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Abstract. There are many real-life engineering problems that entail appropriate optimization 
methods. Although almost all the problems can be modeled into simple forms described by 
mathematical formula, it is hard to solve all the decisive problems by a single optimization method. 
Researchers have developed many effective optimization techniques to solve assorted problems. 
Among these particle swarm optimization (PSO) has played an important role in optimization of 
complex and high-dimensional problems. However, PSO suffers from premature convergence and 
low precision. For this purpose, the paper proposed a TPSO which adapts a stochastic process 
based on t-distribution and a mechanism of reference set. Subsequently simulations tested on 13 
classical benchmark functions demonstrated that the TPSO can achieve faster convergence speed 
and higher accuracy. Finally, the application on the path planning problem of UAV evaluated the 
efficiency of the proposed algorithm. 
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1. Introduction 

Nowadays many engineering problems can be concluded as an effort for gaining maximum benefit 
with limited resources. Moreover, it is desired to make the optimal decision for many real-life affairs. 
In fact, all these decisive problems can be modeled into mathematical problems and consequently be 
solved by classical optimization method [1]. In a formal way, an optimization problem is defined as 
maximizing or minimizing a real function by systematically choosing input values from within an 
allowed set. All the optimization problems can be formulated as following forms: 

 

 

min     ( )

( ) 0

( ) 0

f x

c x

h x




    (1) 

 
Where ( )f x  is the objective function to be optimized and ( )c x  and ( )h x  are equality 

constraints and inequality constraints respectively Although the mathematical model of an 
optimization problem is simple, it is sometimes too difficult to solve due to complexity and 
indeterminacy. The mathematical expressions of the objective functions which usually contain non-
linear terms, non-convex terms and multiple constraints can be extremely complicated. Another 
challenge is that not all design variables are continuous, and some variables can only take certain 
discrete values[2]. Moreover, there are many problems that do not have analytic expressions and thus 
can only be regarded as black-box problems.  

Researchers have developed many effective optimization techniques to solve assorted problems in 
spite of so many challenges. The responsibility of choosing the algorithm that is appropriate for a 
specific application often falls on the user. This choice is an important one, as it may determine 
whether the problem is solved rapidly or slowly and, indeed, whether the solution is found at all[3]. 
In general, optimization algorithms can be classified into two main groups according to their 
principles: classical methods and stochastic algorithms. 

Classical methods are almost deterministic methods and can be repeatable that have some fixed 
steps to follow[1]. They are quite efficient in solving problems which have analytical solutions and 
finding local optima. According to the convex optimization, classical methods are divided into 
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derivative-based methods and derivative-free methods. Derivative-based methods make use of 
gradients and usually have fast convergence speed. Frequently-used derivative-based methods 
include gradient descent method, trust-region method, conjugate gradient method, Newton method, 
et al. Since derivatives of many problems are not available, derivative-free optimization (DFO) 
algorithms differ in the way they use the sampled function values to determine the new iterate.  

With the increased complexity and uncertainty, the classical methods sometimes fail to solve large-
scale and computational problems[4]because there is a risk to be trapped into local optima. A common 
practice is to introduce some stochastic components to an algorithm so that it becomes possible to 
jump out of such locality[5]. Most stochastic algorithms can be considered as metaheuristic. 

Biology is a principal source of inspiration to propose new metaheuristic optimization methods. 
Two famous bio-inspired algorithms are swarm intelligence (SI)-based, and evolutionary algorithms. 
SI-based algorithms simulate the collective behaviors of biotic population. In social colonies, the 
individuals perform simple functions while the whole swarm exhibits intelligent behaviors through 
members' interactions with themselves and with the environment[6]. Evolutionary algorithms are 
inspired from natural evolution and emulate the biological operators in the genetic field named 
crossover, mutation, and natural selection. The examples are genetic algorithm (GA) [7,8] and 
differential evolution algorithm (DE) [9]. 

Among these numerous types of meta-heuristic algorithms, PSO has shown great advantage of 
solving complex problems due to its simple structure and less parameters. Up to now, PSO has been 
successfully applied in several areas, such as pattern clustering[10], crew scheduling problems[11], 
multi-robot path planning[12], quality control[13], network reliability[14], inventory routing 
problems[15], time series forecasting[16], constrained shortest path problems[17], layer-packing 
problems[18], cost-sensitive attribute reduction[19]. 

However, PSO has some drawbacks resulting in poor performance in some cases. Firstly, PSO is 
sensitive to the variance of parameters. The parameters adapted to one problem may not be suitable 
for another problem. Thus, appropriate parameter selection is essential for the PSO. Secondly, PSO 
is likely to obtain a local optimal solution so that the algorithm is stagnated. The particles tend to 
move to the position of the best optimal particle and hence will gather at a small range of its 
neighborhood, which is harmful to search for global best solution. The whole particle swarm will not 
change anymore when the best particle is trapped in to a local optimum. Thirdly, the result solution 
of the PSO is not stable because of the introduction of stochastic process. Though stochastic process 
helps increase the diversity of the swarm and decrease the probability to be trapped into local optima, 
the randomization of initial position, initial velocity and updating mechanism leads to different 
solution in each trial. Sometimes it even exists large deviation. 

Many efforts have been made to improve the performance of PSO to address the main drawbacks 
of the particle swarm optimization. The essence of these advances is to achieve a trade-off between 
exploration and exploitation, which are the two key issues of metaheuristic algorithms[20]. 
Exploration is the ability to diversely search the space that supports the algorithm to scan the various 
parts of search space while avoid trapping into local optima[6]. In contrast, exploitation is the local 
search ability that supports a precise search and convergence. 

This paper proposes a modified PSO called TPSO by introducing a stochastic process on T-
distribution. A mechanism applying reference set is used to avoid premature. Section 2 illustrates the 
fundamental principle of PSO and t-distribution. Then the details of TPSO are discussed. Section 3 
tests the performance of TPSO on 13 benchmark functions in comparison with seven classical 
metaheuristic algorithms and discusses the superiority of TPSO. Section 4 shows the application of 
TPSO on engineering problem. Section 5 concludes the main idea and result of TPSO and outlines 
directions for further research. 

2. Algorithm 

Here, the details of the original PSO algorithm, the proposed TPSO algorithm are provided. Also, 
the explanation of the t-distribution and the reference set are discussed. 
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2.1 Particle Swarm Optimization 

The PSO algorithm consists of a collection of individuals called particles. Each particle represents 
a candidate solution to the program problem. Each particle includes three attributes: current position, 
function value, velocity, personal best position. The current position is a vector which represents the 
independent variable of the objective function to be optimized. For each particle a function value is 
calculated to evaluate the quality of the particle. The particles move in the high-dimensional space 
governed by an iterative calculation and addition of a velocity vector to the position vector. The 
calculation of each particle’s velocity is based on its attraction towards two promising locations in 
the search space, namely the best position found by the particle and the best position found by any 
particle within the particle’s neighborhood.  

The neighborhood of a particle refers to the other particles within the swarm from which it may 
take influence. We consider the star neighborhood strategy where the neighbor-hood is the entire 
swarm in the paper. 

For a particle in the particle swarm with position vector ( )ix t  and velocity ( )iv t  at the iteration 

t , and its velocity at the next iteration is updated  
 

 1 2( 1) ( ) () ( ( )) () ( ( ))i i i i iv t v t c rand p x t c rand pg x t               (2) 
 

Where ()rand  is a random number generator in uniform distribution. gp  represents the global 

best position of the entire swarm and ip  represents the historic best position of the particle i . 1c  

and 2c  are positive acceleration coefficients that weight the importance of their cognitive and social 

components. Once given the new velocity, the position is updated by 
 

 ( 1) ( ) ( 1)i i ix t x t v t       (3) 
 

Fig. 1 illustrates the mechanism of the movement of the particles. 
 

( )iX t

( 1)iX t 

( )iV t

( 1)iV t 

gp

1 () ( ( ))i ic rand p X t  

2 () ( ( ))ic rand pg X t  

 
Figure 1. The movement mechanism of the particles in PSO tested by the Sphere benchmark 

function. 
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2.2 The Student’s t-distribution 

In probability and statistics, Student's t-distribution is a member of a family of continuous 
probability distributions that arises when estimating the mean of a normally distributed population in 
situations where the sample size is small and population standard deviation is unknown. It was 
developed by William Sealy Gosset under the pseudonym Student. 

The t-distribution has been widely used in statistical analyses. Student's t-test can be applied for 
assessing the statistical significance of the difference between two sample means, the construction of 
confidence intervals for the difference between two population means, and in linear regression 
analysis. The Student's t-distribution also plays an important role in the Bayesian analysis. 

Suppose X is a normally distributed stochastic variable, whose expected value is  and square 

deviation 2 is unknown. Define the sample mean as: 
 

 1 2 ... n
n

X X X
X

n

  
   (4) 

And define the variance as 
  

  22

1
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1
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    (5) 

 
Then the statistic   

 =
n

n

X
T

S

n


  (6) 

 
is in accordance with t-distribution and its probability density function(pdf) is  
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  (7)  

 
Where 1n   and is usually called the degree of freedom of the t-distribution. The curves of 

the t-distribution’s probability density function with different degree of freedom are shown in Fig. 2. 

 
Figure 2. The probability density function of t-distribution and normal distribution. 

 
The pdf of t-distribution is symmetric and bell-shaped, like the normal distribution, but has heavier 

tails, meaning that it is more prone to producing values that fall far from its mean. It should be noted 
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that as v → ∞, the pdf of the t-distribution converges to the pdf of the standard normal distribution 
for every value of x. From the point of view of the random number generator, the t-distribution being 
introduced into PSO will enhance the ability of exploring the entire search space and hence increases 
diversity.  

2.3 Particle Swarm Optimization with t Distributions.  

The standard PSO adopts the global best of the particle warm gp and the individual best ip  to 

control the movement of the particles. The individual best is introduced to increase the diversity and 
consequently avoid being trapped into the local optimum to some extent. However, the existence of 
individual best may slow the convergence speed of PSO and even cause oscillation. Some researchers 
argue that the diversity can be achieved by using some randomness. Subsequently, there is no 
compelling reason for using the individual best, unless the optimization problem of interest is highly 
nonlinear and multimodal. A simplified version that could accelerate the convergence of the 
algorithm is to use the global best only[21]. However, eliminating the individual best contributes to 
premature convergence. Therefore, we can substitute the individual term with a stochastic process to 
improve the convergence speed without damage its diversity.  

According to the above theory, we proposed a PSO with t-distribution (TPSO) which modified the 
standard PSO by replacing the individual best term with a t-distribution to maintain the diversity. The 
updated equation of a particle’s velocity in TPSO is 

 
 1 2( 1) () ( ( ))t

i i iv t v c trnd c pg x t          (8) 
 

where ()trnd is an random number can be drawn from t-distribution. The updated equation of a 
particle’s position remains the same as Eq. (3). 

It is obvious that the TPSO is easier to implement than the standard PSO and its classical varieties. 
Also, the mechanism is clear to understand. The TPSO retains two parameters to control the balance 
between exploitation and exploration. A bigger value of 1c provides the ability to escape local optima 

while a bigger value of 2c  accelerates the convergence speed. In practice, is desired to be set as a 

monotonically decreasing function with respect to the iteration index t  while 2c  0.2 to 0.7 is 

proper for most cases. 

2.4 A Modification with a Reference Set 

The updating equation is sufficient for most optimization. However, when faced with a complex 
objective function with extremely high dimension or numerous local optimums, the other particles 
are prone to be attracted by the initialized one best particle. Although tuning parameters can improve 
the efficiency, it makes no sense to avoid premature.  

To overcome the dilemma, we introduced a mechanism with a reference set to avoid rapid 
convergence in the early period of TPSO. The reference set consists of a certain number of position 
vectors which have the top optimal values. Compared with the original TPSO, particles are attracted 
to the weighted average of the position vectors in the reference set. So, the word ‘reference’ denotes 
that the position vectors in the set are role models for ordinary particles to follow. Consequently, the 
modified updating equation of a particle can be rewritten as 

 
 1 2( 1) ( ) () ( ( ))i i t ix t x t c trnd c p x t        (9) 

 
where 1 1(1 ) ( ),0 1t g tp p avg S        . gp is the global best position and ( )tavg S is the 

average position of position vectors in the reference set. 1 is applied for adjusting the convergence 

speed and controlling the diversity of the swarms. The modification would degrade into the original 
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TPSO when 1  decreases to 0. The reference set will be updated as the algorithm iterates and it will 

finally be replaced by those consists of global best particles only because the whole swarm will 
converge to a particle. Hence, the balance between exploitation and exploration can be self-adaptive. 

The reference set can help increase diversity and reduce the possibility of premature in that the 
particles can learn from a swarm of particles rather than only one particle. The proposed mechanism 
will broaden ordinary particles’ sight. 

The following steps explain the mechanism of integrated TPSO. 
Assume a swarm population with N particles searching for an optimal solution in a d-dimensional 

search space. Each particle ( 1, 2,..., )i i N  one d-dimensional position vector ix . The objective of 

the TPSO algorithm is to minimize the given objective function ( )f x .Initialization: Iteration, 0t  . 

The size of the reference set is S . 
Step 1: The positions of the particles are randomly initialized by 
 

 (0) ( ) ()ix upper lower rand lower                 (10) 

 
where upper and lower are the bound of maximum and minimum respectively. 
 

Initialize the position and velocity of particles

Determine parameters: dimension D, number of 
particles N, maximum iteration M, size of the 

reference set S

Evaluate each particle and determine the global 
best position

Choose Particles as 
reference set

Update the particles by Eq.(5)

Update the global best position and the individual 
best position

Reference set

Update the reference set

particle 1

particle 2

……

particle j

……

particle S

New 
particle 

If the final criterion is 
satisfied  

END

Update the 
    reference set

NO

YES

 

Figure 3. The flow chart of TPSO 
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Step 2: For each particle i , evaluate the objective function ( )f x  using the position vector (0)ix . 

Select the position of the particle with the minimal function value as the global best position vector 

gp  . Select the positions with the S minimal function value into the reference set.  

Step 3: Update the particles’ positions by Eq. (9). 
Step 4: For each particle i , the ( )if x  is evaluated using the position vector ( )ix t . Suppose that 

the position j in the reference set and corresponding function value are jy  and ( )jS y . And the 

reference set is sorted in ascending order according its objective function value. If ( )if x  satisfies 

1( ) ( ) ( )j i jS y f x S y    , substitute 1jy   with ix  to update the reference set. 

Step 5: For each particle, if the function value of a new position is lower than the global best value, 
then update gp . 

Step 6: If the iteration index t reaches the maximum iterationM , end the loop. Determine as gp  

the solution of the problem. 
In conclusion, a flowchart of the TPSO is show in Fig. 3.   

3. Experimental Results and Analysis 

We have conducted intensive experiments and statistical tests to evaluate the performance of the 
proposed TPSO and compared it with several other algorithms. The experimental results disclose 
several interesting outcomes in addition to establishing the effectiveness of the proposed method. All 
the tests conducted is performed on a PC with a 2.7 GHz CPU and 8 GB RAM. All programs are 
coded in MATLAB scripts. 

3.1 Benchmark Functions and Parameter Selection 

We selected 13 benchmark functions to test the performance of TPSO and the expression of the 
benchmark functions can be referred to Tab. 1. A more detailed description of these functions can be 
found in the literature [22]. Moreover, we compared TPSO on global optimization problem with 7 
classical algorithms including ACO, BBO, DE, ES, GA, PSO and APSO. The former 6 algorithms 
are implemented by Gai-Ge Wang et al[23]. The APSO is proposed in Ref. [21]. 

The parameters of the former 6 algorithms are set to be the same as the parameters in Ref. [23]. 
The population size, problem dimension, maximum number of iterations and size of the reference set 
are 100, 20, 200, 10 respectively. In order to avoid random interference, all algorithms have been run 
for 100 times on each benchmark functions independently. It’s important to highlight that the initial 
particles are generated under randomly uniform distribution. 1c  and 2c  are set as: 1 20.8, 0.8tc c  . 

3.2 Results 

The mean optimum value and the minimum optimum value of the 8 algorithms are shown in Tab. 
2 and Tab. 3 respectively. In order to clearly distinguish the differences among the algorithms, all the 
results have been normalized according to the optimal results, and the data of the best performance 
algorithm is represented in black font. 

From Tab. 2 and Tab. 3, it is obvious that TPSO has the strongest search ability of finding the 
optimal value of the 14 benchmark functions. Tab. 2 shows that TPSO performs the best in mean 
optimal value on 8 of the best benchmark functions (F1-F4, F7, F9, F11, F13. BBO ranks three and 
performs the best on F5, F6 and F8. APSO performs the best on F7, F10 and F12. It is worth noting 
that the optimum value obtained by TPSO in the tests that TPSO did not rank best is not far behind 
other algorithms. The worst rank that TPSO get is 5(F8). Therefore, it is crystal clear that TPSO has 
a large advantage in optimization of traditional benchmark functions. Although APSO performs best 
on more functions than TPSO in Table 3, it achieves extremely poorer performance on particularly 
functions (F8) while TPSO looks more balanced, which can be proved by rank analysis in the latter 
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section. Table 3 indicates that APSO has stronger local search ability. However, limited exploration 
resulted in less stability.   

 
Table 1. Benchmark functions 

No. Name Definition 

F1 Ackely 2

1 1

1 1
( ) 20 exp( 0.2 ) exp( cos 2 ) 20

D D

i i
i i

f x x x e
D D


 

      

F2 Griewank 
2

1 1

1
( ) cos( ) 1

4000

DD
i

i
i i

x
f x x

i 

   
 

F3 Penalty #1 


1
2 2 2

1 +1
1

2

1

( ) 10sin ( ) ( 1) [1 10sin ( )]

( 1) ( ,10,100,4), 1 0.25( 1)

( )

( , , , ) 0

( )

n

i i
i

n

n i i i
i

m
i i

i i
m

i i

f x y y y
n

y u x y x

k x a x a

u x a k m a x a

k x a x a

  






    


     

  
   
    





 

F4 Penalty #2 



1
2 2 2

1 1
1

2 2

1

( ) 0.1 sin (3 ) ( 1) [1 sin (3 )]

( 1) [1 sin (2 )] ( ,5,100,4)

n

i i
i

n

n n i
i

f x x x x

x x u x

 










    


   




 

F5 Quartic noise  4

1

( ) ( ) (0,1)
D

i
i

f x i x randn


 
 

F6 Rastigin 
2

1

( ) 10cos 2 10
D

i i
i

f x x x


  
 

F7 Rosenbrock 
1

2 2 2
1

1

( ) 100( ) ( 1)
D

i i i
i

f x x x x





   
 

F8 Schwefel 2.26 
1/2

1

( ) 418.9829 sin( )
D

i i
i

f x D x x


  
 

F9 Schwefel 1.2 

2

1 1

( )
n i

j
i j

f x x
 

 
  

 
 

F10 Schwefel 2.22 
1 1

( )
nn

i i
i i

f x x x
 

  
F11 Schwefel 2.21  ( ) max ,1if x x i n  

F12 Sphere 
2

1

( )
n

i
i

f x x


 

F13 Step 
1

( ) 6
n

i
i

f x n x


    

3.3 Statistical Analysis and Convergence Behavior Analysis 

Rank analysis give us a normalized criterion to evaluate an algorithm. We ranked the mean 
optimization results of the eight algorithms on 13 benchmark functions to sort its performance 
according to its average rank. The individual ranks and average ranks of all the selected algorithms 
are given in Table 4. We can know that the TPSO achieved the top average rank and APSO achieved 
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the second top average rank. The results apparently indicate that TPSO has strong robustness and 
performs well over the diverse group of benchmark functions. 

 
Table 2. The mean optimum value of the algorithms 

FUN ACO BBO DE ES GA PSO APSO TPSO

F1 1591.11 353.87 79.23 2741.61 1911.08 2150.23 17.89 1.00 
F2 42.83 24.01 20.53 4236.46 140.26 1168.20 32.94 1.00 

F3 1.15E+10 47.36 83.04 3.07E+10 861.26 6.34E+08 946.97 1.00 

F4 2.80E+12 1.00E+05 5.27E+04 2.17E+13 1.68E+06 1.04E+12 1.26E+05 1.00 
F5 1.92 1.00 1.16 7.33 1.95 2.24 1.84 1.81 

F6 37.58 1.00 30.64 86.04 5.84 51.01 12.17 5.70 

F7 85.56 2.33 1.18 166.09 1.64 22.30 1.00 1.00 
F8 4.23 1.00 44.49 86.00 14.48 105.76 108.66 44.78 

F9 2.88E+04 7879.16 40984.32 8.52E+04 2.96E+04 4.59E+04 3.56 1.00 

F10 4311.01 98.96 30.59 1.84E+06 1977.96 3435.50 1.00 361.75
F11 6143.32 3876.18 2485.11 1.21E+04 7197.81 7877.95 156.24 1.00 

F12 2.93E+06 1.19E+04 433.92 1.71E+07 1.57E+05 3.50E+06 1.00 12.38 

F13 2.48 1.13 1.00 221.52 6.00 51.64 1.01 1.00 
 

Table 3. The minimum optimum value of the algorithms 
FUN ACO BBO DE ES GA PSO APSO TPSO 

F1 6.95E+00 1.57E+00 4.10E-01 1.81E+01 1.02E+01 1.32E+01 1.57E-03 5.05E-03 
F2 1.58E+00 1.10E+00 1.00E+00 1.56E+02 2.52E+00 3.94E+01 5.44E-01 4.00E-06 

F3 7.83E-03 4.40E-02 1.64E-01 4.30E+07 1.10E+00 3.72E+05 4.73E-01 7.39E-07 

F4 7.45E+00 4.03E-01 1.92E-01 1.23E+08 4.33E+00 3.52E+06 5.30E-07 4.53E-06 
F5 7.69E+00 4.67E+00 5.55E+00 2.17E+01 8.73E+00 9.57E+00 7.98E+00 7.07E+00

F6 9.37E+01 0.00E+00 7.52E+01 2.17E+02 2.83E+00 1.26E+02 1.29E+01 7.97E+00

F7 6.23E+02 1.19E+01 1.82E+01 1.74E+03 1.87E+01 2.11E+02 1.46E+01 1.14E+01
F8 8.19E+01 1.54E+01 1.47E+03 2.87E+03 1.53E+02 3.12E+03 3.24E+03 1.27E+03

F9 2.77E+03 3.90E+02 4.16E+03 8.80E+03 2.58E+03 4.54E+03 1.23E-05 3.31E-03 

F10 2.94E+01 4.00E-01 1.73E-01 8.61E+01 8.31E+00 1.98E+01 6.46E-03 1.96E-02 
F11 1.93E+01 6.20E+00 9.56E+00 5.35E+01 1.60E+01 3.25E+01 7.18E-04 3.29E-03 

F12 6.36E+00 2.02E-02 1.19E-03 5.78E+01 0.00E+00 1.22E+01 2.89E-06 3.26E-05 
F13 1.90E+02 1.24E+02 1.20E+02 2.28E+04 3.68E+02 4.79E+03 1.20E+02 1.20E+02

 
Table 4. The ranks for the mean optimum value of the 8 algorithms 

FUN ACO BBO DE ES GA PSO APSO TPSO 

F1 5 4 3 8 6 7 2 1 
F2 5 3 2 8 6 7 4 1 

F3 7 2 3 8 4 6 5 1 

F4 7 3 2 8 5 6 4 1 
F5 5 1 2 8 6 7 4 3 

F6 6 1 5 8 3 7 4 2 

F7 7 5 3 8 4 6 2 1 
F8 2 1 4 6 3 7 8 5 

F9 4 3 6 8 5 7 2 1 

F10 7 3 2 8 5 6 1 4 
F11 5 4 3 8 6 7 2 1 

F12 6 4 3 8 5 7 1 2 

F13 5 4 2 8 6 7 3 1 
AVE 5.46 2.92 3.08 7.85 4.92 6.69 3.23 1.85 
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Table 5. The time cost of the algorithms (s) 
FUN  ACO  BBO  DE  ES  GA  PSO  APSO  TPSO 

F1  5.686  3.194  4.162  2.988  3.68  5.954  0.183  0.404 

F2  21.644  4.566  4.395  3.113  3.795  6.081  0.193  0.404 

F3  6.912  3.776  5.54  3.67  4.263  6.54  0.206  0.403 

F4  6.827  3.714  5.392  3.549  4.171  6.445  0.169  0.387 

F5  4.706  3.53  4.765  3.309  3.924  6.27  0.247  0.454 

F6  4.202  3.359  4.882  3.35  4.016  6.28  0.152  0.399 

F7  4.326  3.613  5.043  3.445  4.073  6.416  0.104  0.312 

F8  19.872  4.7  4.764  3.348  4.031  6.317  0.216  0.403 

F9  9.776  5.875  8.313  5.296  5.802  7.979  0.142  0.355 

F10  4.224  3.108  4.112  2.923  3.611  5.849  0.166  0.39 

F11  8.498  3.651  4.71  3.315  3.949  6.231  0.137  0.35 

F12  4.132  3.297  4.559  3.179  3.85  6.083  0.136  0.346 

F13  8.244  3.468  4.418  3.122  3.719  5.957  0.099  0.308 

SUM  109.049  49.851  65.055  44.607  52.884  82.402  2.15  4.915 

 
Note that TPSO outperforms a few algorithms, TPSO costs less time than other algorithms except 

APSO. The time cost of each algorithm on 13 benchmark functions is recorded in Table 5. It is 
apparent that APSO and TPSO are at the same level compared with other algorithms. 

Convergence characteristic is the representative criterion of evaluating an algorithm and the 
convergence characteristic of the 8 algorithms is shown on Fig. 4(a)-(l). The convergence curve of 
F5 is not present due to its noise interference and hence resulting oscillations. Each figure expresses 
a convergence curve of a benchmark function and different algorithms are represented by variable 
line-style. The horizontal coordinate represents the number of iterations, and the ordinate represents 
the optimal function value on the current iteration number. Each point in the convergence curve is 
averaged by times of independent tests. From the figures, we can guarantee the local convergence of 
the TPSO as it always converges to a local extremum point. While the global convergence of TPSO 
can’t be proved strictly, it has more accuracy than existing algorithms. Moreover, TPSO has the fast 
convergence speed on three benchmark functions (F2-F4). And TPSP has convergence rate of the 
same magnitude as APSO. Due to its wide search space, TPSO converges more slowly than APSO 
in the beginning until APSO is trapped into local optimum. 
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        (c) F3      (d) F4 
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        (k) F11      (l) F12 

Figure 4. The convergence line graphs of 12 benchmark functions (the Quartic noise function 
(F5) is ignored due to instability brought by noise) 

4. Engineering Benchmark 

In this section, the path planning problem of UAV is solved as a benchmark to demonstrate the 
capability of the TPSO. The path planning problem is a complex Np-hard engineering problem. 

Assume that UAV flies from start point S to target point T. The feasible path consists of N 
waypoints and two endpoints. It can be expressed as  1 2ath= , , , ... ,NP S P P P T , where 1 2, ,..., Nx P P P  

is the coordinate sequence of the waypoints. Find the optimal sequence is the objective of the path 
planning problem. 

The cost function is applied to evaluate the feasible paths’ quality. It is determined by two indexes: 
overall length L and threat degree P .Overall length represents fuel consumption and threat degree 
represents probability of failure in flight process. The cost function is calculated by: 

 
 1 2= +J L P                        (11) 

 

1  and 2  are weight parameters determined by the user. In this paper, they are set as 1=1 ,

2 =100 . 

       
(a) Simulation Map (b) Comparison of two algorithms 

 

0 50 100 150 200 250

Number of generations

0

20

40

60

80

100

be
nc

hm
ar

k 
fu

nc
tio

n 
va

lu
e

Sphere

ACO
BBO
DE
ES
GA
PSO
APSO
TPSO

0 50 100 150 200 250

Number of generations

102

103

104

105

be
nc

hm
ar

k 
fu

nc
tio

n 
va

lu
e

Step

ACO
BBO
DE
ES
GA
PSO
APSO
TPSO

Advances in Computer Science Research, volume 87

399



 

 
(c)  

Figure 5. The visual simulation result and convergence characteristic curve of PSO and TPSO 
 

The map construction method in Ref. [24] is introduced. The simulation map is shown on Fig. 5(a). 
The map is set as a 100×100 area. The intensity of the color represents the magnitude of threat degree. 
The more yellow area represents the bigger threat degree and the UAV is less likely to fly through.  

The result paths calculated by PSO and TPSO are shown on Fig. 5(b). The white curve represents 
the path optimized by TPSO while the red curve represents the path optimized by PSO. Fig. 5(c) 
shows the convergence characteristic during the optimization process. The path length and threat 
degree of the two algorithms are given in the Tab. 6. It is clear that TPSO can obtain less path length, 
threat degree and consequently less cost function comparing with PSO. The application of TPSO in 
path planning problem efficiently illustrates the strong capability of TPSO in solving engineering 
problems. 

 
Table 6. The optimization criterion comparison between PSO and TPSO 

Algorithm Path length Threat degree Cost function value 

PSO 540.3 0.173 557.6508 

TPSO 536.7 0.147 551.5266 

5. Summary 

The paper proposed a modified PSO based on t-distribution stochastic process (TPSO) which 
substitutes normal stochastic process in basic PSO with t-distribution stochastic process. 
Subsequently the concept of reference set was introduced. There are two main ways to improve the 
performance of meta-heuristic algorithms: intensification and diversification. TPSO adapts the 
strategy of improving diversity of Metaheuristics by introducing t-distribution stochastic process and 
reference set and avoid decreasing intensify by eliminating self- recognition of PSO. 

To validate the performance of TPSO, we used TPSO to solve 13 unconstrained benchmark 
functions and compared it with 7 classical metaheuristic algorithms. The results show that TPSO has 
more powerful efficiency than other algorithms. The paper also analyzed convergence characteristics 
of TPSO. Finally, TPSO was applied on the path planning problem of UAV to demonstrate the solving 
ability of TPSO. 
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