

Analysis Framework of Freemodbus
Zhang Wenxia1,a ，Wang Yan2,b，Li Shuhua3, c

Department of Electronic Information Engineering, Ordos College of Inner Mongolia University,
Ordos, Inner Mongolia

azhangwenxia100@163.com， bnmsnake@126.com ，clsh8120@imu.edu.cn

Keywords: modbus protocol， freemodbus,framework，HAL

Abstract. Modbus is a popular network protocol in the industrial manufacturing environment. A
modbus communication stack requires two layers:the modbus application protocol which defines
the data model and functions and a Network layer. The FreeMODBUS provides an implementation
of the modbus application protocol and supports RTU/ASCII transmission models. The paper
introduces the analysis of FreeMODBUS’s whole framework and the serial links implementation.
According to the analysis, it is easily to realize the modbus protocol stack on the chip which
FreeMODBUS hasn’t realized and so quickly to finish the product design.

Introduction of modbus

Modbus is the first filed bus that used in the industrial filed around the world. In China, modbus
has become the national standard GB/T19582-2008. modbus is the transport protocol on application
layer of the seventh level of OSI model which provides client/server communications among
devices that connected by varies bus and network.

Introduction of FreeMODBUS[1]

FreeMODBUS is a free implementation of the popular modbus protocol specially targeted for
embedded systems. The FreeMODBUS current version provides an implementation of the modbus
application protocol v1.1a and supports RTU/ASCII transmission models defined in the modbus
over serial line specification 1.0. The implementation is based on the most recent standards and
fully compliant with it. Receiving and transmitting of modbus RTU/ASCII frames is implemented
as a state machine which is driven by callbacks from the hardware abstraction layer. This makes
porting to new platforms easily. After completed received, the frame is passed to the modbus
application layer where HAL(hardware abstraction layer) is inspected. Hooks are available in the
application layer to add new modbus functions.

Analysis the framework of FreeMODBUS and the realization of serial links

Modbus serial link protocol is a master/slave protocol[2], which layered on the second level of
the OSI model.(shown in Fig.1).

Fig 1. modbus protocol layer

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0608

In physical layer, modbus serial link can use different physical interfaces(such as RS485,RS232) .
The serial port drivers are different in various chips. So the physical layer must be abstracted to a
HAL (Hardware Abstraction Layer)which intents to hide the hardware differences among various
chips.

As a universal model, the realization of the modbus application layer and the protocol stack is
independent of the chips. The protocol stack implementation diagram is shown in Fig.2.

Fig 2. protocol stack implementation

Analysis of the application layer
The application layer interface file is mb.c, which is mainly realized the initialization and close

of the protocol stack. The core part of the protocol stack is the event-driven message management
which is responsible for processing corresponding events. In the high efficient network
transmissions, such as middleware technology of the wireless sensor network , the technology based
on event-driven is very common[3].The event-driven management function is eMBPoll, (shown
Fig.3.)

Fig 3. event driven management

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0609

Analyze the setting of the event (Msp430 RTU as an example
• EV_FRAME_RECEIVED
In the xMBRTUTimerT35Expired function, when eRcvState is at STATE_RX_RCV state,

which indicates that /* A frame is received and t35 expired. Notify the listener that a new frame was
received. * /, it is set to EV_FRAME_RECEIVED, then in the event handle processing poll, data
analyze can be started.

• STATE_RX_RCV
In the xMBRTUReceiveFSM function, when eRcvState is modified from STATE_RX_IDLE

state to STATE_RX_RCV state, it indicates the beginning of receiving data.
• STATE_RX_IDLE
 In the xMBRTUTimerT35Expired function, eRcvState is set to STATE_RX_IDLE at last.
• pxMBFrameCBByteReceived
For the callback, the function pointer of the pxMBFrameCBByteReceived is set to

xMBRTUReceiveFSM in the eMBInit. And the function pointer pxMBFrameCBByteReceived is
called in the function prvvMBSerialRXIRQHandler (void) __interrupt [USART0RX_VECTOR].
So while data is receiving, read interruption is generated by the chip that lead to a series of actions
and complete the data reading, parsing and response with the event management poll. This flow
chart is shown in Fig.4.

Fig 4. event management poll

HAL（Hardware Abstraction Layer) implementation

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0610

Realization of the HAL locates in the directory “port” of FreeMODBUS, the concrete
implementation of the serial link is coded in port.h、 portevent.c、 portserial.c and porttimer.c.

port.h
The file defines data types and critical code section(ENTER_CRITICAL_SECTION /

EXIT_CRITICAL_SECTION) which has to be simulate MCU, it has been realized in the windows
system.

portevent.c
This file includes event management: get、post and init.
portserial.c
This file includes read interruption and the corresponding buffer read and write, this is the kernal

part to hidden hardware differences among various chips’ read/write operation.
porttimer.c
This file includes the concrete realization of the timer’s initialization, enable and close on

different MCU.

Summary

Through the analysis, it can concluded that FreeMODBUS has completely realized modbus
protocol in which message response based on event can response for various interrupts, so it has
good expandability. With the implementation of HAL, the hardware differences among various
chips are hidden, so the entire protocol stack is independent of the hardware. The engineers need
only to re-write the HAL layer so that modbus protocol can be realized on their chips. Our labs have
completed the implementation of modbus protocol on the PIC30F6014 chip[4] [5]. The results of
the software to test the protocol is shown as in Fig.5.

Fig 5. modbus realization on pic6014

References

[1] Http://FreeMODBUS.berlios.de/References.

[2] modebus protocol Chinese version, pp 0-126

[3] Wireless sensor network middleware technology, Ru-chuan, Science Press, 2011

[4] dsPIC30F Programmer’s Reference Manual，2003 Microchip Technology Inc. pp 5-84 5-102

[5] dsPIC30F Family Overview,2004 Microchip Technology Inc. pp 8-16

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0611

