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Abstract. In SaaS (Software-as-a-Service) systems, the database is typically implemented using 
the Universal Table Layout schema-mapping technique, in which all tenant data is mapped to a table, 
thus valid indexes cannot be created directly in the table. To enable to create valid indexes directly 
in the table, this paper proposes a new table structure for better database performance. In this paper, 
the experiments are designed to verify the conclusions of this paper. The experimental results show 
that the table structure of this paper can obtain better database performance.  
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1. Introduction  

In the SaaS (Software as a Service) system [1], the management of the application is the 
responsibility of the service provider. Tenants only need to use the provided service remotely through 
the network [2]. Tenants do not need to develop and maintain their own system, which greatly reduces 
the overall cost. Due to the low cost of using the SaaS system, more and more SMEs (Small and 
Medium-Sized Enterprises) are attracted. IDC estimates that SaaS service fees in the global market 
reached $3.98 billion in 2006 and $14.5 billion in 2011, with a compound annual growth rate of 30% 
[3]. The rapid growth of SaaS services has had a considerable impact on the software market [4]. 

The SaaS system aims to reduce the cost of tenant through economies of scale. The multi-tenant 
structure can minimize the overall cost of the SaaS system. In a multi-tenant structure, multi-tenant 
services are unified into one operating system [5]. For highly scalable web applications, application 
servers are often stateless, so the multi-tenancy of services is always reflected in the database layer 
[6]. 

The multi-tenant structure reduces the cost of the SaaS system, but it also brings some problems. 
The first is the contention of shared resources [7], the second is to reduce security, and finally the 
structure is difficult to support the scalability of the application. Scalability is necessary for enterprise 
applications, and many hosted business services provide platform to build and share such extensibility 
[8, 9, 10]. 

To implement a multi-tenant structure, most managed services use query transformation to map 
multiple single-tenant logical schemas of the application to a multi-tenant physical schema of the 
database. In the case of a certain workload, this method is scalable. The limit depends on the number 
of tables the database can process, which depends on the amount of available memory [7]. To alleviate 
the limited problem of tables that the database can handle, it is necessary to share tables among tenants, 
which will affect the ability of the tenant to extend the application. A better solution is to map the 
logical table to a generic table, such as the Universal table [11]. Based on this method, a widely used 
schema-mapping technique, namely Universal Table Layout [12], is introduced. This schema- 
mapping technique maps tenant data to a table. Since each data row belongs to a different logical 
table, valid indexes cannot be directly created in the table to speed up the execution of the SQL [13, 
14]. To solve this problem, the index function is usually implemented indirectly by creating a new 
index table. But this will have one more table query, which will affect the database performance. 

To reduce the performance loss of the database, this paper proposes to modify the table structure 
of the Universal Table Layout schema-mapping technique, and create a valid index directly in the 
table. This article creates multiple tables to store tenant data based on index type and counts of tenant 
logical tables. Improving efficiency of SQL execution by adding index fields to tables. 
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Although the table implementation method in this paper will reduce the sharing degree of data, 
when the shared data is enough, the performance of the database is reduced to a level that the tenant 
can't bear. To ensure the system performance, the database will inevitably reduce the data sharing 
degree. Therefore, the impact of the proposed method on data sharing is within acceptable limits. If 
the amount of tenant data managed by the database system is large enough, the impact on data sharing 
will be further reduced. 

This paper proposes to modify the table structure of the Universal Table Layout schema-mapping 
technique, which not only improves efficiency of SQL statements execution, but also simplifies SQL 
statements translation. In the table structure of the Universal Table Layout schema-mapping 
technique, the index table is mainly used to record the row ID of the logical table data stored in the 
physical table, thereby indirectly implementing the index function. If you execute a logical SQL 
statement, you need to translate the logical SQL statement into a SQL statement. In the way of 
implementing the index function indirectly through the table, first, you need to manipulate the index 
table and then manipulate the data table, which makes the difficulty of SQL translation more difficult 
than the translation of a single table. 

To verify the validity of the proposed method, two experiments were organized in this paper. In 
the first experiment, benchmark SQL [15] is used to test the performance of the database under the 
two table structures. The test is run under a variety of different data scales. The experimental results 
show that the table structure of this paper can obtain better database performance. In the second 
experiment, the paper explores the performance of the four database operations, e.g. add, delete, 
update and insert. The test is performed under three indexes, namely, primary key, unique index, and 
normal index. The experimental results show that the table structure of this paper can obtain better 
performance. 

Generally speaking, the main contributions of this paper are as follows: 
1) This paper proposes a new table structure, which adds index fields directly to tables, which 

improves efficiency of SQL execution and simplifies SQL translation. 
2) This paper proves the validity of our method through experiments. The experiments verify the 

conclusion of this paper from the whole and the part. 
The remaining chapters of this paper are organized as follows: Section 2 introduces the table 

structure of Universal Table Layout schema-mapping technique in detail; Section 3 describes the 
research motivation of this paper, and specifically describes the table structure of this paper; Section 
4 mainly completed the experiments, and analyzed the experimental results; Section 5 is the summary 
and outlook. 

2. Table Structure of Universal Table Layout 

This section focuses on the table structure of Universal Table Layout schema-mapping technique. 
This schema is derived from Universal Relation [16], which was originally proposed as a conceptual 
tool for developing queries and is not intended to be implemented directly. 

Under the Universal Table Layout schema-mapping technique, it mainly includes three data tables 
mt_tables, mt_fields and mt_data. The mt_tables is used to record the correspondence between the 
tenant ID and the logical table, where the tenant ID, the table name, and the table ID are mainly stored; 
the mt_fields is used to record the field information of the logical table, where the field name, column 
number of field, and field type are stored; mt_data is used to store tenant data, including table ID, and 
row data. The structure of these three tables is shown in Table 1, Table 2, and Table 3. 
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Table 1. Table Structure of mt_tables 
Field Type Illustrate 

tableId int table ID 
tableName varchar table name  

tenantId int tenant ID 
 

Table 2. Table Structure of mt_fields 
Field Type Illustrate 

id int primary key 
tenantId int tenant ID 
tableId int logical table ID
value0 varchar data column 

...... ...... ...... 
value499 varchar data column 

 
In mt_data, there are id, tableId, tenantId, and many reserved fields, which are used to store logical 

table row data. 500 fields are reserved in the most popular SaaS system, salesforce.com, to 
accommodate row data for any logical table. 

In the table structure of Universal Table Layout schema-mapping technique, since the table 
mt_data stores data of different tenant logical tables, a valid index cannot be directly created in 
mt_data to quickly operate the data table. Therefore, to improve the efficiency of SQL execution, the 
index table is usually created to indirectly implement the index function. The row ID of the logical 
table index data row in the table mt_data is recorded in the index table. 

 
Table 3. Table Structure of mt_data 

Field Type Illustrate 
id int primary key 

dataType varchar field type 
fieldName varchar field name 
fieldNum int column number
tenantId int tenant ID 
tableId int table ID 
isIndex int index column 

 
Table 4 is an index table structure. In the index table, mtDataId is the row Id of the logical data 

row in mt_data, and intValue1 and stringValue1 are respectively used to store integer and string index 
column of the logical table. There are zero or more intValue fields and stringValue fields in the index 
table. 

 
Table 4. Table Structure of index table 

Field Type Illustrate 
id int primary key 

tenantId int tenant ID 
tableId int table ID 

mtDataId int record ID 
intValue1 int index field 

...... ...... ...... 
intValueN int index field 

stringValue1 varchar index field 
...... ...... ...... 

stringValueN varchar index field 
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In logical tables, there are mainly three types of indexes, namely, primary key, normal index, and 
unique index. According to logical table, multiple index tables are created. For example, there are 
three logical tables whose primary keys are composed of three INT type columns, two INT type 
columns, and one INT type column. When creating index tables, three index tables need to be created 
to store corresponding index data. For normal indexes and unique indexes, the index table is similar 
to the primary key, and will not be described one by one. 

3. Research Motivation and Methods 

3.1 Research Motivation 

In the Universal Table Layout schema-mapping technique, tenant data is mapped to a table. To 
improve the efficiency of SQL statements execution, the index function is often implemented 
indirectly by creating an index table. This approach speeds up SQL statement execution, but performs 
poorly compared to indexes directly in the table. This is because when this approach executes SQL 
statement, you need to operate the index table before operating the table. Therefore, the database 
performance is not high. 

To improve the efficiency of SQL statements execution, this paper proposes to modify the table 
structure based on the table structure of the Universal Table Layout schema-mapping technique, and 
put data of same index type and counts in logical table into a physical table, which can create index 
directly in the physical table. 

3.2 Research Methods 

This part describes in detail how to modify the table structure of the Universal Table Layout 
schema-mapping technique to achieve the purpose of improving efficiency of SQL statements 
execution and reducing the difficulty of logical SQL translation. This paper proposes to create 
multiple data tables according to the index type and counts of logical tables, and map data of the 
logical tables to the corresponding table. The number of tables is determined by index types and 
counts of logical table, and the number of tables must be limited because the number of index types 
and counts in logical table is limited. The tables proposed in this paper are mainly divided into two 
categories, one for storing data with a primary key in logical tables and one for storing data without 
a primary key in logical tables. The table structure of the two types of tables is as follows. 

 
Table 5. Table Structure of Data Table 

Field Type Illustrate 
id int primary key 

tenantId int tenant ID 
tableId int table ID 
index1 varchar normal index 
…… …… …… 

indexN varchar normal index 
unique1 varchar unique index 

…… …… …… 
uniqueN varchar unique index 
value0 varchar data column 
…… …… …… 

value499 varchar data column 
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Table 6. Table Structure of Data Table 
Field Type Illustrate 

tenantId int tenant ID 
tableId int table ID 

pk varchar PK 
index1 varchar normal index 
…… …… …… 

indexN varchar normal index 
unique1 varchar unique index 

…… …… …… 
uniqueN varchar unique index 
value0 varchar data column 
…… …… …… 

value499 varchar data column 
 
The table structure of Table 5 is used to store data without a primary key in the logical table. The 

table structure of Table 6 is used to store data with primary key in the logical table. In these two table 
structures, the unique index column and the normal index column can have zero or more columns, 
which are determined according to the logical table. This paper defines the index column in the table 
as a varchar type, which can store any type of data to the index data column. 

In the logical table, if the primary key is a composite primary key composed of multiple columns, 
when the data of logical table is stored in the physical table, the primary key needs to be concatenated 
into a string by a separator and stored in the pk column of the table. For the unique composite index 
and the normal composite index, the same method is used for processing. 

In logical tables, if the logical SQL statements is executed using a partial prefix column of the 
composite index, the composite index will speed up execution of SQL statements because the index 
usage follows the leftmost prefix principle. The index implementation method proposed in this paper 
does not affect the use of partial prefix columns in the composite index to speed up the execution of 
SQL statement, but only needs to use the database keyword to achieve this function, such as the use 
of the LIKE keyword in MySQL. 

The table structure in Table 5 needs to retain the primary key id, and the table structure in Table 6 
uses the logical table primary key and the tableId as the primary key. It is not necessary to retain the 
primary key id, and directly use (tableId, pk) as the primary key of the table. The following is an 
example of the specific storage, as follows, there are 10 tables, the table structure is as follows. 

table1(id1, id2, index1, filed1); 
table2(id1, id2, index1, index2, field1); 
table3(id1, id2, field1); 
table4(id1, id2, id3, index1, field1); 
table5(id, index1, field1); 
table6(id, index1, index2, field1); 
table7(id, uniqueIndex1, index1, field1); 
table8(id1, id2, id3, uniqueIndex1, index1, field1); 
table9(id1, id2, id3, uniqueIndex1, uniqueIndxe2, index1, field1); 
table10(index1, field1); 
In the logical tables, the id column is primary key, the index column is normal index, the 

uniqueIndex column is unique index, they consist of at least one field. The data in the 10 logical tables 
above will be mapped to 6 tables, whose structure is as follows. 

①mt_data_pk1 (tenantId, tableId, pk, index1, value0, ..., value499) 
②mt_data_pk2 (tenantId, tableId, pk, index1, index2, value0, ..., value499) 
③mt_data_pk3 (tenantId, tableId, pk, value0, ..., value499) 
④mt_data_pk4 (tenantId, tableId, pk, uniqueIndex1, index1, value0, ..., value499) 
⑤mt_data_pk5 (tenantId, tableId, pk, uniqueIndex1, uniqueIndex2, index1, value0, ..., value499) 
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⑥mt_data1 (id, tenantId, tableId, index1, value0, ..., value499) 
The data of TABLE1, TABLE4 and TABLE5 will be mapped to ①, TABLE2 and TABLE6 to 

②, TABLE3 to ③, TABLE7 and TABLE8 to ④, TABLE9 to ⑤, TABLE10 to ⑥. The data in 
logical tables are mapped to corresponding data tables if index type and number of logical table is the 
same as the data table one. 

When the data of logical table is mapped to the physical table, the index data column of logical 
table should be mapped to the index column of the physical table, and mapped to the corresponding 
data column, if there is a logical table below. 

userInfo (stuNo, name, age, address) 
stuNo is the primary key. If data of the table is mapped to the physical table, it will be mapped to 

the table of the following table structure. 
mt_data (tenantId, table1, pk1, value0, value1, ..., value499) 
pk1 will store the data corresponding to stuNo, value0 will store the data corresponding to stuNo, 

value1 will store the data corresponding to name, value2 will store the corresponding data, and value3 
will store the data corresponding to address. 

4. Experiments 

In experiment 1, the benchmarkSQL would be used to perform performance tests. It simulates a 
wholesaler’s cargo management environment, the system processes the order request and tests the 
number of requests that the database can process per unit time. Before testing the performance of the 
database, we should translate the logical SQL into physical SQL. The experimental result is shown 
in FIG 1. 

 

 
Fig 1. Database Throughput 

 
In FIG 1, the blue bar indicates the result of table structure of Universal Table Layout schema-

mapping technique, and the red bar indicates the result of table structure in this paper. From these 
results, it can be found that the throughput of table structure presented in this paper is better, because 
SQL statements execution does not need to operate the index table. In Universal Table Layout 
schema-mapping technique, when we execute SQL statements, we need to get row ID from index 
table, and then execute them based on row ID. Under the table structure of this paper, SQL statements 
are executed directly, which is more efficient. 

 
Fig 2. Select SQL Execute Time 
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Fig 3. Update SQL Execute Time 

 
In experiment 2, we calculate the execution time of 100 add, delete, update, select statements 

separately. The shorter they execute, the higher the performance. And the experimental results are 
shown in FIG 2, 3, 4 and 5, which correspond to select, update, delete, insert operations respectively. 
Through experimental results, we can conclude that the table structure presented in this paper gain 
better performance on four kinds of operation. For select, update, delete operations, we tested 
performance under three indexes (normal index, primary key and unique index). In the insert 
operation, for the table structure of Universal Table Layout schema-mapping technique, we tested the 
runtime of both the update index table and the non-update index table. 

In the table structure of this paper, better database performance because we do not need to operate 
the index table. which will save SQL statements execution time. 

 

 
Fig 4. Delete SQL Execute Time 

 

 
Fig 5. Insert SQL Execute Time 

5. Conclusion 

In this paper, based on table structure of Universal Table Layout schema-mapping technique, this 
paper proposes a new table structure. This table structure of this paper has better performance. To 
verify the conclusions of this paper, two experiments are organized. First, this paper tests performance 
through a real-world business environment to verify overall performance. Second, this paper verifies 
the performance from four operations, namely, ADD, DELETE, UPDATA and SELECT. This proves 
that the performance of the table structure of this paper is better than the table structure of Universal 
Table Layout schema-mapping technique. 

Advances in Computer Science Research, volume 87

548



 

Although the table structure of this paper can get better database performance, for some extreme 
cases, the table structure in this paper is not suitable. If the index type and counts of all logical table 
are different, in this case, if the tables are created by the method proposed in this paper, the sharing 
degree of the data will be seriously reduced. Of course, these extremes will hardly occur. We will 
continue to explore whether there is a better table structure for managing tenant data, ensuring the 
efficiency of tenant operations while keeping costs as low as possible. 
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