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Abstract. In this paper, by applying the fountain theorems, we study the existence of infinitely many 
high energy solutions for the nonlinear kirchhoff nonlocal equations under the 
Ambrosetti-Rabinowitz type growth conditions or no Ambrosetti-Rabinowitz type growth conditions, 
infinitely many high energy solutions are obtained. 

Introduction and Main Results 

Recently, many authors studied Kirchhoff type problems, some important and interesting results can be 
found in [1-8]. In this paper, we study the following Kirchhoff-type problems 
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In order to establish multiple solutions for problem (1), we make the following assumptions: 
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Before stating our main results, we first introduce some preliminary nations. Let E  be a Banach space with 

the norm   and jj N
E X

∈
= ⊕  with dim jX < ∞  for any j N∈ .Set 

0
;

k

k jj
Y X

∈
= ⊕  k jj k

Z X
∞

=
= ⊕  and                    

{ : }, { : }k k k k k kB u Y u N u Y uρ γ= ∈ ≤ = ∈ ≤  for 0.k kρ γ> >  

• theorem1 ([1] Fountain theorem). Let 1( , )C E Rϕ ∈  be a even functional. If for every k N∈ , there exist 

kρ >  0.kγ >  such that 
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 Definition 1  Let 1( , )C E RΦ ∈ ,we say that Φ  satisfies the cerami condition at the level c R∈ ,if any 

sequence { }nu X⊂ .along with 

( )nu cΦ →  and (1 ) '( ) 0,n nu u+ Φ →  as .n → ∞  

possesses a convergent subsequence; Φ  satisfies the ( )C  condition if Φ  satisfies ( )cC  for all c R∈ . 

In this paper, we consider 1
0 ( )E H= Ω endowed with the norm 
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( )PL Ω  denotes the usual Lebesgue space with the norm 
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The main results of this paper are the following: 
Theorem 2 Suppose that 1 2 4 5( )( )( )( )L L L L hold, Then problem (1) has a sequence of solutions { }nu  such 

that ( ) ,nuΦ → ∞  as .n → ∞  

Theorem 3 Suppose that 1 3 4 5( ) ( )( ' )( )L L L L− hold, Then problem (1) has a sequence of solutions { }nu  

such that ( ) ,nuΦ → ∞  as .n → ∞  

Proofs of Theorems 

Proof of Theorem 2  (i) Let { }nu E⊂  be a ( )cC  sequence of ( )uΦ . Then for n  large enough, we have 
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which is course implies that { }nu  is bounded.  We have nu u  in 1
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Theorem A.2
[1]

 (willem 1996) implies that ( , ) ( , )nf x u f x u→ in ( ), 1qL q p pΩ = − .we next prove that 

{ }nu  has a convergent subsequence obverse that 
2 2 2

'( ) '( ), ( ) ( ) ( )n n n n n n nu u u u a u u dx b u dx u u u dx b u dx u u u dx
Ω Ω Ω Ω Ω

Φ − Φ − = ∇ − + ∇ ∇ ∇ − + ∇ ∇ ∇ −    
                          

2 2
( ) ( ) ( ( , ) ( , ))( )n n n nb u dx u u u dx q x u u dx f x u f x u u u dx

Ω Ω Ω Ω
+ ∇ ∇ ∇ − + − − − −     

                           
2 2 2

min{ ,1} ( ) ( )n n nE
a u u b u u dx u u u dx

Ω Ω
≥ − + ∇ − ∇ ∇ ∇ −   

                            ( ( , ) ( , ))( )n nf x u f x u u u dx
Ω

− − −  

using the boundedness of { }nu  and  nu u  in 1
0 ( )H Ω , one has 
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It follows from the Höld inequality that 
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Thus we deduce that 0n E
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Since on the finite-dimensional space kY  all norms are equivalent, there for 1( )A  is satisfied for every 

0kρ >  large enough. 

(iii) We next verify condition 3( )A ,To this end,from 2( )L ,we have 1( , ) (1 ).
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So condition 2( )A  is proved. Now all conditions of Theorem 1 hold. Therefore, problem(1) has a sequence 

of solutions { }nu , ( ) ,nuΦ → ∞  as .n → ∞  

Proof of Theorem 3 (i) We verify Φ  satisfies ( )cC  for all c R∈ , such that 

                               ( )nu cΦ →  and (1 ) '( ) 0,n nu u+ Φ →  as .n → ∞                                           (2) 
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which means that lim ( ) .n nn
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Φ = ∞ By the definition of nt ,we see that (1) '( ),n no u u= Φ  consequently, 

By 4( ' )L ,we have 
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as ,n → ∞ which is a contradiction. This proves that { }nu  is bounded. 

nu u  in 1
0 ( )H Ω , nu u→  in ( ),pL Ω nu u→  a.e. .x ∈Ω  

By Theorem 1 (i) We have 0,n E
u u− →  as .n → ∞ Thus nu u→ strongly in 1

0 ( )H Ω , which means 

that Φ  satisfies ( )cC . 

(ii) By 3( )L ,we have 
4

1( , ) ,F x u M u C u≥ −  

2 2 42 2
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1
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2 4 2
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E E E
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Ω
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Since on the finite-dimensional space kY  all norms are equivalent,we take M  large enough, such that 

4 0,b MC− <  there for 1( )A  is satisfied for every 0kρ >  large enough. 

 By Theorem 1 (iii), condition 2( )A  is proved. Now all conditions of Theorem 1 hold, therefore, problem (1) 

has a sequence of solutions  { }nu , such that ( ) ,nuΦ → ∞  as .n → ∞  
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