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Abstract：In this paper we propose a numerical method based on the splitting strategy to solve the 
Cheeger cut model. In order to improve the classification results, we propose a new self-tuning 
strategy to choose a robust scaling parameter. Some numerical examples are arranged to illustrate  the 
efficiency of our proposed method. 

Introduction 
Data classification is of an important topic in machine learning and computer vision. Some 

original clustering techniques aiming to data classification were based on the combinatorial 
normalize/ratio graph cut problem [10].  These techniques tend to find the second eigenvector or the 
first k th eigenvectors of the unnormalized and normalized graph Laplacians based on some suitable 
relaxations.  Recent ideas were extended to the standard graph Laplacian such as graph p -Laplacian 
[4,9], where they showed that using a ratio of p -homogeneous functions leads quite naturally to a 
nonlinear eigenvalue problem associated to a certain nonlinear operator.  Furthermore, Hein and 
Buhler [7] noticed that the graph p -Laplacian approximates to the Cheeger cut when 1→p . Unlike 
other graph-based approximation/relaxation techniques, this approximation can be obtained any 
arbitrarily exact. This observation theoretically and practically thus starts a direction for spectral 
clustering techniques based applications. 

Following the work in the Cheeger cut problem [7], Bresson et al. [12,3] recently proposed to first 
introduce some constrained variables and then to use an operator splitting method. Since these 
subproblems could be efficiently solved by using the classical optimization methods such as the 
splitting method and the augmented Lagrangian method, they gave some efficient numerical results. 
In this paper we also consider the relaxation strategy following the work in [12, 3]. Differentially, we 
use the penalty method to solve it by introducing a variable substitution. Furthermore, we propose a 
new and more robust scaling parameter to improve the effectiveness of classification. Some 
numerical compares are arranged to illustrate the effectiveness of our proposed method. 

The rest of this paper is organized as follows. In section 2 we proposed a numerical method to 
solve the Cheeger cut model. We give some numerical comparisons to illustrate the efficiency of our 
proposed method 

Cheeger Cut Model 

Set { }NvvvV ,,, 21 =  be N  vertices and +→× RVVw : represents the similarity between its 

vertices, the Cheeger cut value of a binary partition is defined by 
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with VSS c = and φ=cSS  , where ( ) 
∈∈
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,
,:, ω and ⋅ denotes the number of the 

points in a given set. The problem (2.1) is an NP-hard problem, however we can find an exact 
continuous relaxation 

[ ] ( ) 1
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1,0 
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xmX
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                                                   (2.2) 

to find its solution, where D is a bounded operator and  ( )xm denotes the median value of the 

vector x , [ ] [ ] [ ] [ ]1,01,01,010 ×××= N
，  for VN = . If the global optimal solution ∗x of the problem 

(2.2) is obtained, then we can use the natural relationship of sx 1=∗  to get the exact partition S and 
cS . For simplification, we set the minimization value of (2.2) as  λ  and the solution x . 

     Dinkelbach type method. 
The problem (2.2) is actual the fractional programming problem. However, as the usual drawbacks 

of the fractional programming problem, there is no direct algorithm for guaranteeing to get the global 
solution of (2.2), which urges us to consider the following parametric problem 

( )
[ ]

( ) 11min
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where R∈λ . This is based on the equivalence of getting the minimized value of (2.2) by finding 
the root of the equation ( ) 0=λF [6]. 

Algorithm 2.1. Compute the minimization problem (2.3). 

Step 0 Choose an original value 0x and set ( )
1

1

00
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
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−
=λ . Let 1=k ; 

Step 1 Compute kx  by 
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Step 2 If ( ) 0=kF λ , then stop. Otherwise, set 
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and let  1: += kk   go to Step 1. 
The problem (2.4) in Algorithm 2.1 includes a nonlinear operator ( )xm . Since the original vector 

{ }Nx 1,0∈ , we can assume that ( )xm . Then the minimization problem (2.4) can be rewritten as 

11

1
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xDx k

Cx

λ−
∈

,                                                       (2.6) 

where [ ]{ } { }.12/11,0:1 +≤∩∈= NxxxxC TN    Obviously the set 1C  is a bounded close convex set, 

then the problem (2.6) has at least one global solution denoted by x~ . However, the problem (2.6) 
includes two non-smoothing terms, which is not to be solved. With the help of an auxiliary variable y , 
we can transfer to consider                     







=

−
∈

yxts

yDx k

Cyx

..

11min
,


λ

                                                         (2.7)                     

where [ ]{ } { }12/11,0: +≤∩∈= NyyyyC TN . Using the penalty method, the minimization 

problem (2.7) can be written as 
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So we can solve the problem (2.8) by the splitting strategy as follows 
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Obviously, the subproblem (2.9a) corresponds to the special 21  − model, which solution can be 
obtained by using the classic projection gradient method such as the Bermudez-Moreno algorithm [1, 
2]. That is to say, let 0ξ be a suitable original value, we can consider the iterative scheme as 

● Choose the original value 0mξ and set 1=j ; 

● Compute jmξ by ))(
1

( 111 −−+= −− mmTmm yDDP jjj ξ
δ

ξξ β
,  

where P  is a projection operator and { }1: ≤= ξξβδ ;                

● If the stop condition is satisfied, set jmTmm Dyx ξτ−= −1 ; Otherwise, set 1+= jj  and go to the 
second step. 

For the linear constraint subproblem (2.9b), we first focus on the constrained condition 

1
2

10 +≤≤ N
y T  for the cost function to get the optimal solution 0y . Specifically, we first solve  









+≤

−−

.
2

11..

2

1
1

2
2

min
N

yts

yxy

T

k
m

Y
 λ

τ                                              (2.10) 

  Based on the numerical optimization method, the solution of the problem (2.10) satisfies that 
                                                  0=+−− pWxy km ττλ ,                                                          (2.11) 
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for Ni ,,2,1 = . Furthermore, we get the explicit solution ( )Tmo
N

momomo yyyy ,,
2

,
1

, ,,, =   of the 

minimization problem (2.10) based on the relationships of (2.11) and (2.12) as 
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mmm yyyy ,,, 21 =  of the minimization problem (2.9b) can be obtained by 

truncating every subvariables moy , into [ ]1,0  with the following strategy            
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for Ni ,,2,1 = . Then we have the following strategy to solve the problem (2.11) as 

( )
















+=−=

•














 −−+==•

•
=•

∗−

−

.1,;

,

1
2

1,0max1:

);14.2(

;1

1

1
1

0

jj mmmm

Tmmmmm

m

m

computelycontinuousandjjsetOtherwiseDyxset

satisfiedisconditonstoptheIf

N
ycppbyppUpdate

strategythebyyCompute

rsetandpvalueoriginalChoose

ξξ
δ
μ

                (2.15)    

Based on the strategies (2.10) and (2.14) and choosing some suitable values, so we can get the 
solution of the subproblem (2.4). 
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Numerical Implementation 
In this section we consider the numerical implementation based on the Cheeger-cut model. In the 

Cheeger-cut model, the quality of the linear operator D  is confirmed by the weighted function.  A 
popular weighted function is the Gaussian kernel which defines the similarity between two points as 

)/exp( 22
,, σjiji dw −= , where jid , is the distance between datum points ix  and jx , the scaling 

parameter σ  determines the similarity of these two datum points. However, the fixed scaling 
parameter σ  is not suitable for more complex data. To circumvent this problem, Zelnik-Manor and 

Perona [13] proposed to consider an adapted parameter jiσσσ =1
2  with the assumption of ji σσ /  as 

the distance to the kth  nearest neighbor for the datum point ji xx / . Unfortunately, this method 

maybe suffer from a drawback when one scaling parameter is significantly larger than the other, 
multiplying the scaling parameters together could cause the points to become more similar than 
desired. A possible choice is to set ( )ji σσσ ,min2 =  in [11] or ( )ji σσσ ,max1 =  in [8], but these choices 

obviously separate the relationship between iσ  and jσ .  So here we propose a new scaling parameter 

( )jjii
22

4
2

3

1 σσσσσ ++= . Obviously, when the gap between iσ  and jσ  is smaller, the property of 

the proposed new parameter tends to the original parameter 2σ  or jiσσ . Inversely, the scaling 

property tends to the dominated parameter. 
Examples. In numerical examples, we consider three data show in Figure3.1 for the data 

classification, where data are first added to the Gaussian noise with  025.0=σ  and then embedded in 
100R . For parameters, we first fix the parameter 4.0=σ and then tune other parameters by repeating 

the numerical algorithms in order to choose more suitable parameters. The numerical results 
including the error points (also the percentage) between the original data and the experimental results 
are shown Table 3.1. As we can see from TableⅠ, our numerical method can efficiently cluster the 
data, especially for choosing scales 1σ  and 4σ .  It's worth noting that we can get worst classification 
results when the structure of datum such as Data (III) is complex.  

 
Figure 3.1: Left to right: (a): Data(I);(b): Data(II);(c)Data(III) 
Table 3.1 Numerical results in Examples 

 
Scale\

Erro 

Data Set (I) Data Set (II) Data Set (III) 
Error

(%) 
Poins Error

(%) 
Points Error

(%) 
Points 

1σ  3.25 65 9.45 18
9 

31.40 62
8 

2σ  3.30 66 9.50 19
0 

34.15 68
3 

3σ  3.30 66 9.55 19
1 

34.1 68
2 

4σ  3.25 65 9.10 18
2 

33.35 64
7 

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France. 
© the authors, 2013 

0709



 

Conclusion 
In this paper we proposed a splitting method to solve a balanced data classification problem. In 

order to improve the numerical results, we also propose a new self-tuning strategy for choosing 
suitable scale. Some numerical examples were arranged to illustrate the efficiency of our proposed 
method. However, we also noticed that our method did not efficiently deal with the more complicated 
data. In the future we will further consider some new numerical models or methods to improve the 
classification results. 
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