

An Automatic Testing Method for GUI Using the Framework of
Three-Layer Test Script

Maosheng Huang a, * and Letian Zeng b
Software Quality Engineering Research Center, The fifth electronic research institute of MIIT,

Guangzhou, 510610, China.
a, * huangms@ceprei.com, bzengletian@ceprei.com

Abstract. To reduce the maintenance workload of test script and implement a prompt multi-version
regression tests, this paper proposes a novel automatic testing method for GUI based on three-layer
script and gives the detailed implementation steps, among which the three-layer script includes
reusable script, object mapping script and test script. This method makes it possible for the
development and test to be carried out in parallel to obtain a rapid iteration for the software.
Meanwhile, it can dramatically improve the reusable ration of the test script and effectively implement
the reuse of test script under the condition of multi-project and multi-version, which can be regarded
as an effective method of improving the test success rate and investment-return rate for automatic
software testing. Experiments are presented to demonstrate the feasibility and simplicity of the
proposed method.

Keywords: Automatic Software Testing; Three-Layer Test Script; Framework; Data-Driven.

1. Introduction

With a larger scale and more complex structure for the software, the amount of software testing
work is growing rapidly. While more time is required for the software testing, the delivery cycle of
the project is much shorter than before [1]. Moreover, a great deal of repeated work for the regression
testing has become a necessity when it comes to the applications of agile development techniques and
the prompt iterations of the software. Manual testing cannot satisfy the requirement of regression
testing for graphical user interface (GUI), but automatic testing is an effective way to solve this
problem.

In recent years, a lot of organizations paid attention to automatic software testing, however, 80%
of the automatic testing trials has failed [2-4]. Therein, one of the main reasons for these failures is
that the more modifications of the software requirements with prompt substitutions for different
software versions, the more workload for repeated regression testing, which will result in a deep
decrease of the return on investment ratio for automatic testing. To deal with this problem, a novel
automatic testing method for GUI is proposed using the three-layer script framework, which is
consisted of reusable layer (Layer1), testing script (Layer2) and GUI mapping script (Layer3),
respectively.

2. Automatic Test Framework of GUI

2.1 Design of Test Script Framework

The automatic testing script framework for GUI is illustrated in Fig. 1, which is consisted of
reusable script (Layer 1), test script (Layer 2) and GUI mapping script (Layer 3). The role and
assignment of the scripts in each layer are depicted in Table 1.

3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)

Copyright © 2019, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Computer Science Research, volume 87

423

Figure 1. GUI automatic test framework for three-layer script

1)Reusable script (Layer1)
As an underlying script, the reusable script can be shared not only in different GUI for a single

project, but also among various projects. For common operations like text recording, menu selection
and list box content selection, a universal script, GUI widget ID and associated operation data
(clicking, input, pitching on) can be designed as input parameters of the script for each kind of
operation, respectively. Generally, the reusable script can be classified as operation script, input script
and validation script. It can be specially developed the automatic testing engineers in advance and
merged into a reusable script library for diverse GUI testing scripts [5,6].

2)Test script (Layer 2)
The test script is composed of several reusable scripts (Layer1) which is according to specific

business processes or operation procedures. Also, it is a scripted implementation of operation
procedures of the test cases and tested input data. By calling reusable script (Layer1) and GUI
mapping script (Layer3), the test script can carry out automatic testing by controlling the software,
inputting tested data, validating the tested execution result

Advances in Computer Science Research, volume 87

424

Table 1. Role assignment of three-layer script
Script Definition Script Application

Reusable
Script

(Layer1)

As the underlying script, the reusable
script can be classified as operation
script, input script, validation script

and so on. Also, the reusable script is
mainly used to implement some

common testing operation, such as text
recording, menu selection, list box
content selection, button click and

validation for expected output.

Due to the fact that the utilization and
testing for all software are the

combinations of these basic operations, the
reusable script is consistent among

different projects. However, the only
difference is that the tested data used are
read from diverse data files. Therefore,
these scripts can be shared in different

projects, which can dramatically reduce the
workload of the script maintenance via

decreasing the number of the script with a
sharing method.

Test Script
(Layer2)

By calling reusable script and object,
the test script can map the script,

control software, input the test data
and validate the testing result.

Aiming at specific script for tested
software project, the test script carries out
the testing for specific function points and

business function. The main functions
include the following steps: reading tested

data from the test data file, calling the
reusable script as well as the object

mapping script, importing these data to
specific object of the tested software,

validating the coincidence of the tested
results and the expected results, recording

the Log and Bug.

GUI
Mapping

Script
(Layer3)

The GUI mapping script implements
the mapping connections between the
GUI object logic name and the real
GUI object of the tested software.

GUI mapping script is the key of automatic
software testing and makes it possible for

test engineers and automatic test script
developers to work in parallel,

implementing the synchronization of test
development and software development.

Finally, GUI is employed to map the script.

3)GUI mapping script (Layer 3)
The GUI mapping script (Layer3) is generated by the mapping between the interface abstraction

information and the recorded object recognition script via GUI object and object ID. It constructs the
mapping relationship of the application GUI interface object for the submitting test and the interface
abstraction information from expected test cases. Also, it can provide the relevance mapping of
executing test cases and inputting tested data for test script (Layer2), implementing a data-driven
automatic testing.

2.2 Implementation of Test Script Framework

Software testing model is the framework for software testing work and can be employed to instruct
the software testing process. It is a significant assurance for guaranteeing the quality and effectiveness
of the testing [7-9]. Common testing models contain V model, W model and so on [8], in which GUI
testing is the main work during the system testing stage and the acceptance testing stage [7,9], as
illustrated in Fig. 2 and Fig. 3. Besides, the GUI automatic testing framework based on three-layer

Advances in Computer Science Research, volume 87

425

script can be seamlessly matched with common software testing process models, such as V model
and W model.

Figure 2. V model for software testing

In accordance with the design of the GUI automatic testing framework, software development,

software testing, automatic testing design make an agreement on the abstraction for the GUI object
of the tested object so that they can advance work in parallel during the stages of requirement and
preliminary design within V model and W model. On the basis of software requirement specification
and design interpretation document, developers design the software and encode and the testing
engineers carry out test design, designing test cases and test data. Meanwhile, the automatic testing
engineers do the designing work of test script and reusable script. Since the tested objects are
submitted to execute the system testing and the regression testing, the automatic testing engineers
recognize ID by recording GUI objects, construct the mapping among object IDs of the interface
abstractions. So, the mapping relationship is built between the logic name of the interface object and
real interface object of the tested software, as illustrated in Fig. 1. Also, the automatic testing
executions and the expected results are compared. The implementation of GUI automatic testing
framework is irrelevant to specific testing tools and applicable to common automatic testing tools,
such as Winrunner, Robot and son on. The test process model stage and the role assignment
implemented by GUI automatic testing framework are shown in Table 2.

Figure 3. W model for software testing

Advances in Computer Science Research, volume 87

426

Table 2. Role assignment comparison table for test process model stage and GUI automatic test
framework

Test Process
Model Stage

Role Work Content and Achievement
Results

Application
GUI Automatic
Test Framework

Requirement
Analysis

Requirement
Analysis

Determining the input, output and
their corresponding flags

Test Design

Test Execution
Designing test cases and

determining the operation steps,
input data as well as output data

Script Design
Test Data

(Test Case)

Script Design
Scripting test cases and generating

test script
Test Execution Test Script

Design and
Coding

Software
Development

Developing and coding

Test Execution

Going on designing test cases and
determining steps for test

operations, input data and output
data

Script Design
Test Data

(Test Case)

Script Design

Going on scripting test cases and
generating scripts; adding reuse
script design of specified type

according to GUI design

Test Execution
Test Script

Reusable Script

System Test and
Acceptance Test

Software
Development

Submitting the tested application Test Execution

Test Execution Adding more test cases Script Design
Test Data

(Test Case)

Script Design

Recording GUI object script,
designing object mapping script,
combining test script designed

before with tested object

Test Execution
GUI Mapping

Script

3. Implementation Process

The flowchart of GUI automatic testing framework mainly includes six stages, which are listed in
the following as Fig. 4 shows: object abstraction and convention for interface input; test case design;
test script design; data-driven implementation; recognition, recording and mapping for interface
object; test execution and regression test.

Figure 4. Automatic testing flowchart for GUI

Advances in Computer Science Research, volume 87

427

3.1 Object Abstraction and Convention for Interface Input

Since the (software requirement specification) achieved by analysing the requirement, software
developer, testing engineers and automatic script design engineers come to an agreement with GUI
object ID of the received input object by extracting the data content of the software program according
to business and function requirement. Then, testing engineers design the test cases and the automatic
script design engineers make use of the agreed logic name of the interface object to write the test
script. Finally, the test cases and the test script are correlated into an organic automatic testing script
set via GUI object mapping script.

3.2 Test Case Design

According to the aforementioned abstractions and the conventions, testing engineers edit the tested
data, containing tested input data and expected results, with the agreed data recognition format and
order. At last, operation steps and tested data make up the test cases.

3.3 Test Script Design

The script includes the reusable script and the tested script. Generally, the reusable script can be
classified into operation script, input script as well as validation script. As the underlying script, the
reusable script is mainly used to carry out some common test operations, such as text content
recording, menu selection and list box content selection, button click and validation for expected
output. It is a kind of universal script which can be applied in many projects. Therefore, the reusable
script library can be called and extended to satisfy the requirements of the specific project. For the
customized test script of the project, the automatic script design engineers give the test script of the
test cases designed by testing engineers on the basis of the agreed logic names of the interface object
as well as the storage variable ID of the input data.

3.4 Data-driven Implementation

The aim of data-driven implementation is to separate the script from the data, making it possible
for a script to test several groups of the tested data, improving the flexibility and reuse degree [10,
11] of the tested script. Several test cases can share one and the same test script by the following steps:
testing engineers isolating the operation steps of the test cases and the tested data; automatic script
design engineers using the variables to replace the inputs of the script; recording the values of the
variables from the associated data files.

3.5 Recognition, Recording and Mapping for Interface Object

When the program is developed and submitted to be tested, the interface object is recognized via
the recording function of the testing tools, extracting the recognition identifier of the program
interface object in the recording script. Hence, the mapping relationship is constructed between the
logic name and the recognition identifier of the interface object within the recording script. That is,
the recognition identification of the interface object and the logic name of the above-determined
interface object can be correlated by the testing tools. The correlated content is included in the
execution script. The test cases, automatic test script, drive data and application object can be
correlated into an organic integrity. At the moment, an automatic testing set comes into being.

3.6 Test Execution and Regression Testing

After constructing the test environment, the testing engineers begin to execute the automatic test
cases, analyse the result data and fix the bugs. During the regression test, new test case set should be
added if novel requirements exist. But for the situation that the position and the order of GUI change,
only interface object recognition recording and mapping should be carried out again so that the
original automatic testing set can be executed to achieve a prompt regression test.

Advances in Computer Science Research, volume 87

428

4. Verification by Experiments

In this part, a mobile app of office automation (OA) system is tried out to validate the feasibility
of the proposed method. In this OA system, a large number of approval processes are needed, as
depicted in Fig. 5, and the process will adjust itself with different management requirement. During
the requirement analysis and preliminary design stages of the testing and validation, the reusable
scripts are designed for the GUI elements that the OA system used, such as Button_Click(name),
List_Select(name), Text_input (name, text), DateTimePicker(name) and Text_Check (name,
checkValue). For example, the operational GUI elements contain button, Check button, scroll bar and
menu and the input GUI elements include textbox, list box, tree view, list view and combo box.
Secondly, the reusable validation script, like Button_Check(name,checkValue) and Text_Check
(name, checkValue), is established via the ways of test case expected result validation, such as textual
value comparison, figure comparison. In detailed design and coding stage, testing engineers design
test cases and developers script the test cases in parallel. At the end of the development, the OA
system is submitted to be tested to construct the relationships between script and real GUI interface
by recording the script and to execute the test.

Start Time

End Time

Remarks

Reason for Use Reception

615Meeting Room

User Department

Applicant

Marketing Depart

Chen JianQiang

MoreMeeting Room

SubmitSubmit Submit

Applicant

Applied Department

Seal Applied

Sended Department

Copies

Reason for Seal

Interpretations

Picture

MoreSeal Applica

Money(¥)

Reason

Applicant

Department

More

Payee

Expenditure Project Number

Loan Order Number

Borrowing/Refund

Borrowing/Ref

(1) Sealing Application Interface (2) Meeting Room Application Interface (3) Loan Application

Interface
Figure 5. Tested Application GUI Interface

In Table 3 and Table 4, we can see that most of the reusable scripts can not only be directly applied

and effectively called in different GUI testing for a single project since they are developed, but also
be shared in across-project condition. During three-round regression testing, the modification rate of
the test script and the interface object mapping script are less than 15% and will be going down with
the regression testing. In addition, the reuse rate of the reusable script is more than 98%. With the
proposed GUI automatic testing method using three-layer script framework, this OA system saves
37.4% time compared with that consumed by manual testing, implementing an unattended daily build
and test and dramatically decreasing the cycle of the system testing of the whole project.

Advances in Computer Science Research, volume 87

429

Table 3. Sharing rates for reusable script with different GUI interfaces

Tested
Application GUI

Interface

Input/Operation
Number

Quantity used
(Reusable Script)

Sharing
Number

(Reusable
Script)

Sharing
Rate

Sealing Application
Interface for Sealing

7 4 4 100%

Meeting Room
Application Interface

7 5 4 80%

Loan Application
Interface

8 4 4 100%

Table 4. Modification rate and reusability rate for scripts with different regressive editions

Edition
Modification Rate

(Test Script)
Modification Rate (Mapping
Script of Interface Object)

Reusability Rate
(Reusable Script)

Regressive
Edition 1

14.73% 9.12% 98.2%

Regressive
Edition 2

10.36% 6.2% 98.7%

Regressive
Edition 3

5.85% 3.5% 99.1%

5. Conclusion

Automatic testing method for GUI based on three-layer script framework not only fuses the
advantages of main-current test automation framework, such as the data-driven testing framework,
the keyword-driven or table-driven testing framework, the test library architecture framework, the
test script modularity framework. Also, it avoids their disadvantages. The universality and flexibility
for testing script are implemented via constructing large amount of reusable script libraries and
utilizing data-driven or GUI mapping script, which can dramatically reduce the number of testing
scripts, workload for maintenance and probability of success for automatic testing. Since the software
requirement is determined, the proposed method makes it possible for engineers to carry out test case
design and automation test script design in parallel. Moreover, with the separation of test automation
and test design, the advantages of different testers and designers are utilized to make full use of so
that the resources are rationally assigned under the condition of a shorter cycle of the project.

References

[1]. X. Y. Ma, Q. Chen, Q. R. Si. Research on Testing Case Reuse Technology of Telemetry Software
[J]. Modern Electronics Technique, 2015, 38(16): 29-33.

[2]. B. Lipika and T. Sanjeev, “GRAFT: Generic & Reusable Automation Framework for Agile
Testing”, in IEEE 2014 5th International Conference-Confluence the Next Generation
Information Technology Summit, edited by P. K. Singh. (Noida, India, 2014), pp. 761–766.

[3]. P. H. Jiangg, J. M. Xu. Web Application Testing Framework Based on MVC Model and Behavior
Description [J]. Modern Electronics Technique, 2017, 40(6): 71-74.

[4]. R. N. Dang, J. Chen. Research and Implementation of Web Automation Framework Based on
Keyword-driven [J]. Industrial Control Computer, 2017, 30(09): 46-47.

[5]. W. X. Zhang. Constructing Maintainable Script Technique in Software Testing Automation [J].
Electronic Technology & Software Engineering, 2017, (24):62.

Advances in Computer Science Research, volume 87

430

[6]. J. Y. Yao. Analysis on Script Technique in Software Testing Automation [J]. China New
Communication, 2018, 20(08):165-166.

[7]. K. Liu, X. Liang, J. P. Zhang. Research upon Software Testing Process Model [J]. Computer
Science, 2018, 45(11A): 518-521.

[8]. Y. M. Yan. Research of Software Testing Process Model Based on Workflow [J]. Computer
Engineering & Software, 2018, 39(05): 160-165.

[9]. J. Itkonen M. Mantyla, C. Lassenius. The Role of The Tester's Knowledge in Exploratory
Software Testing [J]. IEEE Transactions on Software Engineering, 2013, 39(5): 707-724.

[10]. X. Mo, F. Zhao. Data-model-driven Software Automation Test Framework [J]. Computer
Engineering, 2009, 35(21): 78-81.

[11]. J. J. Huang, Y. M. Li, J. Liu, H. Zhou. Design and Implementation of Automatic Testing
System Based on Python [J]. Modern Electronics Technique, 2017, 40(04): 39-43.

Advances in Computer Science Research, volume 87

431

