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Abstract. In order to study the variational mode decomposition (VMD) algorithm for the analysis of 
acoustic signal characteristics of underwater plasma sound source pulse discharge, a simulation 
model of central control module is established by using VMD algorithm. The whole hardware circuit 
takes the FPGA (Field Programmable Gate Array) chip as the intelligent control center of the central 
control module, and combining with the minimum composed of basic power supply circuit, clock 
circuit, reset circuit and configuration circuit, the model is used to analyze the characteristics of 
acoustic signals. The results show that the uncertainties of these parameters also affect the 
performance of VMD. In VMD decomposition, the smaller the equilibrium constraint parameters are, 
the larger the bandwidth of each modal component is, the more likely the phenomenon of center 
frequency overlap and mode aliasing will occur. The larger the equilibrium constraint parameters are, 
the smaller the bandwidth of each component signal will be, and the phenomenon of center 
frequency overlap and mode aliasing will disappear. Through analysis, it is proposed that the general 
equilibrium constraint parameters can be taken as sampling frequency fs in practice. The acoustic 
signal of VMD applied to underwater plasma sound source pulse discharge is analyzed, and the 
results are as expected. It provides a theoretical basis and practical basis for its application in 
underwater plasma acoustic signal characteristics analysis. This is of great significance to the study 
of VMD as an underwater plasma source for the analysis of acoustic signal characteristics of pulse 
discharge. 
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1. Introduction 

Underwater plasma sources are easy to control, convenient to carry, and have high sound levels. 
In recent years, with the increasing strategic significance of the ocean and the increasing demand of 
the world for the development of marine resources, countries around the world have begun to invest 
a lot of manpower and material resources to research and develop high-power underwater pulsed 
sound sources. High-power pulsed sound source with good performance can not only be used in 
seismic exploration, deep well geophysical exploration and rock drilling, but also meet the application 
requirements of underwater remote communication, underwater instrument remote control, sea 
surveillance, and naval military confrontation [1].  

The characteristics of the acoustic signal produced by underwater high voltage discharge are 
narrow pulse width, wide frequency band and quick mutation. Since the structure of the signal itself 
and its spectrum are time-varying, the Fourier transform, which is good at analyzing periodic or quasi-
periodic signals, does not apply. Therefore, it is necessary to find another method to process such 
pulse signals. On the basis of obtaining acoustic signals of underwater plasma sound source, this 
paper will explore the application of variational mode decomposition in underwater plasma sound 
source acoustic signal analysis, and provide reference for underwater high voltage pulse discharge 
feature extraction.  

Variational mode decomposition (VMD) is a new adaptive signal processing method [2]. It 
assumes that each eigenmode function has a finite bandwidth with different central frequencies. In 
order to minimize the sum of estimated bandwidth of each eigenmode function, the variational 
problem is solved by conversion. The eigenmode functions are demodulated to the corresponding 
baseband, and the eigenmode functions and corresponding central frequency are finally extracted [3]. 
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In view of the above findings, the application of VMD algorithm to underwater plasma acoustic 
signal characteristic analysis has become a research hotspot of scholars all over the world, but it is 
only a trend, and there are still great limitations if it is implemented. The model is built based on 
VMD algorithm and applied to underwater plasma acoustic signal characteristics analysis. Finally, 
the data integration is realized, the utilization of data information is improved, and the development 
process is promoted. 

2. Literature Review 

There are numerous studies on the application of the algorithm to underwater plasma acoustic 
signal analysis at home and abroad. Pei of Nanjing university of science and technology reward used 
Mallat algorithm, the discrete wavelet transform is adopted to underwater explosion signals are 
analyzed in layered extraction, continuously discussed continuous underwater explosion signals in 
each frequency band energy distribution, Welch method was adopted to realize the continuous 
explosion signal power spectrum feature extraction of underwater, and uses the discrete wavelet 
transform spectrum characteristics of acoustic signal analysis[4]; Sheng zhenxin analyzed the 
underwater continuous explosion signals with the combination of wavelet transform, energy statistics 
and power spectrum estimation, and the results showed that the energy of the two groups of 
underwater continuous explosion signals with a time interval of and was the same within. Within a 
certain time interval, the energy of continuous underwater explosion signal with time interval is larger 
than that of continuous underwater explosion signal with time interval. Then, the underwater 
continuous explosion signal is processed and analyzed by using transform[5]. According to the 
interference of different frequency bands of wideband sound source signals, Wen Hongtao adopted 
the filtering algorithm of adjacent scale correlation for the small scale high frequency wavelet 
coefficients with high signal-to-noise. For the large scale wavelet coefficients with low SNR, the 
cross-scale correlation filtering algorithm is adopted, and the selection method of threshold 
coefficient in the algorithm is modified. It is proved that the wavelet algorithm is suitable for 
wideband underwater acoustic signal processing under narrow band strong background noise[6]. 
Kang Jiaxing has deeply studied the basic principle of VMD, and compared one-dimensional and 
two-dimensional VMD with one-dimensional and two-dimensional EMD by processing theoretical 
data and actual seismic data. In parameter selection, decomposition accuracy, noise resistance and 
other aspects of the similarities and differences and the advantages and disadvantages of related 
algorithms. The results show that VMD is superior to EMD in both decomposition accuracy and noise 
resistance. However, VMD fails to effectively improve the endpoint effect in EMD, and there are 
certain human factors in the selection of parameters in VMD. The above problems still need to be 
further studied[7]. Chen Lijun proposed a new time-frequency analysis method based on variational 
mode decomposition (VMD) and Hilbert spectrum analysis (HSA) for the detection and parameter 
estimation of acoustic frequency hopping signals under the condition of low SNR in underwater 
acoustic communication. VMD is a newly developed adaptive signal decomposition technique, which 
can decompose multi-component signals into many quasi-orthogonal intrinsic mode functions 
completely without recursion. Firstly, the VMD algorithm is analyzed, and then the HSA method is 
briefly introduced. Finally, the method combining VMD and HSA is applied to the analysis of 
underwater acoustic frequency hopping signals. The numerical simulation results show that the 
proposed method can obtain high resolution and high aggregation time-frequency graphs[8]. 

In 2016, Sachin Gupta et al. used high-speed three-dimensional digital image correlation (DIC) 
experiments to study the fluid-structure interaction during confined implosion. The results show that 
the collapse of the explosive body in the enclosure will cause the strong oscillation of water hammer 
wave. The study also shows that the increase of collapse pressure will lead to faster implosion. With 
the increase of collapse pressure, the peak velocity and average velocity of the structure increase 
linearly. Finally, a single-degree-of-freedom theoretical model is established to predict the pulse 
pressure scheme of the research problem [9]. In 2017, Zettergren et al. used the numerical model of 
ionospheric-neutral coupling to study the disturbances of plasma density, vertical integral total 
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electron content (TEC), neutral velocity and neutral temperature produced by the initial ocean surface 
displacement caused by strong seabed earthquakes. Finally, the TEC perturbation obtained from the 
case study seems to be consistent with the observed data, reproducing obvious TEC losses, which 
have been proved to be the result of the influence of non-linear dissipative acoustic waves [10]. 
Sylvain Amailland et al. studied the decomposition of trans-spectral matrix based on wall pressure in 
2018, using the low rank of trans-spectral matrix and the sparsity of BLN-type trans-spectral matrix 
to analyze the characteristics of acoustic signals. The results show that this method can effectively 
reduce the BLN of large hydrodynamic tunnels [11]; Peter Harris et al. studied a statistical method 
for long-term trend analysis and uncertainty evaluation of the estimated trend in 2019, and finally 
verified the uncertainty by bootstrap resampling. The experimental results show that the sound 
pressure level decreases significantly after using this method [12]. 

3. Method 

3.1 Key Technology 

VMD is the latest proposed in 2014. Signal estimation method is essentially different from the 
layer-by-layer filtering mode adopted by recursive mode decomposition (EMD, LMD) [13]. Its 
overall framework is the solution of variational problems, and has a solid theoretical foundation. 

Within two years, VMD has been applied in many fields, such as machinery, power, medicine, 
economy and so on. However, plasma discharge in water is different from general rotating machinery, 
and it has the characteristics of complex and changeable working conditions, low speed and variable 
speed. At present, there is no report on the application and research of VMD in underwater acoustic 
field. It is introduced into the acoustic signal characteristic analysis of underwater plasma sound 
source pulse discharge. Underwater plasma sound source is a technology of plasma discharge in water 
or pulsed discharges in water. An important application of underwater acoustics and seismic 
exploration technology is also called sparker. 

In the VMD algorithm, the intrinsic mode function (IMF) is defined as an AM (amplitude 
modulation)-FM (frequency modulation) signal whose expression is: 

 

( ) ( ) cos( ( ))k k ku t A t t                                (1) 

 
In Formula (1): Ak(t) is the instantaneous amplitude of uk(t) and Wk(t) is the instantaneous 

frequency of uk(t): 
( )

( ) ( )k k

d t
w t t

dt

                                  (2) 

 
Ak(t) and wk(t) are slowly varying relative to the ψk(t), i.e., within the interval of [t-δ, t+δ] (where 

δ= 2π/φk(t)), uk(t) can be regarded as a harmonic signal with an amplitude of Ak(t) and a frequency 
of wk(t). 

3.2 Experimental Model 

The underwater plasma acoustic source system is designed according to the VMD algorithm. 
Finally, the following model is designed. As the control core of the whole underwater plasma sound 
source control platform, the central control module is mainly responsible for charging voltage control, 
feedback voltage acquisition, charging speed (current) control, feedback speed (current) acquisition, 
charging full feedback signal acquisition, and switch trigger pulse generation. The main central 
control module can be designed separately or embedded in the sub-central control module, and the 
second design method is chosen here. The central control module designed can be used as both the 
main central control module and the sub-central control module. 
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Figure. 1 Structural block diagram of central control module 

 
According to the functional requirements of the central control module, the structure of the central 

control module is shown in Figure 1. The whole hardware circuit takes the FPGA chip as the 
intelligent control center of the central control module, and combines with the basic power supply 
circuit, clock circuit, reset circuit and configuration circuit to form a typical minimal system. The 
system needs to be responsible for the setting of charging voltage and charging speed (current) in the 
three-way charging and discharging circuit at the same time. It also needs to monitor the changes of 
voltage and current and the feedback signals such as charging full in real time. Therefore, 6-way 
digital-to-analog converter circuit and 9-way analog-to-digital converter circuit are used for parallel 
output and input in the design. Another important task of the system is to precisely control the 
triggering and discharging time of each sound source. According to the specific triggering mode, the 
central processing unit (CPU) FPGA generates the triggering pulse signal of the switch through the 
precise logic sequential circuit, and finally outputs it to the corresponding interface. In order to realize 
real intelligent control, human-computer interaction interface is essential. The system uses traditional 
serial communication to realize data exchange between central control module and host computer 
display and control software. In the design of the hardware structure of the control platform, the idea 
of one master and three slaves is adopted. In order to facilitate data exchange and hardware wiring, 
the communication mode between the main central control module and the sub-central control module 
is SPI (Serial Peripheral Interface) serial synchronous bus communication with high transmission 
performance. 

4. Results and Discussion 

The results of the simulation model are analyzed, and in terms of the simulation signals: 

1 2 3( ) ( ) ( ) ( )x t x t x t x t   : 

1( ) cos(4* * )x t t                                 (3) 

 

2 ( ) 1/ 4*cos(48* * )x t t                              (4) 

 

3( ) 1/16*cos(576* * )x t t                             (5) 

 
The simulation signal x(t) is decomposed by VMD. The simulation signal and its VMD 

decomposition diagram are shown in Figure 2. 
After VMD decomposition, the three modal components of the simulation signal are recorded as 

ul, u2 and u3, respectively. ul, u2 and u3 correspond to x1, x2 and x3 in the input signal respectively. 
Comparing the modal components ul, u2, u3 and u (u = u1 + u2 + u3) decomposed by VMD with x1, 
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x2, x3 and x in the input signal, as shown in Figure 2, it can be seen that u, ul, u2, u3 are similar to x, 
x1, x2 and x3 in magnitude and frequency, respectively. 

t  
Figure. 2 Simulation signal and VMD decomposition 

 
Furthermore, the spectrum distribution of the input signal (Figure 3) and the decomposed modal 

signals (Figure 4) are drawn. From the comparison between Figure 3 and Figure 4, it can be seen that 
the decomposed three modes are in good agreement with the frequency of the original signal in the 
frequency range. 
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Figure. 3 The frequency spectrum distribution of the input signal 
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Figure. 4 The mode signal spectrum with VMD 

 
Continue to use the periodic simulation signal of the above model, sampling frequency is fs = 

1000Hz, K = 3; take a = 1/8fs, 1/4fs, 1/2fs, fs, 2fs, respectively, to make the central frequency curve 
under different a value and the spectrum distribution of each mode signal after VMD decomposition. 
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Figure. 5 The change of center frequency under a=1/8fs, 1/4fs, 1/2fs, fs, 2fs, and 4fs 

 

Figure. 6 The modal signal spectrum distribution under a=1/8fs, 1/4fs, 1/2fs, fs, 2fs, and 4fs 
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It can be seen from the central frequency change curve (Figure 5) under different a value and the 
spectrum distribution of each mode signal after VMD decomposition (Figure 6), when a = 1/8fs and 
1/4fs, the phenomenon of center frequency overlap can be seen from the central frequency change 
curve. The phenomenon of mode overlap can also be seen in the spectrum distribution of each mode 
signal. With the increase of a value, a = 1/2fs, fs and 2fs are selected. In VMD process, the 
phenomenon of overlapping central frequencies disappears, and the phenomenon of mode aliasing 
will not appear in the frequency spectrum of each mode signal. 

5. Conclusion 

Based on the above model analysis data, it can be seen that there is no theoretical guidance for the 
selection of some key parameters in VMD: the selection of decomposition mode number and the 
determination of equilibrium constraints parameters, and the uncertainty of these parameters will also 
affect the performance of VMD. Through the analysis of simulation examples, it is proposed that the 
correlation between each mode after VMD decomposition and the original signal is the most 
important guidance. The smaller the equilibrium constraint parameter is, the larger the bandwidth of 
each modal component is, and the more likely the phenomenon of center frequency overlap and mode 
aliasing will occur. The larger the equilibrium constraint parameter is, the smaller the bandwidth of 
each component signal will be, and the phenomenon of center frequency overlap and mode aliasing 
will disappear. Through analysis, it is proposed that the general equilibrium constraint parameter can 
be taken as sample frequency fs in practice. 

In conclusion, the application of VMD algorithm to the acoustic signal characteristics of 
underwater plasma acoustic source pulse discharge is in line with the expectations, and the analysis 
of its acoustic signal characteristics is indeed enhanced. The algorithm for analyzing the acoustic 
signal characteristics of underwater plasma sound source pulse discharge is discussed, which can be 
used as a reference for the future development. 
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