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Abstract. Smart watches have become one of the most representative devices in wearable devices 
because of their unique advantages such as integration, portability, reliability, stability, universality 
and low environmental dependence. At present, it is mainly used for the monitoring of health 
indicators such as human heart rate. Whole-body inertial sensing devices cannot meet the actual 
needs of the general public for virtual sports because of high prices and inconvenient wear. In this 
paper, a single piece smart watch is used to study the recognition of the most common actions in 
table tennis which is a kind of fast-moving sport and has many fans through an improved convolution 
neural network model. The final experimental results show that the recognition accuracy reaches 
95.46%, which can basically meet the needs of amateurs' motionSports. 
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1. Introduction 

Ping-pong sports, as a kind of enthusiastic ball game, is popular in some countries because of its 
simple site requirements. However, table tennis requires long-term effective training to achieve sports 
stereotypes, so as to better control the table tennis with the body. At present, only a handful of 
professional athletes can master these skills. It is difficult for ordinary people (even some ordinary 
athletes) to master it. This is not conducive to the promotion of the sport as a global project. In 
addition, virtual table tennis is not only more interesting than the actual table tennis in some aspects, 
but also can become a popular platform for real-time communication. The accurate recognition of the 
important movements of the table tennis in a convenient situation is the key to achieving the 
popularity of its auxiliary training and the somatosensory games of it. 

In current research on motion recognition, there are two main directions: vision based [1-2] and 
sensor based [3-4]. Vision-based motion recognition technology has many limitations and 
shortcomings: a) High requirements on the accuracy of the equipment and the fixed position of the 
equipment cannot be used flexibly, and it is affected by light; b) The scope of perception is limited. 
It needs to be detected at a specific angle and within a certain distance. Inertial sensors, especially 
integrated wearable micro inertial sensors, have the advantages of small size, high precision, low 
energy consumption, and low environmental dependence, which can effectively compensate for the 
lack of visual recognition technology. It has been widely used in various fields such as competitive 
sports [5-6], rehabilitation treatment [7-8] and somatosensory games [9]. In this paper, we recognize 
the main ping-pong movements through nine-axis inertial sensors (accelerometers, gyroscopes, and 
magnetic field sensors) integrated in smart watches, which is universal and convenient and can 
achieve high recognition accuracy. 

In order to achieve a more harmonious computing environment, an effective computing model is 
very necessary. Article [10] presents a tensor-based cloud-edge computing framework for providing 
CPSS services. In the field of behavior recognition, many scholars have done relevant research, such 
as the article [11] proposed an algorithm which is based on a numerical statistical analysis technique 
called n-mode analysis. As an efficient deep learning model, Convolutional Neural Network (CNN) 
can effectively extract the depth features of data and it has achieved good results in many aspects [12-
13]. Many researchers have already proposed improved algorithms for CNN [14-15]. We try to 
recognize the ping-pong action through a specially designed dropout convolutional neural network 
model and make some analysis of the results. The experiments show that it has a good effect on 
inertial sensor-based action recognition. The experimental process is shown in Figure 1. 
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Fig. 1 The process of ping-pong action recognition  

2. Data Collecting and Processing 

2.1 Data Collecting 

The data acquisition device we used is HUAWEI WATCH 2 smart watch, which has various 
sensors such as acceleration, gyro, magnetic field sensing, heart rate, pneumatic pressure, CAP 
capacitance, ALS/ambient light sensing, and positioning system. Acceleration, angular velocity and 
magnetic field intensity are used in this paper, and their corresponding units are ݉/ݏଶ, ܴܽ݀݅ܽ݊/ݏ, 
and ܶߤ. For each sensor, we obtain data in the direction of the three axes of X, Y, and Z, and the 
directions of the three sensor axes are the same. 

The process is as follows: First, we developed an android wear application to acquire real-time 
data of acceleration, angular velocity and magnetic field strength on smart watch at a frequency of 50 
Hz, and we transmitted them to a mobile phone via Bluetooth. Then, the data is received through an 
android application on the mobile phone, and at the same time they are forwarded to a PC via WiFi. 
Finally, the data is received and stored on the PC by a specific Java server program. As shown in 
Figure 2. 

 

 
Fig. 2 Data Collecting 

 
In the experiment, we asked the participants to wear a smart watch and complete eight basic actions 

of table tennis, and we trained all participants before the experiment. The actions to be recognized 
are: Forehand Attack, Forehand Drive, Forehand Chop, Forehand Pick, Backhand Dial, Backhand 
Drive, Backhand Chop, Backhand Twist. We collected data from 12 college volunteers aged 18-28, 
including 6 males and 6 females. A total of 2,275 valid samples were collected, of which 1,147 were 
male and 1,128 were female. Each action and the corresponding number of samples are shown in 
Table 1. 

2.2 Action Signal Detection 

The first step of recognition is to segment the action signal accurately. In the period of no motion, 
the signal is stable and has a small variance, and within the action interval, the signal fluctuates greatly 
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and has a large local variance. Therefore, we can set a sliding time window ݓ to detect and divide 
the action signal data by controlling the variance within the window. The specific process is: First, 
we calculate the variance of each axis for each sensor data in the window, and then compare the sum 
of each axis's variance for each sensor with the set threshold. When they satisfy the constraint at the 
same time, we judge it as the window containing the action signal segment, where the overlap size is 
 .3/ݓ

After preprocessing the data, we labeled 2275 action data with eight corresponding actions (as 
shown in Table 1). We integrate the actions with the corresponding labels, and store them according 
to different actions, different individuals, and different organizational forms used by the model. 
Finally, the corresponding data files are called separately during the deep learning model training. 

 
Table 1. Action name and corresponding label number 

Action Name of Table Tennis label number 
Forehand Attack 1 
Forehand Drive 2 
Forehand Chop 3 
Forehand Pick 4 
Backhand Dial 5 

Backhand Drive 6 
Backhand Chop 7 
Backhand Twist 8 

3. Recognition Model 

There are many methods of action recognition, such as decision trees, Bayesian methods, Nearest 
Neighbor, Support Vector Machines, and Neural Networks [16], et al. Relevant research shows that 
the recognition method based on deep learning has a good effect [17-18], and they have a wide range 
of applications in the field of computer vision. In this paper, the convolutional neural network model 
is used to identify and analyze the ping-pong action based on inertial sensing data. 

The convolutional neural network can automatically learn data features through multi-layer non-
linear transformations, and has strong expressive ability and learning ability. In article [19-22], 
convolution neural network is used to extract features. CNN has the characteristics of local connection, 
weight sharing and pooling operation, which can effectively reduce the network complexity and make 
it easy to train and optimize. It is widely used in image recognition and speech recognition. The 
structure of convolutional neural network used in this paper is shown in Figure 3. 

 

 
Fig. 3 Network structure.  
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where C1 and C2 are convolutional layers;	S1 and S2 are down sampling layers; F1 and F2 
are fully connected layers. 

Input layer is the original data of the action signal segment	ܺ ൌ ሺ࢞૚, ࢞૛, … ,  ሻ; n is the number࢔࢞
of input samples.	The formula for convolutional layer is 
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k୧୨
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୪ is the bias; fሺ∙ሻis the activation function. In this 
paper, ReLU (Rectified linear unit) [23] function is used as the activation function (Formula 2). 
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Down sampling layer follows the convolutional layer and corresponds to the feature map in 

previous layer, with spatially invariant features [24]. The formula is 
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where, ݓ௝

௟is the weight; ௝ܾ
௟is the bias; ݀݊ݓ݋ሺ∙ሻis the downsampling function. 

After two convolutional-pooling layers, two fully connected layers are connected, each neuron of 
which is connected to all neurons in previous layer. The fully connected layer can integrate the local 
information with class discrimination among convolutional layer or pooling layer [25]. The activation 
function is still the ReLU function. Finally, at output layer, the sample is classified by a SoftMax 
function. 

We provide the processed raw data described in Section 3 directly to the model for training, which 
does not require manually extract the features of the signal. The experimental results show that for 
the three kinds of inertial sensing data used in this paper, CNN can effectively extract the motion 
signal features and achieve high recognition accuracy. 

4. Experiments and Analysis 

In order to explore the recognition effect of ping-pong action when the sensors are combined, in 
the case of a single sensor, two sensor combinations, and three sensors used simultaneously, we 
performed a series of comparative experiments. We randomly selected 475 samples for testing and 
the remaining 1800 samples for training. In the experiment, we set the batch size to 50 and the number 
of iterations to 200. 

4.1 Recognition of the Three Sensors 

(1) A Single Sensor 
First of all, we separately train and test the triaxial data of accelerometer, gyroscope and 

magnetometer. The accuracy of recognition varies with the number of iterations as shown in Figure 
4. 
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Fig. 4 Experimenting with a single sensor  

 
As can be seen from Fig. 9, in the process of training for using three sensor data separately, the 

recognition accuracy rate becomes higher and higher with the number of iterations and tends to be 
stable after 200 iterations. The accuracy of accelerometer, gyroscope and magnetometer reached 
75.32%, 80.38% and 71.73% finally.  

(2)Two Combined Sensors 

Next, we explored the recognition effect when combining two sensors. We combine two of the 
accelerometer data, gyroscope data, and magnetic field sensor data, and then train and test them. The 
accuracy of recognition varies with the number of iterations as shown in Figure 5. 

 
Fig. 5 Experimenting with two combined sensors  

 
As can be seen from Fig. 10, during the training process, the combination of acceleration-magnetic 

field works best, achieving an accuracy of 93.25% after 200 iterations. The accuracy of other two 
combinations (acceleration-angular velocity, angular velocity-magnetic field) reached 85.44% and 
84.60% respectively. Overall, the combined recognition of the two sensors is superior to that of a 
single sensor. 

Advances in Computer Science Research, volume 87

621



 

(3) Recognition of the Combination of Three Sensors 

Finally, we experimented with the comprehensive utilization of the three-sensor data, and finally 
reached an accuracy rate of 96.62% (Figure 6). It can be seen that the combined use of the three 
sensors has the best recognition effect compared to the case where a single sensor and the combination 
of two sensors. 

 
Fig. 6 Experimenting with the combination of three sensors  

4.2 Comprehensive Comparison 

In order to avoid the occasionality during the experiment, we did twelve experiments for each case 
of 5.1-5.3, so that we can observe the experimental results more accurately and objectively. The 
accuracy of recognition for all experiments are shown in Table 2 

 
Table 2. The results of twelve experiments 

Experiment number Acc Ang Mag Acc_ang Acc_mag Ang_mag Acc_ang_mag
1 0.7806 0.8059 0.7658 0.8924 0.9367 0.8797 0.9726 
2 0.7722 0.8312 0.7975 0.8565 0.9515 0.8523 0.9367 
3 0.7384 0.7785 0.8186 0.8565 0.8966 0.8460 0.9409 
4 0.7532 0.7743 0.7785 0.9093 0.8987 0.8713 0.9515 
5 0.7679 0.8270 0.7954 0.8671 0.9241 0.8249 0.9662 
6 0.7574 0.7932 0.8101 0.8544 0.9008 0.8671 0.9620 
7 0.7447 0.7869 0.7890 0.8797 0.9156 0.8861 0.9473 
8 0.7869 0.7785 0.7173 0.8671 0.9072 0.8734 0.9620 
9 0.7574 0.8038 0.7321 0.8924 0.8924 0.8544 0.9451 

10 0.7637 0.8228 0.7869 0.8776 0.9325 0.8629 0.9599 
11 0.7511 0.8207 0.7869 0.8397 0.9177 0.8840 0.9599 
12 0.7468 0.8207 0.7342 0.8987 0.9325 0.8565 0.9515 

 
It can be seen that the effect of recognition is different for different sensor combinations and 

different ways of data organization. Even using the same sensor and under the same data-organization 
way, the results are not the same when we repeat the experiment. For more objective, more accurate 
and more direct comparison result, after removing the maximum and minimum values, we calculated 
the average accuracy in each case and listed them in Table 3. 

  
Table 3. Average recognition accuracy 

Sensor Acc Ang Mag Acc_ang Acc_mag Ang_mag Acc_ang_mag 
Accuracy 0.7595 0.8038 0.7776 0.8742 0.9162 0.8648 0.9546 
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In the case of a single sensor, the recognition accuracy of the gyroscope data is slightly higher than 
the other two sensors. In the combination of two sensors, the combination of acceleration data and 
magnetic field data is the best, achieving an accuracy of 86.48%. In all cases, the best is the 
comprehensive use of three sensors, including acceleration, angular velocity and geomagnetic sensing, 
with a total of nine axes of data. Its average recognition accuracy rate reaches 95.46%. on the whole, 
the greater the number of sensors, the better the recognition effect. When using three sensors together, 
the performance is best, and the accuracy rate is more than 90%.  

5. Conclusions and Future Work 

With the development of wearable inertial sensing devices, pattern recognition based on inertial 
sensors has been studied in various fields and it has gradually become a hot research direction. Some 
researchers have also used inertial sensors in combination with other types of sensors and have 
achieved good results in their experiments [26-28]. In this paper, we use the inertial sensing data of 
smart watch to recognize some important table tennis actions and we did a series of comparative 
experiments in the case of different sensor combinations and different forms of data organization. 
Finally, we tested a single experimental individual data and achieved good recognition results. We 
analyzed all the experimental results and reached the corresponding conclusions. 

In addition, we also have some deficiencies in the experimental design and experimental process: 
a) The individual's actions are not standard enough, and there are obvious differences in individual 
action features; b) The collected acceleration data contains gravity, which may affect the recognition 
performance; c) The amount of data is not enough. We collected a total of 12 subjects and could not 
effectively test the deep differences in action features between individuals. 

In future work, we will study action recognition and human behavior feature mining based on 
inertial sensors more deeply. On the one hand, we will improve the accuracy of data, increase the 
amount of data collection, and use relevant theories to make more reasonable planning of data sets; 
On the other hand, we will optimize the recognition model and make exploration and comparison of 
relevant theories in-depth. 

This work is supported by the Major transverse project and the Recruitment Program of Global 
Experts, under grant SWU41015718 and SWU20710953. 

References 

[1]. Brand M, Oliver N, Pentland A. Coupled hidden Markov models for complex action 
recognition[C]// Computer Society Conference on Computer Vision & Pattern Recognition. 
International Conference on IEEE, 1997: 994-999. 

[2]. Poppe R. A Survey on Vision-Based Human Action Recognition. Image and Vision Computing, 
2010, 28(6): 976-990. 

[3]. Ermes M, Parkka J, Mantyjarvi J, et al. Detection of daily activities and sports with wearable 
sensors in controlled and uncontrolled conditions[J]. IEEE Transactions on Information 
Technology in Biomedicine,2008,12 (1): 20-26. 

[4]. Shoaib M, Bosch S, Incel O D, et al. A survey of online activity recognition using mobile phones. 
[J]. Sensors, 2015, 15(1): 2059-2085. 

[5]. Wang W F, Yang C Y, Wang D Y. Analysis of Movement Effectiveness in Badminton Strokes 
with Accelerometers[M]. Genetic and Evolutionary Computing. Yangon, Myanma, 2016: 95-
104. 

[6]. Dadashi F, Arami A, Crettenand F, et al. A hidden Markov model of the breaststroke swimming 
temporal phases using wearable inertial measurement units[C]. Body Sensor Networks (BSN). 
Cambridge, MA, USA, 2013: 1-6. 

Advances in Computer Science Research, volume 87

623



 

[7]. Hsu Y L, Wang J S, Lin Y C, et al. A wearable inertial-sensing-based body sensor network for 
shoulder range of motion assessment[C]. International Conference on Orange Technologies 
(ICOT). Tainan, Taiwan, 2013: 328-331. 

[8]. Caldara M, Comotti D, Galizzi M, et al. A Novel Body Sensor Network for Parkinson's Disease 
Patients Rehabilitation Assessment[C]. Wearable and Implantable Body Sensor Networks (BSN). 
Zurich, Switzerland, 2014: 81-86. 

[9]. Zhang H, Zhang Z Y. Human Motion Capture System Based on Distributed Wearable Sensing 
Technology[C]. Wireless Communication and Sensor Network (WCSN). Wuhan, China, 2014: 
383-390. 

[10]. Wang X, Yang L T, Xie X, et al. A Cloud-Edge Computing Framework for Cyber-Physical-
Social Services[J]. IEEE Communications Magazine, 2017, 55(11):80-85. 

[11]. Vasilescu M A O. Human motion signatures: analysis, synthesis, recognition[C]// 
International Conference on Pattern Recognition, 2002. Proceedings. IEEE, 2002:456-460 vol.3. 

[12]. Lawrence S, Giles C L, Tsoi A C, et al. Face recognition: A convolutional neural-network 
approach. IEEE Transactions on Neural Networks, 1997, 8(1): 98-113. 

[13]. Neubauer C. Evaluation of convolutional neural networks for visual recognition. IEEE 
Transactions on Neural Networks, 1998, 9(4): 685-696. 

[14]. Lin Min, Chen Qiang, Yan Shui-Cheng. Network in network. arXiv:1312.4400v3,2013. 

[15]. Xu Chun-Yan, Lu Can-Yi, Liang Xiao-Dan, et al. Multi-loss regularized deep neural 
network. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 26(12): 2273-
2283. 

[16]. C. Randell, H. Muller, Context awareness by analyzing accelerometer data, in: Proceedings 
of the Fourth International Symposium on Wearable Computers, 2000, pp. 175–176. 

[17]. Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional 
Neural Networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2): 2012. 

[18]. Silver D, Huang A, Maddison C J, et al. Mastering the game of Go with deep neural networks 
and tree search. [J]. Nature, 2016, 529(7587): 484-489. 

[19]. Shao Hong, Chen Shuang, Zhao Jieyi, et al. Face recognition based on subset selection via 
metric learning on manifold [J]. Frontiers of Information Technology & Electronic Engineering, 
2015, 16 (12): 1046 - 1058. 

[20]. Yanyan Geng, Ru-Ze Liang, Weizhi Li, et al. Learning convolutional neural network to 
maximize Pos@ Top performance measure [C]// Proc of European Symposium on Artificial 
Neural Networks, Computational Intelligence and Machine Learning. 2017. 

[21]. Yang J B, Nguyen M N, San P P, et al. Deep convolutional neural networks on multi-channel 
time series for human activity recognition [C]// Proc of the 24th International Joint Conference 
on Artificial Intelligence. 2015: 25-31. 

[22]. Donahue J, Hendricks L A, Guadarrama S, et al. Long-term recurrent convolutional 
networks for visual recognition and description [C]// Proc of IEEE Conference on Computer 
Vision and Pattern Recognition. 2015:2625-2634. 

[23]. Nair V, Hinton G E. Rectified Linear Units Improve Restricted Boltzmann Machines Vinof 
Nair[C]// International Conference on Machine Learning. 2010: 807-814. 

[24]. Gu Jiu-Xiang, Wang Zhen-Hua, Jason Kuen, et al. Recent advances in convolutional neural 
networks. arXiv: 1512.07108v5, 2017. 

Advances in Computer Science Research, volume 87

624



 

[25]. Sainath T N, Mohamed A, Kingsbury B, et al. Deep convolutional neural networks for 
LVCSR//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal 
Processing. Vancouver, Canada, 2013: 8614-8618. 

[26]. Neha D, Nasser K. Real-Time Continuous Detection and Recognition of Subject-Specific 
Smart TV Gestures via Fusion of Depth and Inertial Sensing. IEEE Access, 2018: 7019-7028. 

[27]. Qin Z, Lihao N, Qian W. Robust Gait Recognition by Integrating Inertial and RGBD Sensors. 
IEEE Transactions on Cybernetics, 2018: 1136-1150. 

[28]. Enrique Garcia-Ceja, Carlos E. Galván-Tejada, Ramon Brena. Multi-view stacking for 
activity recognition with sound and accelerometer data. Information Fusion 40 (2018) 45–56. 

 

Advances in Computer Science Research, volume 87

625




