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Abstract. In this paper, we present a global optimization algorithm for solving the D.C.
multiplicative programming (DCMP) over a convex compact subset. By introducing auxiliary
variables, we give a transformation under which both the objective and the feasible region turn to be
d.c.Then we solve equivalent D.C. programming problem by branch and bound method and outer
approximation algorithm.

I ntroduction

The multiplicative programming (MP) come from many fields, for example, financial
ptimization[1], VLISI chip design[2], and so on. In the past 20 years, many solution algorithms
have been proposed for globally solving the problem (MP). The methods can be classified as
parameterization based methods [3], branch-and-bound methods [4], ect. In this paper, we consider
d.c. multiplicative programming problems as follows:

(DCMP) v=max f(x)g(x)
s.t.  xeX={xe R"|h(x) <0},

where 0<f:R"—R and 0<g:R"—R are d.c. (difference of convex) function, /#:R"—R is a convex
function, X is a convex, compact, nonempty subset of R". Suppose that /=fi-f> and g=g,-g, for some
convex functions f:R"—R and g;:R"—R with i=1,2.

Equivalent problem

For function f{x), we consider an epi-multiple function F(x,4) as follows:

A (A'x) if 1>0,
F(x,4)=40 if A=0,x=0, (D)
— oo otherwise.

For g and /&, we similarly define G and H.

Lemmal([5]. Iff isa convex (concave) function, then so is the function F for A>0.

Lemma 2 [6]. If F(x,4) is positively homogeneous, then, for any a,>a;>0 and F(x,4)#0,

Foz (x,4))= a2F((x,4))> a1 F((x,4))= F(a; (x,4)).

To transform the problem (DCMP) into a d.c. programming, let f(x):=g(x), y(x):= xf. Since
2(x)>0 for all xe X, we have A(x)>0 for any xe X. Given a point x’€ X, we can obtain (,°, £°)
e R™', where y’=y(x"),8’=B(x"). Define S:={(y, f)e R""'|Ixe X such that f=g(x), y= x8}. Then, for
any (y,p) €S, we have

F(y, Br= ByIB)= Bf)=£x) &), Gy, B)= BiB)= Bex)= 5 )
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Let f=min{g(x)| xe X },f=max {g(x)| x X }, then we get SC{(v, H)e R""'| H(y, B)<0,8'<B<L}N{(,
B)| B2 —G(y, p)<0}.Now we consider the following d.c. programming problem:

(P1) max F(,p)
s.t. fA—G(y, B0, (3)
H(y, H)<0,8'<B<p"

From (3) and problems (DCMP) and (P1). it is easy to see that max (DCMP) < max(P1).
Moreover, the following theorem shows that (DCMP) is equivalent to (P1). From Lemma 1, we see
that the function H is convex and F and G are d.c. function. Let F1(y, f)= pf1(v/B), F>(v, B)= pr(v/p),
then F, I, are convex. Denote Gi(y, f)= fg1(v/f) and Ga(y, p)= p22(y/f), then are convex. Then
problem (P1) can be rewritten as

(P1) max Fi(y, B)—Fa(y, B)
s.t. =Gy, f+Gay, B0, 4)
H(y, P)<0,8<p<p"

Theorem 3. If (y*,ﬁ*) is an optimal solution of (P1) then y*/,B* is an optimal solution of (DCMP).
Ifx" isan optimal solution of (DCMP), then (x*g(x*), g(x*)) is an optimal solution of (P1).

Proof. Let (y*,,B*) is an optimal solution of (P1), then (y*,,B*) is a feasible solution of the problem
(P1). So f>4>0 and B h(y"/B")<0 due to H(y",)<0.1t follows that y'/§" is a feasible solution of the
problem (DCMP). Let (y,f) be any feadible point of (P1), then we have

BRYIp= F», B) S F& BB S0 IB). ()

Assume that y*/ﬁ* is not an optimal solution of (DCMP), then there exists x’c.X such that
j(x )g(x) > /(y*/ﬁ*)g(y*/ﬁ*) Let f° —g(x ),y =4°x°. Then (y S )is a feasible point of (P1). Since
BYSGY ), we see Sy 8= fia)g(x’ )>f(y/ﬂ g 1B =) S IB)B g0 IB)2B Ay ). Tt
contradicts (5), that is, y /ﬂ is an opt1ma1 solution of (DCMP) Now let x is an optimal solution of
(DCMP). Then, for all xe X, f(x )g(x )>f(x)g(x) and (x g(x ),g(x )) is a feasible point of (PI). If
(x*g(x*),g(x*)) is not an optimal solution of (DCMP), there exists a feasible point (yo,ﬂo) of (P1) such
that°f0"/8%)> fix)g(x). We see (8°)°< GO A% and H(',)<0. It follows that y°/f’e X from
h(G"fH=0, and from B°<g(’/f"), we have SIS0 B2BA IR . So, fNIR)g( B
>BA0%°)>fix )g(x"). It contradicts that is an optimal solution of (DCMP).

Then, we see that the constraint'<SB<S" of (P1) can be simply replaced by f>0. Denoted by D
the feasible region of (P1) and bd(D) the boundary of D.

Theorem 4. If (y*,ﬁ*) is an optimal solution of (P1), then (y*,ﬂ*)e bd(D).

Proof. Let (v',8) is an optimal solution of (P1), and (y .8 )ebd(D). Then there exists a
neighborhood N,(y ', with a radius of ¢>0 such that N,(y',8). So, (1+e0)(v ,B)e Ny ,f)eD,
where go=¢/(2||(v",)|). From lemma 2, we see F((1+&0)(y ,8))> F((v',5)). This is a contradiction
of the maximality of (v ,8").

Similarly, we have the following corollary.

Corollary 5. If(y",4") is an optimal solution of (P1), then G(y",8 )=(8")*.

By introducing two additional variables 4 and v, we transformed the problem (P1) into a

equivalent programming as follows:

(Pmain) max  Fiy, f)—u
st. Fyy, f)—u<0,+Gyy, f)— &0, (6)
5— Gy, B) <0,H(y, p)<0,5'<p<p".

Moreover, we denote that F={(y,8,1,0)e R""| Fxp,f)—u<0}, G={(p.u,)eR™"’| 6—Gp, p)
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<0}, Go={(p. 0 R |B+Gop.f) — 80}, H={(,p.11,0) €R™| H(y, P)<O,8'SB<p" }.Then the
feasible region of the problem (Puain) is (FNG2NH)\G, The constraint is reverse convex constraint
since F', Gy, G,, H are convex sets.

Algorithm and conver gence

To establish an outer approximation algorithm for problem (Ppain), We suppose:(i) int(Q)#J,
where Q:=(FNG,NH)\G,. (ii) there exists (yo,ﬁo,,u 6% e int(FNG,NHNG,). Denote Q:=
(FNG,NH). So, Q; is convex. Then there exists convex function F such that Q,={(y,8,1,6) € R™"|
Fo(y,B,1,0)<0}. In our algorithm, we must generate a sequence of conical partition sets {7} s such
that Q7 and Tj 1T} for all iel. Let a polytope 7y is with n+3 dimensions be an initial one.
We can get a simplex containing €2 as 7y. Suppose that 7} is given at step k, we consider problem
as follows:

(P max Fi(y, H)—u
s.t. (VB0 € Ty

Obviously, the optimal value of the problem(Pk) is an upper bound of (Ppain). Assume that 7
includeseveral polyhedral convex cones C’”(z‘=1,2,"-,kq) having n+3 edges which emanate from a
point (°,5°,1°,8%) of assumption (ii). Let z°=(° £°,1°,8%) and omit the subscript of C. Hence we

see that there exist n+4 affinely independent points z°, z', *++, 2™ such that C={ze R""|z=

n+3

o (z' —z%)+z°%n, > 0}. For all i=1,2,***,n+3, we assume without loss of generality that ||Z'||=1,

O=sup{6e R|2"+Az'—z")e Go,NHNG } W=2"+6(z'—2°),U=(w' —2°,--- W —2") and L,:={ze R""|z
=2"+Un,e" =1}, where n=(1,***, #n+3),6=(1,1,---,1)". Because z°, z',++,z"" are affinely independent,
U is a nonsingular matrix. So, Ly:={ze R"7|e’U(z-z")>1}. It is easy to get the following result.
Lemma 6 QNCc L,NC and QNCc(LN{z|z(z) <0})NC.
Base on Lemma 6, we can get an upper bound of (Pyain). Denote

U:zmax{ Fi(y, ﬂ)_ﬂl(yaﬁaﬂ’é)e (L2N {Z|T(Z) SO})OC } (7)

Then(L,N{z|z(z) <0})NC is polyhedral. If (L,N{z|z(z) <0})NCED, the value s attained at one of
its vertices, otherwise, let u:=-00. For any i=1,2,**,n+3, let 0, :=sup{0 |z’ +0(z' —z")e Q}.If 0, <0,
then z°+6.(z'—z°) and z°+0,(z' -z")are feasible point of (Pyain). Therefore,

l=max{F(y,B)—u| (. Bopt,v)=z" +0(z' —z°),0€[6.,61,i=12,---,n+3} (8)
is lower bound of (Pmain) on QNC. Assume that the lower bound / is get at /',B.u',0"). Then we
can obtain that F(A4y', A8 .u',0")>AF(/ B, u',0") for all 2>1 form Lemma 2. So,

Li=max { F(A', A8.u',6) F(A', AB'u',6)e Q, 2>1}, 9)

greater than or equal to /.

Now, we establish a global algorithms solving the problem (Pn.n). We use a cuttingplane
method to approximate €2, and use a conical partition to fulfill an exhaustive process. During each
iteration £, let Ti:={C"',---, C**} be a conical partition of Q. For C"e T}, we compute u; by (7) and
a polytope L N{z|*(z) <0} C* which approximates Q“NC* from Lemma 6. Compute ;; by (8)
and (9). After knowing uy=min{u;} and /t;=max{li;}, the algorithm to be proposed chooses one cone
CYe T} as a candidate to be divided into smaller, and repeats the process.

Algorithm:

Step O: Let Tpis a initial conical partition emanating from 7° such that Qe T, 0, lo=-1, ug=o0, k=0.

Step 1: For any CYeT}, compute uy and [y, and get the solutions (¥*,%,u",v") and
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(", B, V"), respectively. Set C* =L N{z|“(z) <0} C" . If there exists i such that /;; >/, then
li:=1;.If there exists i such that uy< uy set up:=uy;.

Step 2: If uy-[,=0, then terminate. Otherwise M:={Ck iluk,- >I; }. Choose Ce { o | up= uy}, create a
conical partition Y of C.

Step 3: Tir1:i=M\C)U Y, liv1:=lk, ug+1:=ux , ki=k+1, go to step 1.

Theorem 7 Suppose that a conical partition generated by algorithm is exhaustive. If algorithm
does not terminate after a finite number of iterations, then every accumulation point of the sequence
(7", p%, 1", v") of the algorithm is an optimal solution of the problem (Ppmain).

Proof. It is obviously.
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