

A New Table Structure based on Universal Table Layout
Schema-Mapping Technique

Linfeng Yin 1, a, Xiaocong Zhou 1, b, Xinming Wang 2, c
1 School of Data and Computer Science Sun Yat-sen University Guangzhou, China.

2 School of Computer, South China Normal University Guangzhou, China.
a yinlf3@mail2.sysu.edu.cn, b isszx@mail.sysu.edu.cn, c roadlit@gmail.com

Abstract. In SaaS (Software-as-a-Service) systems, the database is typically implemented using
the Universal Table Layout schema-mapping technique, in which all tenant data is mapped to a table,
thus valid indexes cannot be created directly in the table. To enable to create valid indexes directly
in the table, this paper proposes a new table structure for better database performance. In this paper,
the experiments are designed to verify the conclusions of this paper. The experimental results show
that the table structure of this paper can obtain better database performance.

Keywords: SaaS System, Universal Table Layout, valid index, database performance.

1. Introduction

In the SaaS (Software as a Service) system [1], the management of the application is the
responsibility of the service provider. Tenants only need to use the provided service remotely through
the network [2]. Tenants do not need to develop and maintain their own system, which greatly reduces
the overall cost. Due to the low cost of using the SaaS system, more and more SMEs (Small and
Medium-Sized Enterprises) are attracted. IDC estimates that SaaS service fees in the global market
reached $3.98 billion in 2006 and $14.5 billion in 2011, with a compound annual growth rate of 30%
[3]. The rapid growth of SaaS services has had a considerable impact on the software market [4].

The SaaS system aims to reduce the cost of tenant through economies of scale. The multi-tenant
structure can minimize the overall cost of the SaaS system. In a multi-tenant structure, multi-tenant
services are unified into one operating system [5]. For highly scalable web applications, application
servers are often stateless, so the multi-tenancy of services is always reflected in the database layer
[6].

The multi-tenant structure reduces the cost of the SaaS system, but it also brings some problems.
The first is the contention of shared resources [7], the second is to reduce security, and finally the
structure is difficult to support the scalability of the application. Scalability is necessary for enterprise
applications, and many hosted business services provide platform to build and share such extensibility
[8, 9, 10].

To implement a multi-tenant structure, most managed services use query transformation to map
multiple single-tenant logical schemas of the application to a multi-tenant physical schema of the
database. In the case of a certain workload, this method is scalable. The limit depends on the number
of tables the database can process, which depends on the amount of available memory [7]. To alleviate
the limited problem of tables that the database can handle, it is necessary to share tables among tenants,
which will affect the ability of the tenant to extend the application. A better solution is to map the
logical table to a generic table, such as the Universal table [11]. Based on this method, a widely used
schema-mapping technique, namely Universal Table Layout [12], is introduced. This schema-
mapping technique maps tenant data to a table. Since each data row belongs to a different logical
table, valid indexes cannot be directly created in the table to speed up the execution of the SQL [13,
14]. To solve this problem, the index function is usually implemented indirectly by creating a new
index table. But this will have one more table query, which will affect the database performance.

To reduce the performance loss of the database, this paper proposes to modify the table structure
of the Universal Table Layout schema-mapping technique, and create a valid index directly in the
table. This article creates multiple tables to store tenant data based on index type and counts of tenant
logical tables. Improving efficiency of SQL execution by adding index fields to tables.

3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)

Copyright © 2019, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Computer Science Research, volume 87

542

Although the table implementation method in this paper will reduce the sharing degree of data,
when the shared data is enough, the performance of the database is reduced to a level that the tenant
can't bear. To ensure the system performance, the database will inevitably reduce the data sharing
degree. Therefore, the impact of the proposed method on data sharing is within acceptable limits. If
the amount of tenant data managed by the database system is large enough, the impact on data sharing
will be further reduced.

This paper proposes to modify the table structure of the Universal Table Layout schema-mapping
technique, which not only improves efficiency of SQL statements execution, but also simplifies SQL
statements translation. In the table structure of the Universal Table Layout schema-mapping
technique, the index table is mainly used to record the row ID of the logical table data stored in the
physical table, thereby indirectly implementing the index function. If you execute a logical SQL
statement, you need to translate the logical SQL statement into a SQL statement. In the way of
implementing the index function indirectly through the table, first, you need to manipulate the index
table and then manipulate the data table, which makes the difficulty of SQL translation more difficult
than the translation of a single table.

To verify the validity of the proposed method, two experiments were organized in this paper. In
the first experiment, benchmark SQL [15] is used to test the performance of the database under the
two table structures. The test is run under a variety of different data scales. The experimental results
show that the table structure of this paper can obtain better database performance. In the second
experiment, the paper explores the performance of the four database operations, e.g. add, delete,
update and insert. The test is performed under three indexes, namely, primary key, unique index, and
normal index. The experimental results show that the table structure of this paper can obtain better
performance.

Generally speaking, the main contributions of this paper are as follows:
1) This paper proposes a new table structure, which adds index fields directly to tables, which

improves efficiency of SQL execution and simplifies SQL translation.
2) This paper proves the validity of our method through experiments. The experiments verify the

conclusion of this paper from the whole and the part.
The remaining chapters of this paper are organized as follows: Section 2 introduces the table

structure of Universal Table Layout schema-mapping technique in detail; Section 3 describes the
research motivation of this paper, and specifically describes the table structure of this paper; Section
4 mainly completed the experiments, and analyzed the experimental results; Section 5 is the summary
and outlook.

2. Table Structure of Universal Table Layout

This section focuses on the table structure of Universal Table Layout schema-mapping technique.
This schema is derived from Universal Relation [16], which was originally proposed as a conceptual
tool for developing queries and is not intended to be implemented directly.

Under the Universal Table Layout schema-mapping technique, it mainly includes three data tables
mt_tables, mt_fields and mt_data. The mt_tables is used to record the correspondence between the
tenant ID and the logical table, where the tenant ID, the table name, and the table ID are mainly stored;
the mt_fields is used to record the field information of the logical table, where the field name, column
number of field, and field type are stored; mt_data is used to store tenant data, including table ID, and
row data. The structure of these three tables is shown in Table 1, Table 2, and Table 3.

Advances in Computer Science Research, volume 87

543

Table 1. Table Structure of mt_tables
Field Type Illustrate

tableId int table ID
tableName varchar table name

tenantId int tenant ID

Table 2. Table Structure of mt_fields
Field Type Illustrate

id int primary key
tenantId int tenant ID
tableId int logical table ID
value0 varchar data column

......
value499 varchar data column

In mt_data, there are id, tableId, tenantId, and many reserved fields, which are used to store logical

table row data. 500 fields are reserved in the most popular SaaS system, salesforce.com, to
accommodate row data for any logical table.

In the table structure of Universal Table Layout schema-mapping technique, since the table
mt_data stores data of different tenant logical tables, a valid index cannot be directly created in
mt_data to quickly operate the data table. Therefore, to improve the efficiency of SQL execution, the
index table is usually created to indirectly implement the index function. The row ID of the logical
table index data row in the table mt_data is recorded in the index table.

Table 3. Table Structure of mt_data

Field Type Illustrate
id int primary key

dataType varchar field type
fieldName varchar field name
fieldNum int column number
tenantId int tenant ID
tableId int table ID
isIndex int index column

Table 4 is an index table structure. In the index table, mtDataId is the row Id of the logical data

row in mt_data, and intValue1 and stringValue1 are respectively used to store integer and string index
column of the logical table. There are zero or more intValue fields and stringValue fields in the index
table.

Table 4. Table Structure of index table

Field Type Illustrate
id int primary key

tenantId int tenant ID
tableId int table ID

mtDataId int record ID
intValue1 int index field

......
intValueN int index field

stringValue1 varchar index field
......

stringValueN varchar index field

Advances in Computer Science Research, volume 87

544

In logical tables, there are mainly three types of indexes, namely, primary key, normal index, and
unique index. According to logical table, multiple index tables are created. For example, there are
three logical tables whose primary keys are composed of three INT type columns, two INT type
columns, and one INT type column. When creating index tables, three index tables need to be created
to store corresponding index data. For normal indexes and unique indexes, the index table is similar
to the primary key, and will not be described one by one.

3. Research Motivation and Methods

3.1 Research Motivation

In the Universal Table Layout schema-mapping technique, tenant data is mapped to a table. To
improve the efficiency of SQL statements execution, the index function is often implemented
indirectly by creating an index table. This approach speeds up SQL statement execution, but performs
poorly compared to indexes directly in the table. This is because when this approach executes SQL
statement, you need to operate the index table before operating the table. Therefore, the database
performance is not high.

To improve the efficiency of SQL statements execution, this paper proposes to modify the table
structure based on the table structure of the Universal Table Layout schema-mapping technique, and
put data of same index type and counts in logical table into a physical table, which can create index
directly in the physical table.

3.2 Research Methods

This part describes in detail how to modify the table structure of the Universal Table Layout
schema-mapping technique to achieve the purpose of improving efficiency of SQL statements
execution and reducing the difficulty of logical SQL translation. This paper proposes to create
multiple data tables according to the index type and counts of logical tables, and map data of the
logical tables to the corresponding table. The number of tables is determined by index types and
counts of logical table, and the number of tables must be limited because the number of index types
and counts in logical table is limited. The tables proposed in this paper are mainly divided into two
categories, one for storing data with a primary key in logical tables and one for storing data without
a primary key in logical tables. The table structure of the two types of tables is as follows.

Table 5. Table Structure of Data Table

Field Type Illustrate
id int primary key

tenantId int tenant ID
tableId int table ID
index1 varchar normal index
…… …… ……

indexN varchar normal index
unique1 varchar unique index

…… …… ……
uniqueN varchar unique index
value0 varchar data column
…… …… ……

value499 varchar data column

Advances in Computer Science Research, volume 87

545

Table 6. Table Structure of Data Table
Field Type Illustrate

tenantId int tenant ID
tableId int table ID

pk varchar PK
index1 varchar normal index
…… …… ……

indexN varchar normal index
unique1 varchar unique index

…… …… ……
uniqueN varchar unique index
value0 varchar data column
…… …… ……

value499 varchar data column

The table structure of Table 5 is used to store data without a primary key in the logical table. The

table structure of Table 6 is used to store data with primary key in the logical table. In these two table
structures, the unique index column and the normal index column can have zero or more columns,
which are determined according to the logical table. This paper defines the index column in the table
as a varchar type, which can store any type of data to the index data column.

In the logical table, if the primary key is a composite primary key composed of multiple columns,
when the data of logical table is stored in the physical table, the primary key needs to be concatenated
into a string by a separator and stored in the pk column of the table. For the unique composite index
and the normal composite index, the same method is used for processing.

In logical tables, if the logical SQL statements is executed using a partial prefix column of the
composite index, the composite index will speed up execution of SQL statements because the index
usage follows the leftmost prefix principle. The index implementation method proposed in this paper
does not affect the use of partial prefix columns in the composite index to speed up the execution of
SQL statement, but only needs to use the database keyword to achieve this function, such as the use
of the LIKE keyword in MySQL.

The table structure in Table 5 needs to retain the primary key id, and the table structure in Table 6
uses the logical table primary key and the tableId as the primary key. It is not necessary to retain the
primary key id, and directly use (tableId, pk) as the primary key of the table. The following is an
example of the specific storage, as follows, there are 10 tables, the table structure is as follows.

table1(id1, id2, index1, filed1);
table2(id1, id2, index1, index2, field1);
table3(id1, id2, field1);
table4(id1, id2, id3, index1, field1);
table5(id, index1, field1);
table6(id, index1, index2, field1);
table7(id, uniqueIndex1, index1, field1);
table8(id1, id2, id3, uniqueIndex1, index1, field1);
table9(id1, id2, id3, uniqueIndex1, uniqueIndxe2, index1, field1);
table10(index1, field1);
In the logical tables, the id column is primary key, the index column is normal index, the

uniqueIndex column is unique index, they consist of at least one field. The data in the 10 logical tables
above will be mapped to 6 tables, whose structure is as follows.

①mt_data_pk1 (tenantId, tableId, pk, index1, value0, ..., value499)
②mt_data_pk2 (tenantId, tableId, pk, index1, index2, value0, ..., value499)
③mt_data_pk3 (tenantId, tableId, pk, value0, ..., value499)
④mt_data_pk4 (tenantId, tableId, pk, uniqueIndex1, index1, value0, ..., value499)
⑤mt_data_pk5 (tenantId, tableId, pk, uniqueIndex1, uniqueIndex2, index1, value0, ..., value499)

Advances in Computer Science Research, volume 87

546

⑥mt_data1 (id, tenantId, tableId, index1, value0, ..., value499)
The data of TABLE1, TABLE4 and TABLE5 will be mapped to ①, TABLE2 and TABLE6 to

②, TABLE3 to ③, TABLE7 and TABLE8 to ④, TABLE9 to ⑤, TABLE10 to ⑥. The data in
logical tables are mapped to corresponding data tables if index type and number of logical table is the
same as the data table one.

When the data of logical table is mapped to the physical table, the index data column of logical
table should be mapped to the index column of the physical table, and mapped to the corresponding
data column, if there is a logical table below.

userInfo (stuNo, name, age, address)
stuNo is the primary key. If data of the table is mapped to the physical table, it will be mapped to

the table of the following table structure.
mt_data (tenantId, table1, pk1, value0, value1, ..., value499)
pk1 will store the data corresponding to stuNo, value0 will store the data corresponding to stuNo,

value1 will store the data corresponding to name, value2 will store the corresponding data, and value3
will store the data corresponding to address.

4. Experiments

In experiment 1, the benchmarkSQL would be used to perform performance tests. It simulates a
wholesaler’s cargo management environment, the system processes the order request and tests the
number of requests that the database can process per unit time. Before testing the performance of the
database, we should translate the logical SQL into physical SQL. The experimental result is shown
in FIG 1.

Fig 1. Database Throughput

In FIG 1, the blue bar indicates the result of table structure of Universal Table Layout schema-

mapping technique, and the red bar indicates the result of table structure in this paper. From these
results, it can be found that the throughput of table structure presented in this paper is better, because
SQL statements execution does not need to operate the index table. In Universal Table Layout
schema-mapping technique, when we execute SQL statements, we need to get row ID from index
table, and then execute them based on row ID. Under the table structure of this paper, SQL statements
are executed directly, which is more efficient.

Fig 2. Select SQL Execute Time

Advances in Computer Science Research, volume 87

547

Fig 3. Update SQL Execute Time

In experiment 2, we calculate the execution time of 100 add, delete, update, select statements

separately. The shorter they execute, the higher the performance. And the experimental results are
shown in FIG 2, 3, 4 and 5, which correspond to select, update, delete, insert operations respectively.
Through experimental results, we can conclude that the table structure presented in this paper gain
better performance on four kinds of operation. For select, update, delete operations, we tested
performance under three indexes (normal index, primary key and unique index). In the insert
operation, for the table structure of Universal Table Layout schema-mapping technique, we tested the
runtime of both the update index table and the non-update index table.

In the table structure of this paper, better database performance because we do not need to operate
the index table. which will save SQL statements execution time.

Fig 4. Delete SQL Execute Time

Fig 5. Insert SQL Execute Time

5. Conclusion

In this paper, based on table structure of Universal Table Layout schema-mapping technique, this
paper proposes a new table structure. This table structure of this paper has better performance. To
verify the conclusions of this paper, two experiments are organized. First, this paper tests performance
through a real-world business environment to verify overall performance. Second, this paper verifies
the performance from four operations, namely, ADD, DELETE, UPDATA and SELECT. This proves
that the performance of the table structure of this paper is better than the table structure of Universal
Table Layout schema-mapping technique.

Advances in Computer Science Research, volume 87

548

Although the table structure of this paper can get better database performance, for some extreme
cases, the table structure in this paper is not suitable. If the index type and counts of all logical table
are different, in this case, if the tables are created by the method proposed in this paper, the sharing
degree of the data will be seriously reduced. Of course, these extremes will hardly occur. We will
continue to explore whether there is a better table structure for managing tenant data, ensuring the
efficiency of tenant operations while keeping costs as low as possible.

Acknowledgements

This work is supported by the Important Science and Technology Specific Project of Guangdong
Province of China(Grant No. 2016B030305006).

References

[1]. Kim W, Lee J H, Hong C, et al. An innovative method for data and software integration in SaaS[J].
Computers & Mathematics with Applications, 2012, 64(5):1252-1258.

[2]. Aulbach S, Jacobs D, Kemper A, et al. A comparison of flexible schemas for software as a
service[C]// ACM SIGMOD International Conference on Management of Data. New York:
ACM, 2009:881-888.

[3]. E. TenWolde. Worldwide Software on Demand 2007-2011 Forecast: A Preliminary Look at
Delivery Model Performance, IDC No. 206240, 2007. IDC Report.

[4]. Aized Amin Soofi, M. Irfan Khan, et al. Security issues in SaaS delivery model of Cloud
Computing[J]. International Journal of Computer Science and Mobile Computing, 2014,3(3):15-
21.

[5]. Hui M, Jiang D, Li G, et al. Supporting Database Applications as a Service[C]// IEEE
International Conference on Data Engineering. New York: IEEE Computer Society, 2009:832-
843.

[6]. J. R. Hamilton. On designing and deploying internet-scale services[C]// In Proceedings of the
21th Large Installation System Administration Conference, Texas: USENIX, 2007:231–242.

[7]. Anatomy of MySQL on the GRID. http://blog.mediatemple.net/weblog/ 2007/01/19/anatomy-
of-mysql-on-the-grid/.

[8]. NetSuite NetFlex. http://www.netsuite.com/portal/products/netflex/main. shtml.

[9]. Salesforce App Exchange. http://www.salesforce.com/appexchange/about.

[10]. WebEx. http:// www. webex.com/.

[11]. Aulbach S, Grust T, Jacobs D, et al. Multi-tenant databases for software as a service: schema-
mapping techniques[C]// ACM SIGMOD International Conference on Management of Data,
Canada: Vancouver, 2008:1195-1206.

[12]. D. Florescu and D. Kossmann. A Performance Evaluation of Alternative Mapping Schemes
for Storing XML Data in a Relational Database. Technical report, Inria, France, 1999.

[13]. The Force.com Multitenant Architecture. https://www.salesforce.com.

[14]. Schwartz B. High Performance MySQL[J]. Oreilly Media, 2004(11).

[15]. TPC-C on-ling transaction processing benchmark. https://sourceforge. net/ projects /
benchmarksql/.

[16]. D. Maier and J. D. Ullman. Maximal objects and the semantics of universal relation
databases. ACM Trans. Database Syst., 8(1):1–14, 1983.

Advances in Computer Science Research, volume 87

549

