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Abstract. In order to deal with low efficiency and accuracy of detection caused by the improper 
selection of Xgboost parameters in Android malware detection. In this paper, we introduce Ant 
Colony Optimization (ACO) into Xgboost parameters optimization and propose an approach based 
on ACO optimize Xgboost parameters in Android malware detection. Selecting features such as 
permissions, intents and APIs in AndroidManifest.xml and smali files and extra the optimal feature 
subset, then apply to the proposed method. The experimental results show that the proposed method 
effectively improves accuracy of detection and reduces false positive rate compared with the 
Xgboost algorithm optimized by Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). 
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1. Introduction 

Android operating system has become the most popular smartphone operating system due to its 
open source, compatibility and market openness. A variety of applications provide great convenience 
for people's lives, but many types of Android malware have followed. The security problems brought 
by Android smart terminals are becoming more and more serious, causing many problems such as 
user privacy leakage and economic loss, which brings a lot of troubles to users. Therefore, it is of 
great significance to the research of malware detection. How to effectively detect malware has 
become a hot research topic. 

At present, there are some methods in android malware detection, mainly including static detection, 
dynamic detection, and hybrid detection methods combining static detection and dynamic detection 
[1]. With the widespread use of machine learning algorithms, many researchers have attempted to use 
machine learning methods for Android malware detection research. In [2], a set of Android malware 
detection methods based on privilege correlation is proposed. The Naive Bayes is improved to form 
a classifier, which achieve the initial rapid detection of malware. But it only uses a single feature 
which is likely to have a poor result in detection. Reference [3] proposed an Android malware 
detection method based on the permission frequent pattern mining algorithm PApriori. Reference [4] 
proposed an Android malware detection method based on Support Vector Machine (SVM), which 
uses dangerous permission combinations and vulnerable API calls as feature attributes, and 
establishes SVM classifier to automatically distinguish malware and benign software. Reference [5] 
proposed a sandbox-based Android malware dynamic analysis scheme, which designs and 
implements a recoverable Android sandbox through virtual machine, and uses the reverse tool to 
insert API monitoring code into the Android installation package. The software run in the box and 
the API call information is monitored, so as to simulate the real running process of the application in 
the sandbox. The effect of detecting the malware is achieved, but cost expensive resources. Reference 
[6] proposed an efficient, system-wide information flow tracking tool, TaintDroid, which can 
simultaneously track the diffusion path of multiple sensitive data of Android applications and achieve 
the tracking of multiple sensitive data leakage sources. Reference [7] designed and implemented the 
dynamic monitoring framework of Android application behavior. The experiments evaluated the four 
algorithms of SVM, decision tree, k-nearest neighbor and naive Bayes. In [8], the dynamic and static 
methods are used to extract three types of features, designs a Triple Hybrid Ensemble Algorithm 
(THEA) for three types of features and realizes Androdect tool by THEA algorithm, which is 
complicated in terms of technical implementation. 
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The current research results have many shortcomings in terms of detection accuracy, false positive 
rate and implementation complexity. This paper proposes an Android malware detection approach 
based on Xgboost that optimized by ACO, which processes the Android application through reverse 
engineering, extracts features such as Permission, Intent and API, and feature selection algorithm is 
employed to obtain the optimal features subset. Training the classifier by using the ten-fold cross-
validation method. Experimental results show that proposed method effectively improves accuracy 
and reduces false positive rate of android malware detection. 

2. Related Algorithms and Parameter Optimization 

2.1 Xgboost Algorithm 

Xgboost (eXreme Gradient Boosting) was developed on the basis of the Gradient Boosting 
Decision Tree, which was proposed by Tianqi Chen in 2015 [9]. Compared with the traditional GBDT 
algorithm, it is more advanced, the traditional GBDT mainly uses the first-order derivative 
information, and Xgboost uses the second-order Taylor expansion on the loss function. In the Xgboost 
integrated learning framework, the parameter shrinkage and the minimum sample weight threshold 
(min_child_weight) are the main factor influence the algorithm performance, shrinkage and 
min_child_weight too small may lead to over-fitting , shrinkage too large may cause the algorithm to 
not converge. Excessive min_child_weight will result in the classification performance of the 
algorithm for linear indivisible data. We take the objective function logloss as an example for 
theoretical introduction. 

Perform the second-order expansion of the Taylor function of the objective function: 
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2.2 Ant Colony Optimization (ACO) 

The ACO is an approximate optimization algorithm firstly proposed by Marco Dorigo to find the 
optimal path, which is inspired by the behavior of ant colonies finding the shortest path in the foraging 
process [10]. Ants release pheromones on their path to transmit information. Other ants in the ant 
colony will perceive pheromones and walk along a higher path of pheromone concentration. Each 
passing ant will release pheromones. Thus a positive feedback mechanism is formed. After a period 
of time, the entire ant colony will follow the optimal path to the food source. 

The ACO is an intelligent optimization algorithm, and has better superiority in discrete 
optimization problems. In order to adapt the ACO to the solution of this problem, this paper takes the 
classification accuracy of Xgboost as the objective function value: 
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In this paper, the chaotic sequence [11] is used to initialize the ant colony, and its objective function 
is calculated. 	ݔ௝

௞ is the position vector of the jth ant of the kth iteration. The larger the target function 

is, the larger the position pheromone concentration is, and the current target value ݔ௕௘௦௧
௞  is saved. 

Ants as well as their pheromone maximum is ߬௠௔௫
௞ . 

For the ant colony transfer rule, the ant individual with large transition probability can search the 
local directional step in the solution space, which can effectively avoid falling into the local optimal 
solution and shorten the search time. 
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Where S is the standard deviation of the fitness function and is calculated as follows: 
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In the formula (5), m is the number of ants, and ܨ௔௩௘ is the average fitness value; 
If Pሺݔ௜ሻ ൏ ଴ܲ , where ଴ܲ  is a constant, 0 ൏ ଴ܲ ൏ 1, then the ant searches at a local location 

nearby, and the formula is as follows: 
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the move step, as defined below: 
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If Pሺݔ௜ሻ ൐ ଴ܲ, the ant searches in the solution space. 

2.3 Xgboost Parameter Optimization based on ACO 

Aiming at the problem of parameter setting in Xgboost algorithm, proposes an method that ACO 
optimize Xgboost algorithm. Following the basic description of the algorithm, we update parameters 
of the Xgboost by the ant colony optimization algorithm for each iteration, until we get the max 
iteration and output the final Optimal parameters of Xgboost, and apply to the Xgboost classification 
model. Fig.1 is The process of the parameter optimization. 

The specific implementation steps are as follows: 
Step 1: Set the upper and lower limits of the shrinkage in the child node and min_child_weight, 

the maximum number of iterations MaxIter, the ant colony size M, the information evaporation 
coefficient Rho; 

Step 2: Initialize the shrinkage and min_child_weight as the position vector of each ant; 
Step 3: Perform an ant colony search operation; 
Step 4: Input the data set into the Xgboost classifier for training; 
Step 5: Calculate the objective function value and pheromone value of each ant with the Xgboost 

classifier to find the current optimal ant; 
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Fig. 1. The process of optimizing the Xgboost parameters by ACO 

 
Step 6: Determine whether the termination condition is satisfied: if the number of iterations is 

greater than MaxIter, output the ant colony optimal value and the corresponding shrinkage and 
min_child_weight values; 

Step 7: Update the pheromone. If the termination condition is not satisfied, go to step 3. 

3. Principles of Detection Methods 

3.1 Method Design 

The process of Android malware detection method in this paper is shown in Fig.2. The method 
mainly consists of three stages: feature extraction, feature optimization and detection classification. 
The detailed processing is as follows: 

1) Decompiling apk files to get AndroidManifest.xml files and smali files. 
2)Extracting attributes such as Permission and Intent of the AndroidManifest.xml file and the API 

of smali file. According to the extracted attributes, the number of occurrences of each feature is 
counted and sorted, and the attributeswith high frequency are combined into a feature set. 

3) Comparing the attribute values extracted with each apk file and generate feature vector. 
 

 
Fig. 2. Detection method process 
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4) Using the feature selection algorithm to perform feature selection and sorting on the generated 
feature vector and selecting more representative features according to the sorting result and generate 
an optimal feature subset. 

5) According to the ten-fold cross-validation, the optimal feature subset is divided into training set 
and test set in a 9:1 ratio, put into the proposed method for training and testing, and compute the 
accuracy and false positive rate. 

3.2 Feature Vector Extraction 

In the feature extraction stage, extracting the Permission, Intent and API in the apk file as features, 
and then constructs the feature vector by quantizing, finally merges the feature vectors of all Android 
software samples into a data set. The process of obtaining Permission, Intent, and API is shown in 
Fig.3. The specific process design is as follows: 

Step 1: Using apktool [12] to decompile all the apk files and generate a folder containing the 
AndroidManifest.xml and smali files. 

Step 2: Parsing AndroidManifest.xml and count the Permission and Intent. Parsing the smali file 
and get the API feature. 

Step 3: The elements in the feature vector can take the value of "1" or "0". The "1" indicates that 
the apk application contains the corresponding attribute, and the "0" indicates that the corresponding 
attribute is not included. Then, add a flag at the end of the feature vector, the flag can take the value 
"Ben" or "Mal", "Ben" indicates that the application is benign software, and "Mal" indicates that the 
apk application is malware. 

Step 4: Constructing a feature vector using the quantified result and the category label ('Ben' and 
'Mal'). Each feature  

 

 
Fig. 3. Feature extraction process 

 
vector represents a sample, and all feature vectors are combined into experimental data. 

4. Experiment Result and Analysis 

4.1 Sample Source and Experimental Environment 

A total of 3,260 samples are collected in this experiment, including 2000 benign software that from 
Google's official application market, Google Play [13], including all application categories. The 
malware comes from the Android malware genome project [14], a total of 1,260 samples covering all 
categories of malicious application families. 

In the experiment, the host is configured as Intel Core i5-3570 CPU @ 3.40 GHz, memory is 4GB, 
feature extraction and algorithm are implemented by Python programming, and feature filtering is 
done in Weka [15] environment. 

4.2 Feature Vector Extraction and Optimization 

According to the steps of the feature vector extraction stage, the AndroidManifest.xml and smali 
files are obtained by decompiling and parsing the apk file. The attribute value information of the tag 
items <uses-permission>, <intent-filter> <action> and <intent-filter><category> in benign software 
and malware is obtained from the AndroidManifest.xml file. The set of API features in benign 
software and malware is parsed from the smali file. The IG algorithm is used to 
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Table 1. Common feature statistics 
Num Permission Intent API 

1 READ_SMS PACKAGE_REMOVED getSubscriberId( )

2 WRITE_SMS 
BATTERY_CHANGED_AC

TION
getDeviceId( ) 

3 SEND_SMS MEDIA _ MOUNTED 
getNETWORKCountryIso

( ) 

4 CHANGE_WIFI_STATE 
ACTION _ POWER 
_DISCONNECTED

getLatitude( ) 

5 RECORD_AUDIO SIG _ STR getLogitude( )
6 VIBRATE PACKAGE _ ADDED getOutputStream( )
7 CAMERA USER _PRESENT getInputStream( )
8 WAKE_LOCK VIEW sendTextMessage( )

9 
CHANGE_NETWORK_S

TATE 
CATEGORY.DEFAULT sendDataMessage( ) 

10 BROWSABLE BROWSABLE startService( )
 
optimize the feature attributes. Among them, some common Permission, Intent and high-risk API 

are shown in Table 1. 

4.3 Evaluation Indicator 

(1) TP (true positive): The number of malicious samples that are correctly detected as malicious 
samples. 

(2) FN (false negative): The number of malicious samples that are mistaken for normal samples. 
(3) TN (true negative): The number of normal samples correctly classified as normal samples. 
(4) FP (false positive): The normal sample is falsely reported as the number of malicious samples. 
Based on the above concepts, the following evaluation indicators are derived: 
 

Accuracy ൌ
ܶܲ ൅ ܶܰ

ܶܲ ൅ ܶܰ ൅ ܲܨ ൅ ܰܨ
 

RecallRate ൌ
ܶܲ

ܶܲ ൅ ܰܨ
 

FPR ൌ
ܲܨ

ܶܰ ൅ ܲܨ
 

FNR ൌ
ܰܨ

ܶܲ ൅ ܰܨ
 

Precision ൌ
ܶܲ

ܶܲ ൅ ܲܨ
 

4.4 Comparative Experiment and Analysis 

This paper designed an experiment to verify the effectiveness of Android malware detection 
method based on ACO optimize Xgboost parameters. In order to verify the efficiency and accuracy 
of the method, we use the ten-fold cross-validation method to classify the sample set. The obtained 
optimal application sample set is divided into 10 parts, one part is taken as a testing sample, and the 
other 9 parts are training samples in turn, the experimental result is taken as 10 average values. 

In order to verify the good performance of ACO optimizing Xgboost parameters, this paper also 
uses Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) to optimize the parameters of 
Xgboost. Comparing Android malware classification result by Xgboost classifier with different 
optimization algorithms. The evaluation indicators used in this paper for classification detection 
performance are ACC and FPR. The experimental results are shown in Fig.4 and Table 2. 
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Fig.4. ACC of Xgboost with different optimization algorithms 

 
Table 2. ACC and FPR of Xgboost with different optimization algorithms 

Algorithm ACC FPR 
GA-Xgboost 0.9480 0.091 
PSO-Xgboost 0.9692 0.063 
ACO-Xgboost 0.9880 0.008 

 
As shown in Fig. 4, the convergence speed and the search performance of the ACO optimizing 

Xgboost parameters are better than those of GA and PSO. In Table II, the proposed method ACO-
Xgboost has an accuracy of 98.80% in android malware detection, which is 4% and 1.88% higher 
than GA-Xgboost and PSO-Xgboost classification methods respectively. With the improvement of 
detection accuracy, the false positive rate is naturally reduced. The false positive rate of proposed 
method is only 0.8%, which is lower than the other two methods. 

5. Conclusion 

Aiming at the problem that the classification efficiency and accuracy is affected by the improper 
parameter’s selection of Xgboost algorithm. In this paper, we optimize the Xgboost parameters by 
ACO algorithm, and propose a method based on ACO optimizing parameters of Xgboost in android 
malware detection. By selecting three feature attributes of Permission, Intent and API, and obtaining 
the optimal feature subset through feature selection algorithm, apply them into the proposed method 
with the optimal parameter combination to detect and classify Android malware. Compared with the 
Xgboost algorithm based on GA optimization and PSO optimization, the proposed method accuracy 
is higher and false alarm rate is lower than the other two methods respectively. 
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