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Abstract. Rank aggregation is the process of aggregating multiple base rankers into a single but 
more comprehensive ranker, which plays an important role in many domains such as recommender 
system, meta-search, database, genomics, etc. Works related to the comparison of rank aggregation 
methods all don’t have a suitable and general data generation mechanism to produce data with 
various characteristics and lack a more reasonable and effective algorithm evaluation performance 
index. Therefore, this paper presents a general data generation mechanism based on Mallows model 
to produce synthetic controllable datasets, uses generalized Kendall rank correlation coefficient and 
rank-biased overlap to evaluate and compare the performance of two kinds of methods under 
different settings. Besides, we also consider the comparison between indices and the impact of data 
characteristics on the algorithms. This paper may be helpful to researchers and decision-makers 
from multiple domains. 
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1. Introduction 

Rank aggregation, also known as Kemeny rank aggregation [1], preference aggregation [2], 
consensus ranking problem [3], aims at aggregating multiple base rankers into a single but more 
comprehensive ranker, which is considered to be more reliable and trustworthy than baser rankers, 
and plays an important role in many domains such as recommender system [4], meta-search [5], 
database, genomics, etc. It has a rich research history with more than two hundred years which dates 
back to work of Jean-Charles de Borda in 1770 [6]. Based on the basic idea that “the whole is greater 
than the sum of its parts”, a large number of rank aggregation methods have been proposed from 
different research fields, such as social choice and mathematics, statistics, genomics, information 
retrieve, which can be roughly divided into ad hoc methods and distance-based methods [7]. The 
former combines multiple ranking lists into one based on some kind of intuition or man-made rule, 
which is simple and fast, while the latter seeks a consensus that is defined to be that set of preferences 
which is closest, in a minimum distance or maximum correlation coefficient sense, to base ranker 
responses, and appears time-consuming. Because finding such a consensus is NP-hard, it’s difficult 
to guarantee an optimal solution even though distance-based methods is more complete in theory.  

Comparing and analyzing different rank aggregation methods can help us to select the most 
suitable rank aggregation methods under different application scenarios and data conditions, and 
improve work efficiency, reliability, and credibility. For example, results from peer review of 
research proposals and articles, an essential element in R&D process and the academic community 
worldwide, can be combined to achieve better set of candidate proposals and help improve quality of 
decision output [8]. Although there are works [9-12] comparing rank aggregation methods from 
different aspects, all of them didn’t have a suitable, consistent and general data generation mechanism. 
As far as we know, [9] is the first one to consider data generation model to produce sets of 
permutations with various degree of consensus, with focus on balance between search time and 
algorithm performance, but they didn’t consider other list types. Furthermore, they all considered 
traditional indices to evaluate and compare the performance of rank aggregation methods and didn’t 
realize that those indices are problematic more or less, which will be discussed in section 4. [10] 
developed a data generation model which can generate the required synthetic base rankers with 
adjustable accuracy and length and found both the accuracy and length have a remarkable effect on 
the comparison results between rank aggregation methods. However, their model is not controllable 
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to some extent, such as the number of ties, and their performance index is also not applicable since 
ground truth ranking is not easy to find and it is exactly what we are pursuing. 

Therefore, this paper presents a general data generation mechanism based on Mallows model to 
produce synthetic controllable datasets, uses generalized Kendall rank correlation coefficient and 
rank-biased overlap to evaluate and compare the performance of two kinds of methods under different 
settings. Besides, we also consider the comparison between indices and the impact of data 
characteristics on the algorithms. 

The rest of the paper is organized as follows: in the second section, we present an introduction of 
bucket order, list type and Mallows model on which our data generation mechanism is based. In the 
third section, we introduce two algorithms: PageRank and FAST, representing ad hoc method and 
distance-based method. In the fifth section, we describe two performance evaluation indices: 
generalized Kendall rank correlation coefficient and rank-biased overlap. In the sixth part, results and 
discussion will be conducted. The last part is the summary. 

2. Data Generation Mechanism 

Before the introduction of the Mallows model, we first introduce some basic concepts to avoid 
ambiguity. 

Bucket order [13]: given set S containing |S| items, a bucket order is a transitive binary relation ≺ 
where there are B1, …, Bt (1 ≤ t ≤ |S|) that form a partition of S such that item x ≺ y if and only if 
there are i, j with i < j such x∈Bi and y∈Bj. If x∈Bi, we regard Bi as the bucket of x and Bi precedes 
Bj if i < j. Intuitively, a bucket order appears a strict linear order with ties. After the definition of 
bucket order, all bucket orders can be divided into 3 types according to the status of an item in a list, 
number of items and lists: 

Full linear ranking (FLR): size of all buckets in a bucket order is 1 and t = |S| (e.g., all items 
contained and tie(s) not permitted, also called permutation). 

Weak linear ranking (WLR): there is at least one bucket whose size is more than 1 and 1 ≤ t < |S| 
(e.g., the number of all items contained equals to |S| and tie(s) permitted). 

Incomplete ranking (IR): bucket order whose number of items contained is less than |S| and there 
may have tie(s). IRஜ  is regarded as an incomplete ranking under the ranking mechanism µ to 
distinguish it from others under different ranking mechanisms. When there exists N incomplete 
rankings IRஜభ,…,	IRஜొ	ሺ|IRஜ౟|	= li, i = 1, …, N), li is not necessarily identical. 

In order to evaluate and compare rank aggregation methods, it’s necessary to generate synthetic 
datasets with different settings. Since WLR and IR can be seen as variants of FLR, so we first generate 
data of FLR type. There are many generation models for FLR type data. To explore the impact of the 
degree of consensus from data on the algorithm and make data generation process controllable, the 
Mallows model [14] will be used in this paper. The Mallows model is an exponential location model, 
usually considered as analogous to the Gaussian distribution for permutations, and contains two 
parameters: (1) central permutation σ0, give the mode of distribution and the probability of any other 
permutation increases as we move “closer” to the central permutation; (2) dispersion parameter, θ, 
controls how fast this increase happens. The Mallows model assigns each permutation with a 
probability value  

pሺσ|θ, σ଴ሻ 	ൌ 	
1

Zሺθሻ
eି஘ୢሺ஢,஢బሻ																																																									ሺ1ሻ 

 
where Zሺθሻ 	ൌ 	∑ eି஘ୢሺ஢,஢బሻ஢  is normalization constant and d is some kind of distance, 

representing closeness between the central and any other permutations, such as Kendall τ distance, 
Hamming distance, Cayley distance, and Ulam distance. We pick Kendall τ distance in this paper.  

After the generation of FLR type data, we can get other types of data by proper transformation 
from FLR data as follows: 

(1) FLR → WLR 
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According to the difference between the definition of FLR and WLR, transformation to WLR 
requires to add ties to FLR. There are two rules to follow: first, number of ties add to FLR for all base 
lists T~Uሺ0, r୲ ∗ Mሻ, where M is the number of items and rt is tie ratio between number of ties and 
M; Second, for all base lists, the number of items contained in a tie increases linearly from top to 
bottom of FLR (e.g., tie is more likely to happen on the end than on the top). 

(2) WLR
୩
→ IR 

Given base length k, length of all IR lists L~Uሺk െ ∆k, k ൅ ∆kሻ, where ∆k determines both lower 
and upper bound of IR length. Especially, when ∆k = 0, all IR lists have identical length, which is 
often called top k list in other literature. 

All kinds of lists can be generated under the above data generation mechanism, and our 
experimental parameter settings is as follows: number of lists N ∈ ሾ10, 30ሿ with a step of 5; number 
of items M ∈ ሾ20, 100ሿ  with a step of 20; degree of consensus θ ∈ ሾ0.001, 0.01, 0.1, 0.4, 0.7ሿ 
representing data quality from none of consensus to strong consensus; r୩ ∈ ሾ0.5, 0.9ሿ with a step of 
0.1, representing ratio between base length k and M; r୲ ∈ ሾ0.1, 0.5ሿ with a step of 0.1. Such numbers 
have been chosen to mimic real-world settings. 

3. FAST and PageRank 

[7] was the earliest axiomatic review article of rank aggregation methods and discussed two classes 
of rank aggregation methods, namely ad hoc methods and distance or axiomatic-based methods. In 
this part, we are going to introduce two algorithms: PageRank (ad hoc method) and FAST(distance-
based method), representing the ad hoc method and distance-based method respectively. 

3.1 PageRank 

The main idea of the ranking aggregation algorithm PageRank [15] is: given all base ranking lists, 
graph G = (V, E) can be constructed where each item is a node in the graph G. For each ranking where 
item mi ranks higher than mj, we have a directed edge (mj, mi) whose weight equals to difference in 
ranks. Then normalize the weights so that outgoing edges have a total weight of 1 for each node. The 
PageRank PRሺm୧ሻ of an item mi is  

 

PRሺm୧ሻ ൌ ሺ1 െ αሻ ൈ p୧ ൅ α ൈ ෍
PR൫m୨൯ ൈ w൫m୧,m୨൯

k୫ౠ
୭୳୲

൫୫ౠ,୫౟൯∈୉

																																				ሺ2ሻ 

 
where k୫ౠ

୭୳୲ represents outdegree of node mj, k୫ౠ
୧୬  represents indegree of node mj. The probability 

of randomly jumping to a node is proportional to the indegree of that node where p୧ ൌ
୩ౣ౟
౟౤

∑ ୩ౣౠ
౟౤

౗ౠ∈౒
. 

3.2 FAST 

Kendall proposed τୟ and τୠ rank correlation coefficient and the former can only be used for 
FLR and the latter also can be used for WLR. Emond and Mason [3] proposed τ୶ rank correlation 
coefficient based on τୠ for its problem of handling ties. In a list containing M items, we define score 
matrix A as an MൈM matrix for any two item x and y, A୶୷ ൌ 1 if x ranks higher than y or tie with 
y; A୶୷ ൌ െ1 if x ranks lower than y; A୶୷ ൌ 0 if x and y are identical (e.g., element on diagonal 
line in A always equals to 0). It is clear that element 0 not on the diagonal line represents no 
comparison information between the corresponding two items. Given two list Rஜభ and Rஜమ, τ୶ is 
defined as 

τ୶൫Rஜభ, Rஜమ൯ ൌ
∑ ∑ a୧୨b୧୨

୬
୨ୀଵ

୬
୧ୀଵ

MሺM െ 1ሻ
																																																														 ሺ3ሻ 
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Emond and Mason also proved that the Kemeny-Snell distance metric and the τ୶ rank correlation 
coefficient were equivalent representations of the unique measure that satisfied the Kemeny-Snell 
axioms. It is clear that any desirable properties of Kemeny-Snell distance metric are also desirable 
properties of the τ୶ rank correlation coefficient. Given M items and N ranking lists Rஜభ, … , Rஜొ, 
the problem is to find a ranking Rஜ∗ that maximizes the weighted average correlation with the input 
rankings or, equivalently, minimizes the weighted average Kemeny distance to the input rankings, 

 

max
∑ w୩τ୶൫Rஜ∗, Rஜౡ൯
୒
୩ୀଵ

∑ w୩
୒
୩ୀଵ

																																																																	ሺ4ሻ 

 
where w is weight vector specifying prior information about the importance or reliability of the 

input rankings. Here we assign all elements in w with 1 representing each input ranking is as important 
as others. Indicating as ሼr୧୨

∗ ሽ and ሼr୧୨ሽሺ୩ሻ the scoring matrices for Rஜ∗ and the kth ranking Rஜౡ, k 
= 1 , …, N, the problem is: 

 

max෍ቐ෍෍r୧୨
∗r୧୨ሺ୩ሻ

୑

୨ୀଵ

୑

୧ୀଵ

ቑ

୒

୩ୀଵ

ൌ max෍෍r୧୨
∗c୧୨

୑

୨ୀଵ

୑

୧ୀଵ

																																												ሺ5ሻ 

 

where c୧୨ ൌ ∑ r୧୨
ሺ୩ሻ୬

୩ୀଵ . The score matrix ሼc୧୨ሽ was called Combined Input Matrix (CI) by Emond 

and Mason because it was the result of a summation of each input ranking. Defined in this way, it 
summarizes the ranking information in a single matrix. Based on the above function, Emond and 
Mason proposed a branch and bound algorithm based on which [16] proposed a new algorithm FAST 
with better computing efficiency and shorter time. 

4. Performance Index 

Performance index plays an important role in evaluating and comparing FAST and PageRank 
methods described above properly. A measure of the similarity between incomplete rankings should 
handle non-conjointness, weight high ranks more heavily than low, and be monotonic with increasing 
depth of evaluation. Such a measure with these features qualifies as an indefinite rank similarity 
measure. There are many indices in the field of rank aggregation, such as Kendall τ distance, 
Spearman's footrule, Hausdorff distance, Kendall τ correlation coefficient, etc. However, none of 
them meet all the features above. As far as we know, this paper is the first one to use rank-biased 
overlap in comparing rank aggregation methods, so we will pick one of the traditional indices to 
compare with it. In this section, two performance indices, namely generalized Kendall rank 
correlation coefficient [17] and rank-biased overlap [18] will be described in detail. 

4.1 Generalized Kendall Rank Correlation Coefficient τg 

The most commonly used index to evaluate the performance of algorithms is the Kendall τ distance 
in the field of rank aggregation comparison, which counts the number of pairs for which the order is 
different in two permutations. Slight modification on τ will be conducted to enable it suitable for all 
list types and in addition, we use its equivalent form, rank correlation coefficient, for better 
comparison with the rank-biased overlap. The generalized Kendall rank correlation coefficient τg is 
defined as: 

τ୥ ൌ
nୡ െ nୢ െ n୳
൫୬ଶ൯ െ n୳

																																																																								ሺ6ሻ 

 
where nc and nd are the numbers of concordant and discordant pairs respectively, n is the total 

number of unique items between the lists, and nu is the number of unlabeled pairs. From the above 
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definition, τ୥ ∈ ሾെ1, 1ሿ and it gives a higher penalty to disjoint partial lists than reverse partial lists. 
For the goal of better comparing with rank-biased overlap, after a simple linear transformation, we 
can have τ୥ ∈ ሾ0, 1ሿ. 

4.2 Rank-biased Overlap 

[18] proposed a new similarity measure, rank-biased overlap (RBO), which is based on a simple 
user model in which the user compares the overlap of two ranking at incrementally increasing depths. 
The author also proved that RBO meets all criteria for an indefinite rank similarity measure. It 
provides monotonicity by calculating, at a given depth of evaluation, a base score that is non-
decreasing with additional evaluation, and a maximum score that is non-increasing. An extrapolated 
score can be calculated between these bounds if a point estimate is required. RBO can be applied to 
all kinds of list types and belongs to range from 0 to 1. We take user persistence p = 0.95. See [18] 
for more details. 

5. Results and Discussion 

This section mainly presents our experimental results illustrating the impact of data characteristics 
on the performance of rank aggregation methods. We use results under the combination of N = 15, 
M = 80, r୲ ൌ 0.2, r୩ ൌ 0.8 and ∆k = 0.2 * M without special statement. 

5.1 Comparison between List Types with Various θ 

Intuitively, the higher the degree of consensus θ behind the base rankers is, the better the data 
quality and the final aggregation effect will be. It can be seen from Fig. 1 that as θ increases gradually 
from basically no consensus θ = 0.001 to strong consensus θ = 0.7, the base rankers follow from a 
random distribution to a Gaussian-like distribution around σ0, and both the τg and RBO become higher, 
especially for FLR and WLR types. When θ = 0.001, the initial set of the base rankers follows a 
uniform distribution representing low data quality at this time, and the aggregation effect is also poor 
with RBO < 0.4, which is analogous to the result from a dataset generated randomly. For all list types, 
the results are consistent in general, indicating that the degree of consensus θ or data quality directly 
determines the aggregation effect of various rank aggregation methods. It’s worthy to note that when 
we process IR lists, it appears necessary to conduct pre-processing first before feeding them into 
algorithms.  

Generally, there is no much difference between FAST and PageRank when θ is fixed in most cases, 
and the PageRank even performs little better than FAST in some experimental settings. 

 

       
Fig. 1 Comparison between list types with various θ 

5.2 Impact of Ties 

The difference between the FLR list and the WLR list generated from our model is that the WLR 
list contains ties. This section explores the impact of the number of ties on the aggregation effect.  
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When the number of ties is small, the ties have little effect on the aggregated results. For methods 
that can handle ties, the result by breaking all the ties and randomly rearranging the corresponding 
items is slightly different from that by way of considering the cost of untying. Overall, results from 
the former way are a little worse than the latter. The same conclusion holds for similar kind of 
methods to perform the above process. On one hand, randomly rearranging the tied items changes the 
original ranking lists and becomes a different aggregation process. On the other hand, after the 
randomization operation, there must produce many candidate results from which one can not make a 
choice. This is the real reason why most methods need to be able to handle ties. 

However, as ties become more and more gradually, will that make a difference for the aggregation 
results? In the data generation model described in section 2, the number of ties included in WLRs is 
uniformly distributed, so when N is fixed, the number of ties tends to increase uniformly just like the 
first plot in Fig. 2. As can be seen from the last two plots in Fig. 2, RBO and τg both are declining as 
the total number of ties continues to increase, indicating that the quality of the originally generated 
data has changed. Lists with rt = 0 correspond to FLRs. When rt is small, the ties make no big change 
and there is not much fluctuation at this time. As rt gradually increases, the aggregation results of the 
algorithms become worse than that from FLR. In such cases, FAST performs better than PageRank. 

 

    
Fig. 2 Impact of ties 

5.3 Impact of rk 

Sometimes, it is not necessary to consider all items in a ranking list, such as the case of results 
from search engines, and what we really care is the top few items. This part considers the impact of 
rk on the performance of rank aggregation methods. Parameter rk is proportional with the base length 
k of IR lists, which directly determines the lower and upper bound of the length of IR lists. The set 
of all IR lists under particular settings follows a uniform distribution as shown in section 2. For small 
θ in our experiments such as 0.001 or 0.01, IR lists follow a uniform distribution indicating the 
placement of items is generally random. At that moment, as rk increases, the coverage rate always 
equals to 1. But if θ becomes larger such as 0.4 or 0.7, the coverage rate increases with rk gradually 
to 1, as can be seen in the first plot in Fig. 3. Once θ fixed, we can find that both RBO and τg increases 
with rk, this is because we will have more preference information as rk becomes larger. 

 

    
Fig. 3 Impact of rk 
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5.4 Impact of N 

Section 5.1 explores the impact of θ on the performance. Then, does the number of rankers N under 
fixed θ have a remarkable impact on the aggregation effect? To explore this problem, let θ = 0.7, M 
= 80, and the result is shown in Fig. 4. The results show that for all list types, the performance of 
FAST and PageRank show high stability with various parameter settings. It means that once the 
degree of consensus and transformation parameters chosen, the data quality is then determined 
regardless of how many rankers we have, and it will cause no big fluctuations. 

 

       
Fig. 4 Impact of N 

6. Summary 

This paper presents a general data generation mechanism based on Mallows model for all list types 
to produce synthetic controllable datasets, uses generalized Kendall rank correlation coefficient and 
rank-biased overlap to evaluate and compare the performance of two kinds of methods under different 
settings. Besides, we also consider the comparison between indices and the impact of data 
characteristics on the algorithms. The experimental results show that (1) data characteristics directly 
determine the performance of rank aggregation methods, such as the degree of consensus, number of 
ties, and other transformation strategies; (2) ad hoc methods sometimes performs better than distance-
based methods with shorter time and better efficiency; (3) RBO is preferred than any other traditional 
indices, such as Kendall distance, Kendall rank correlation coefficient or their generalization. This 
paper may be helpful to researchers and decision-makers. 
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