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Abstract: Inthis paper we propose a numerical method based on the splitting strategy to solve the
Cheeger cut model. In order to improve the classification results, we propose a new self-tuning
strategy to choose arobust scaling parameter. Some numerical examplesare arranged toillustrate the
efficiency of our proposed method.

I ntroduction

Data classification is of an important topic in machine learning and computer vision. Some
original clustering techniques aiming to data classification were based on the combinatorial
normalize/ratio graph cut problem [10]. These techniques tend to find the second eigenvector or the
first k th eigenvectors of the unnormalized and normalized graph Laplacians based on some suitable
relaxations. Recent ideas were extended to the standard graph Laplacian such as graph p -Laplacian

[4,9], where they showed that using a ratio of p -homogeneous functions leads quite naturally to a

nonlinear eigenvalue problem associated to a certain nonlinear operator. Furthermore, Hein and
Buhler [7] noticed that the graph p -Laplacian approximates to the Cheeger cut when p — 1. Unlike

other graph-based approximation/relaxation techniques, this approximation can be obtained any
arbitrarily exact. This observation theoretically and practically thus starts a direction for spectral
clustering techniques based applications.

Following the work in the Cheeger cut problem [7], Bresson et al. [12,3] recently proposed to first
introduce some constrained variables and then to use an operator splitting method. Since these
subproblems could be efficiently solved by using the classical optimization methods such as the
splitting method and the augmented L agrangian method, they gave some efficient numerical results.
In this paper we also consider the relaxation strategy following thework in[12, 3]. Differentialy, we
use the penalty method to solve it by introducing a variable substitution. Furthermore, we propose a
new and more robust scaling parameter to improve the effectiveness of classification. Some
numerical compares are arranged to illustrate the effectiveness of our proposed method.

The rest of this paper is organized as follows. In section 2 we proposed a numerical method to
solve the Cheeger cut model. We give some numerical comparisonsto illustrate the efficiency of our
proposed method

Cheeger Cut Model

Setv ={v,v,,--,v, } be N vertices and w:V xV — R’ represents the similarity between its

vertices, the Cheeger cut value of abinary partition is defined by
cut (S,S°) (2.1

&)= T S|.[s<]
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with SUS® =V and SNS° =¢, where cut(S,S°):= > @, and |- | denotes the number of the

€S, je SC
points in a given set. The problem (2.1) is an NP-hard problem, however we can find an exact
continuous relaxation
: Iox .. (2.2)
e X = m G
to find its solution, where D is a bounded operator and m(x)denotes the median value of the

vector x, [01]" =[01]x[0.1]x---x[01] for N =|v|. If the global optimal solution x"of the problem
(2.2) is obtained, then we can use the natural relationship of X" =1, to get the exact partition Sand

S°. For simplification, we set the minimization value of (2.2) as 1 and the solutionX.

Dinkelbach type method.

The problem (2.2) isactual the fractional programming problem. However, asthe usual drawbacks
of the fractional programming problem, there isno direct algorithm for guaranteeing to get the global
solution of (2.2), which urges us to consider the following parametric problem

F(4)=min|Px, - Ax—mlx),
xelo "

where A€ R. Thisis based on the equivalence of getting the minimized value of (2.2) by finding
the root of the equation F(1)=0[6].

Algorithm 2.1. Compute the minimization problem (2 3).

(2.3)

Step 0 Choose an original valuex’ and set £ = n{ ] .Let k=1;
X
Step 1 Compute x* by
Fla)= [x—mix) (24)
XE 01
Step 2 If (& )= 0, then stop. Otherwise, set
s _ (2.5)

ka - mi(x*

o1

andlet k:=k+1 goto Step 1.
The problem (2.4) in Algorithm 2.1 includes a nonlinear operator m(x). Since the original vector

xe {01}" , we can assume that m(x) . Then the minimization problem (2.4) can be rewritten as
min|Px. - 214 (2.6)

whereC; : {X‘XE [0]" } {x‘x 1< N/2:r1} Obviously the set C, is abounded close convex set,

then the problem (2.6) has at least one global solution denoted by X . However, the problem (2.6)

includes two non-smoothing terms, which is not to be solved. With the help of an auxiliary variable ¥
we can transfer to consider

X,yeC

st. X=y
where ¢ = {y‘ye 04" jr fyly'1< N/2+1} . Using the penalty method, the minimization

{ml n [ox],. = 2y 2.7)

problem (2.7) can be written as

min Iox]l.: + >~ ||><— y

x,yeC

o= 2y, 28)

=F(x,y)

So we can solve the problem (2.8) by the splitting strategy as follows
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R(y™ )= x" = arg min |Dx] . +%Hx_ yrﬂ—lHZIZ (2.9a)
X

S )= y" = arg min o v - 2yl (2.90)
YeC

Obviously, the subproblem (2.9a) corresponds to the special ¢* — ¢/ model, which solution can be
obtained by using the classic projection gradient method such as the Bermudez-Moreno algorithm[1,

2]. That isto say, let £°be asuitable original value, we can consider the iterative scheme as
@ Choosethe original value ™ and set j =1;

® Compute ™ by ¢m — P, (& + %D(D%mﬂ gy,
where P isa projection operator and f; =1{&:[¢|<1};

@ If the stop condition issatisfied, set x™ = y™*' - T¢™ ; Otherwise, set | = j +1 and go to the

second step.
For the linear constraint subproblem (2.9b), we first focus on the constrained condition

0<yT1< %+1 for the cost function to get the optimal solution y°. Specifically, we first solve

Y= Ayl (2.10)

.1 N

— |y = x
min S|y

N

st. y'1<1+ —

y 2

Based on the numerical optimization method, the solution of the problem (2.10) satisfies that

y—x"-tAW+p=0, (2.11)
where p=ma>{0, p+cl(yT1—g—1D and W = (w,w,,--,w, ) such that
:isign(yi), if y 20
B (2.12)
e [01] if y=0

for i=12,---,N. Furthermore, we get the explicit solution y°m = (y,>™ y,°" ...,y >") of the
minimization problem (2.10) based on the relationships of (2.11) and (2.12) as
m K m H m
om _ I, -:(-leIgn(l‘i ) .If rim #0 (2.13)
+ A'r, if " =0
fori=12,--,N, where r"i =X"i — p"rand pj“:ma%q d“+cl((y“)T1—|;—1D. Once we get y°or,

then the solution y™ = (y,",y,",-,y,™ | of the minimization problem (2.9b) can be obtained by
truncating every subvariables y°™into [o,1] with the following strategy

1, if y°">1

on gy om 214

ym = H[O,l]N <y0,m):: y,o", ify,” " e [0,1] ( )
0, it y°om <1

for i =1,2,---,N. Then we have the following strategy to solve the problem (2.11) as

e Choose original value p™and set r =1;

e Compute y™by the strategy (2.14);

eUpdate p™:= p™lby p" = max{o, p™t+ cl((y"‘)Tl—';—lj} (2.15)
o |f the stop conditon is satisfied ,

set X" =y™* —%D*é’m'; Otherwise, set j = j+1and continuously compute ™.

Based on the strategies (2.10) and (2.14) and choosing some suitable values, so we can get the
solution of the subproblem (2.4).
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Numerical Implementation

In this section we consider the numerical implementation based on the Cheeger-cut model. In the
Cheeger-cut model, the quality of the linear operator D is confirmed by the weighted function. A
popular weighted function is the Gaussian kernel which defines the similarity between two points as
w ; =exp(—d? /o), where d, , is the distance between datum points x, and x;, the scaling
parameter o determines the similarity of these two datum points. However, the fixed scaling
parameter ¢ is not suitable for more complex data. To circumvent this problem, Zelnik-Manor and

Perona [13] proposed to consider an adapted parameter 6°1 = 0,0; withtheassumptionof o,/0, as
the distance to the kih nearest neighbor for the datum point x /x;. Unfortunately, this method
maybe suffer from a drawback when one scaling parameter is significantly larger than the other,

multiplying the scaling parameters together could cause the points to become more similar than
desired. A possible choiceisto set o, =mirlg;,0,) in[11] or o, = max(c;,;) in[8], but these choices

obviously separate the relationship between o, and o;. So herewe propose anew scaling parameter

o2 = %(Gzi +0,0,+0% )- Obviously, when the gap between o, and o; is smaller, the property of

the proposed new parameter tends to the origina parameter o> or o;0;. Inversely, the scaling

property tends to the dominated parameter.

Examples. In numerical examples, we consider three data show in Figure3.1 for the data
classification, where data are first added to the Gaussian noise with ¢ =0.025 and then embedded in
R' . For parameters, we first fix the parameter o = 0.4 and then tune other parameters by repeating
the numerical algorithms in order to choose more suitable parameters. The numerical results
including the error points (al so the percentage) between the original data and the experimental results
are shown Table 3.1. Aswe can see from Table I , our numerical method can efficiently cluster the
data, especially for choosing scales o, and o, . It'sworth noting that we can get worst classification

results when the structure of datum such as Data (I11) is complex.

Figure 3.1: Left to right: (a): Data(l);(b): Data(ll);(c)Data(l11)
Table 3.1 Numerical results in Examples

Data Set (1) Data Set (1) Data Set (I11)
Scale\ Error | Poins Error | Points Error | Points
Erro (%) (%) (%)
o, 3.25 65 9.45 18 31.40 62
9 8
o, 3.30 66 9.50 19 34.15 68
0 3
o, 3.30 66 9.55 19 34.1 638
1 2
o, 3.25 65 9.10 18 33.35 64
2 7
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Conclusion

In this paper we proposed a splitting method to solve a balanced data classification problem. In
order to improve the numerical results, we also propose a new self-tuning strategy for choosing
suitable scale. Some numerical examples were arranged to illustrate the efficiency of our proposed
method. However, we al so noticed that our method did not efficiently deal with the more complicated
data. In the future we will further consider some new numerical models or methods to improve the
classification results.
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