ௜
∗	result from the extrapolation of the approximation functions – more precisely – here 

from their constant slope ݉. 
 

௜ܨ 
∗ ൌ ݕ ௜ ൌ ݉ ∗ ௜ݔ ൅ ܾ (13)

 
representing value forecasts. 
Matching the selected event forecast and ܨ௜∗	value forecasts will represent the compound result 

of SIMFAC (1). The result consists of ① estimated number of events, which means the number and 
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exact timing of demand events, in months e.g. {2, 3, 5, 9, 12}; and ② values per estimated events, 
which means the exact demand values of demand events, e.g. {0, 15, 23, 0, 7, 0, 0, 0, 54, 0, 0, 65}. 

3.4 Cosine Similarity and Euclidean Distance 

Cosine Similarity between two vectors (or two documents on the Vector Space) is a popular 
measure of similarity that calculates the cosine of the angle between them [13]. This metric is a 
measurement of orientation and not magnitude. 

In positive space, the cosine offers the suitable property that it is 1.0 for identical vectors, 
maximally “similar” and 0.0 for orthogonal vectors, maximally “dissimilar”. [14]  

If a and b represent two vectors, then the cosine similarity is calculated as follows: 
 
 

ܵ௖௢௦ሺࢇ, ሻ࢈ ൌ ሻߠሺݏ݋ܥ ൌ
ࢇ ൉ ࢈

ห|ࢇ|ห ∗ ||࢈||
    (14)

 
where ܽ ൉ ܾ=்ܽ*b denotes the scalar product and ||a||=√்ܽ ∗ ܽ the norm of vector.  

3.5 Summary  

SIMFAC (1) method gives us a prediction information of demand events as well as the events-
related demand size for the first time, which no one has done before. Naïve method, as a reference 
method, can provide us a basic standard for forecasting quality. Including Croston & SBA and WSS, 
there are totally five forecasting methods.  

Seen from table 3, those methods can be compared together only in “Mean” through APE and 
THEIL'S U or some other error metrics since existing FC methods i.e. Croston & SBA and WSS 
provide no information about either total number or the timing of demand “events”. The demand 
“events”, which can be predicted only by Naïve method and SIMFA C (1), can be compared by the 
MEM error metric. The only error metric, which can measure “Demand Values” and “Demand Events” 
together, is CS. CS measures directly the similarity between vectors, which, from my point of view, 
is much closer to nature of sporadic data. Traditional error metrics, such as APE, measure the average 
demand size of a given forecast period, which is only one side of sporadic data. In practice, when 
considering costs such as inventory costs, then Cosine Similarity promises to be of value for 
practitioners. Moreover, Cosine Similarity represents a holistic view on forecast accuracy / -errors 
which opens a new door to sporadic data specific forecasting methods.  

4. Forecasting Results Comparison 

The tests described in this essay are based on 2 years history and 1-year forecast period. SIMFAC 
(1) allows selecting the length of history to be used. Here, we used 2 years as history. 

4.1 FC comparison of the Average Demand Size 

Example of 156/1# (name of one time series): 
Time series in 2013 - {16,6,8,8,25,34,29,0,4,0,8,20}; 
Time series in 2014 - {0,8,4,8,0,0,8,0,14,16,24,12}; 
Actual time series in 2015- {8,4,0,12,4,12,8,0,0,8,0,4}. 
Here, the average demand size of different forecasting methods, including Croston & SBA, WSS 

and SIMFA C (1) will be compared with Actuals under APE and THEIL'S U. 
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Table 4. Average comparison for data 156~1#     Table 5. Comparison under APE and Theil's U 

 

From table 4, we can see that SIMFAC (1) method performs best under the error metric APE. 
Among the left four methods, Naïve method is better than WSS, SBA and Croston’s method, and 
WSS, SBA and Croston’s method have almost the same forecasting accuracy.  

However, under Theil's U the other four methods are better than Naïve method. The reason behind 
is that APE is simple and intuitive to apply although, it has not taken the existence of zeros into 
account. Since Theil's U measures the relative accuracy, which uses as reference forecast the last 
observed values recorded in the data series.  

Based on the same idea, the left data are tested in different groups, results are shown as table 5. 
From table 5, we can see that SBA method and WSS methods predict the average demand values 

with a better forecasting accuracy in general. The reason behind is that SBA method is based on huge 
statistical tests already and has its own data area with best average demand size accuracy. Naïve 
method predicts also well in intermittent data. While SIMFAC (1), as the only method which can 
predict both demand size and inter-demand intervals, has also not bad forecasting accuracy in 
intermittent data.   

4.2 Comparison of FC Number and Timing of Events  

The process is to compare the forecasting of number of events estimated by SIMFAC (1), Naïve 
method. And error metric is MEM.  

All data are tested and the results are shown as table 6: 
 

Table 6. Demand Events Comparison under MEM        Table 7. FC Comparison under CS  
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From table 6 we can see that, for intermittent data SIMFAC (1) and Naïve Method have almost 
the same forecasting accuracy related to demand events; for erratic data and lumpy data, SIMFAC (1) 
shows better forecasting quality and for smooth data Naïve Method shows better forecasting accuracy. 
According to Spicher: "For sporadic time series it is not surprising that the Naïve-Forecast performs 
well. The reason seems to be, that the inherent structure of the underlying process is directly 
transferred into the forecast, while SIMFAC (1) tries specifying the structure (through extrapolation 
of the approximation functions) and thus creating the forecast." – It will be a question of further 
research finding out, for which categories of STS Naïve-Forecast competes well or even beats 
traditional forecasting methods. 

4.3 Forecasting Comparison of Events-Related Values  

The events-related values will be compared among SIMFAC (1), Naïve method and Actual. Error 
metric is Cosine Similarity.  

The forecasting results of Naïve method and SIMFAC (1) will be measured against Actuals, to 
compare which one shows a better similarity. All data are tested, and the results are shown as table 7: 
since the forecasting difficulty grows with the growth of zero proportion, especially under the error 
metric CS, which often get zero for intermittent data and lumpy data. 

Therefore, for those sporadic data which has relative higher proportion of non-zeros, the SIMFAC 
(1) is recommended; for those sporadic data having higher proportion of zeros, Naïve Method also 
possesses a reasonable forecasting accuracy for low budget approaches.  

5. Summary  

By comparing all the available sporadic forecasting methods, i.e. Croston’s method, SBA, WSS, 
Naïve and a brand-new forecasting method – SIMFAC (1) under four applicable error metrics, i.e. 
APE, Theil’s U, a new proposed metric MEM as well as Cosine Similarity, we got the following 
conclusions: 

(1) SIMFAC (1), as a brand-new STS method, shows satisfactory forecasting quality when 
considering the demand values and inter-demand intervals together;  

(2) For the forecasting of average demand values of sporadic data, SBA - as the existing and most 
widely accepted method, and WSS, as a patented method in USA, performs pretty well in some 
certain sporadic data classification; 

(3) Naïve Method, as one of the simplest methods, can also be applied in sporadic data, in some 
cases, i.e. for low budget applications, Naïve method may be the most suitable one; 

(4) For the measurement of forecasting of sporadic data, there is no perfect error metric up to now, 
APE and THEIL'S U are capable for measuring “Average Demand Values” like the standard error 
metric for complete time series, MEM is good at the estimation of “Demand Events” while Cosine 
Similarity (CS) can measure similarity between time series, but CS cannot work well when facing 
sporadic data with higher proportion of zeros. 

6. Relevant Ideas for Further Research  

Based on the research of sporadic data up to now, there are at least the following points which can 
be further studied: 

a) studying the contribution/value of Cosine Similarity in measuring FC-accuracy 
b) using Cosine Similarity for outlier identification and replacement 
Since CS can measure the similarity between vectors very well, it is also worth considering this 

method for identification of outliers 
c)WSS method can be studied further 
for being comparable of the results among forecasting methods, only “Average demand value” are 

taken from the WSS forecasting results. As stated before, WSS shows a demand distribution over 
forecast period, which contains more information than we took 
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d) Further improvements of SIMFAC (1)  
d1) applying different Approximation Functions 
In this essay, the linear approximation is used, and the results perform quite well. But, for some 

kinds of heavy volatile data, other approximation functions such as Sigmoid-functions / Gompertz-
functions might perform better 

d2) Analysis of impact of outliers on FC-quality of the SIMFAC approach   
d3) Utilizing general data from the spare part business for improving Forecast accuracy of    
spare part-based STS. 
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