A Reliable Spectrum Sensing Strategy Based on Multiple-Antenna Technique

Shoutao Lv^{1,a}, Zeyang Dai^{1,b} and Jian Liu^{2,c}

¹ University of Electronic Science and Technology of China (UESTC) Chengdu 611731, China

² University of Science and Technology Beijing (USTB), Beijing 100083, China

^alvshoutao@uestc.edu.cn, ^b daizeyang1985@163.com, ^c liuj@uestc.edu.cn

Keywords: Cognitive radio; Spectrum sensing; Multiple-antenna technique; Detection probability.

Abstract. In this paper, we propose a *reliable spectrum sensing* strategy based on *multiple-antenna technique*, called RSS-MAT, to combat the channel uncertainties. We derive the closed-form expressions of the false alarm probability and detection probability for RSS-MAT. Finally, we present simulation results to validate our performance analysis. As expected, the simulation results show that RSS-MAT outperforms the spectrum sensing strategy with single antenna.

Introduction

Spectrum sensing is a fundamental task for cognitive radio (CR). Generally, there are three sensing methods widely used in application: matched filtering detection, cyclostationary feature detection and energy detection [1, 2, 3]. However, the performances of these methods will be severely degraded by the uncertainties in wireless environments [4]. The multiple-antenna technique is an effective method to combat the channel uncertainties [5]. In [6], the authors showed the benefit of spectrum sensing using the multiple-antenna technique.

In this paper, we propose a *reliable spectrum sensing* strategy based on *multiple-antenna technique*, referred to as RSS-MAT to mitigate the effects of channel uncertainties. In RSS-MAT, the power of the signal from primary user (PU) received at each antenna is independently compared with a predefined threshold. The received signals whose powers are no less than the threshold will be amplified and added together. Finally, the secondary user (SU) uses the resultant signal to make a final decision by energy detection. We give performance analysis for RSS-MAT and derive the closed-form expressions of the false alarm and detection probabilities. Finally, simulations are presented to show that RSS-MAT achieves better performance than the single-antenna based spectrum sensing.

System Model

We consider the CR system consists of a PU *P* and a SU *S* equipped with *N* antennas. The channels are modeled as independent Rayleigh fading. To improve the detection performance of *S*, RSS-MAT is proposed. Specifically, each antenna of *S* calculates the received power from *P* and compares it with a predefined threshold T_0 . Next, *S* amplifies the received signals whose powers are no less than T_0 . Then, the amplified signals are added together at *S*. Finally, *S* uses the resultant signal to make a final decision via energy detection.

Performance Analysis

We assume that *P* transmits signal x_p $(E\{|x_p|^2\}=1)$ with power E_p . The signal to noise ratio (SNR) of E_p is denoted as γ_p . We let θ denote *P*'s state, i.e., $\theta = 0$ means that *P* is absent and $\theta = 1$ means that *P* is present. Then, the signal received at the *i* th antenna is

$$y_i = \theta \sqrt{E_P} h_i x_p + n_i \tag{1}$$

where h_i is the channel coefficient from *P* to the *i* th antenna and n_i is the additive white Gaussian noise (AWGN) with zero mean and variance σ_0 . Clearly, $Y_i = |y_i|^2$ follows an exponential distribution and its expected value is given as

$$\begin{cases} \lambda_{i0} = \sigma_0, H_0 \\ \lambda_{i1} = E_P \sigma_i + \sigma_0, H_1 \end{cases}$$
(2)

where H_0 (i.e., $\theta = 0$) and H_1 (i.e., $\theta = 1$) are two standard test hypotheses, and σ_i is the average gain of the channel h_i . According to energy detection, the false alarm and detection probabilities are

$$P_{if} = \Pr\{Y_i \ge T_i \mid H_0\} = \int_{T_i}^{\infty} e^{-x/\lambda_{i0}} / \lambda_{i0} dx = e^{-T_i/\lambda_{i0}}$$
(3)

$$P_{id} = \Pr\{Y_i \ge T_i \mid H_1\} = \int_{T_i}^{\infty} e^{-x/\lambda_{i1}} / \lambda_{i1} dx = e^{-T_i \lambda_{i1}}$$
(4)

where T_i is the power threshold. Assuming $P_{if} = \alpha$, we have $T_i = -\sigma_0 \ln(\alpha)$.

In RSS-MAT, the amplification factor is chosen as $\beta_i = E_i / (E_P \sigma_i + \sigma_0)$, where E_i is set by the *i*th antenna. The SNR of E_i is denoted as γ_i . The received signal after amplified and added together is

$$y_{s} = \sum_{i=1}^{N} \theta_{i} \sqrt{\beta_{i}} y_{i} = \theta \sum_{i=1}^{N} \theta_{i} \sqrt{\beta_{i}} \sqrt{E_{p}} h_{i} x_{p} + \sum_{i=1}^{N} \theta_{i} \sqrt{\beta_{i}} n_{i}$$

$$(5)$$

where θ_i denotes the estimated value of θ made at the *i* th antenna. In this case, the power $Y_s = |y_s|^2$ obeys an exponential distribution and its expected value is

$$\begin{cases} \lambda_0 = \sum_{i=1}^N \theta_i \beta_i \sigma_0, H_0 \\ \lambda_1 = \sum_{i=1}^N \theta_i \beta_i (E_P \sigma_i + \sigma_0), H_1 \end{cases}$$
(6)

Then, the false alarm and detection probabilities of RSS-MAT are respectively calculated as

$$P_{f} = \Pr\{Y_{S} \ge T_{S} \mid H_{0}\} = \sum_{j=1}^{2^{N}-1} \left\{ \left(\prod_{i \in \Phi_{j}} \alpha\right) \left(\prod_{i \in \Phi_{j}} (1-\alpha)\right) e^{-T_{S} / \left(\sum_{i \in \Phi_{j}} \beta_{i} \sigma_{0}\right)} \right\}$$
(7)

$$P_{d} = \Pr\{Y_{S} \ge T_{S} \mid H_{1}\} = \sum_{j=1}^{2^{N}-1} \left\{ \left(\prod_{i \in \Phi_{j}} P_{id}\right) \left(\prod_{i \in \bar{\Phi}_{j}} (1 - P_{id})\right) e^{-T_{S} \left\langle \sum_{i \in \bar{\Phi}_{j}} \beta_{i}(E_{P}\sigma_{i} + \sigma_{0}) \right\rangle \right\}$$

$$(8)$$

where T_s is power threshold used by S, Φ_j is the *j*th sub-collection of the set $\{1, \dots, N\}$ and $\overline{\Phi}_j$ is its complementary set. Assuming $P_j = \alpha$, we have

$$T_s = P_f^{-1}(\alpha) \tag{12}$$

where P_f^{-1} is the inverse function of P_f .

Simulation Results

In this section, the false alarm probability α is set as 0.1. First, we consider the detection probability P_d versus the primary transmit SNR γ_P for RSS-MAT under $\sigma_i = 0.5$ and $\sigma_i = 1$ for $i = 1, 2, \dots, N$, which are respectively illustrated in Fig. 1 and Fig. 2. Meanwhile, we choose $\gamma_i = 1$ for $i = 1, 2, \dots, N$. In Fig. 1 and Fig. 2, we also plot P_d for the single-antenna (i.e., N = 1) strategy.

Fig. 2 P_d versus γ_P under $\sigma_i = 1$.

From Fig. 1 and Fig. 2, we can observe that RSS-MAT has higher detection probability than the single-antenna case. The detection probability of RSS-MAT increases with increasing γ_p . Besides, the detection performance of RSS-MAT can be improved by increasing the antenna number. Comparing Fig. 1 with Fig. 2, we also can see that better channel condition results in higher detection probability for RSS-MAT, i.e., the detection probability of RSS-MAT is higher under $\sigma_i = 1$ than under $\sigma_i = 0.5$.

Second, we depict P_d versus γ_i under $\sigma_i = 0.5$ and $\sigma_i = 1$ in Fig. 3 and Fig. 4, respectively, where we assume that $\gamma_P = 10 \text{ dB}$. The simulation results also show that RSS-MAT has better detection performance than the single-antenna case. Besides, from Fig. 3 and Fig. 4, we know that increasing γ_i can not improve the detection performance of RSS-MAT significantly.

Summary

In this paper, we proposed a multiple-antenna based spectrum sensing strategy, called RSS-MAT, to combat the channel uncertainties. We derive the closed-form expressions of the false alarm and detection probabilities for both the RSS-MAT and single-antenna strategies. Finally, numerical and simulation results are presented to validate the effectiveness of RSS-MAT. It is shown that RSS-MAT can achieve better detection performance than the single-antenna case. In this end, since the proposed RSS-MAT strategy has low computational complexity, it can be easily applied in practice.

References

[1] F. F. Digham, M. S. Alouini and M. K. Simon, "On the energy detection of unknown signals over fading channels," in Proc. IEEE ICC, Anchorage, Alaska, vol. 5, pp. 3575–3579, May 2003.

[2] B. Farhang-Boroujeny, "Filter bank spectrum sensing for cognitive radios," IEEE Trans. Signal Process., vol. 56, no. 5, pp. 1801–1811, May 2008.

[3] W. A. Gardner, "Exploitation of spectral redundancy in cyclostationary signals," IEEE Signal Process. Mag., vol. 8, no. 2, pp. 14–36, Apr. 1991.

[4] Y. Zou, Y. Yao and B. Zheng, "A cooperative sensing based cognitive relay transmission scheme without a dedicated sensing relay channel in cognitive radio networks," IEEE Trans. Signal Process., vol. 59, no. 2, pp. 854-858, Feb. 2011.

[5] Z. Dai, X. Wang and J. Liu, "Array calibration based on improved instrumental sensors method," in Proc. IEEE CMC, pp. 424-428, 2011.

[6] A. Taherpour, M. Nasiri-Kenari and S. Gazor, "Multiple antenna spectrum sensing in cognitive radios," IEEE Trans. Wireless Commun., vol. 9, no. 2, pp. 814-823, Feb. 2010.