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Abstract. In this paper, we present a global optimization algorithm for solving the D.C. 
multiplicative programming (DCMP) over a convex compact subset. By introducing auxiliary 
variables, we give a transformation under which both the objective and the feasible region turn to be 
d.c.Then we solve equivalent D.C. programming problem by branch and bound method and outer 
approximation algorithm.  

Introduction 

The multiplicative programming (MP) come from many fields, for example, financial 
ptimization[1], VLISI chip design[2], and so on. In the past 20 years, many solution algorithms 
have been proposed for globally solving the problem (MP). The methods can be classified as 
parameterization based methods [3], branch-and-bound methods [4], ect. In this paper, we consider 
d.c. multiplicative programming problems as follows: 

 (DCMP)  v=max  f(x)g(x) 
             s.t.  x∈X={x∈Rn|h(x) ≤0}, 

where 0≤f:Rn→R and 0<g:Rn→R are d.c. (difference of convex) function，h:Rn→R is a convex 
function, X is a convex, compact, nonempty subset of Rn. Suppose that f=f1-f2 and g=g1-g2 for some 
convex functions fi:R

n→R and gi:R
n→R with i=1,2. 

Equivalent problem 

For function f(x), we consider an epi-multiple function F(x,λ) as follows:  
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For g and h, we similarly define G and H. 
Lemma 1 [5]. If f  is a convex (concave) function, then so is the function F for λ>0. 
Lemma 2 [6]. If F(x,λ) is positively homogeneous, then, for any α2>α1>0 and F(x,λ)≠0,  
F(α2 (x,λ))= α2F((x,λ))> α1F((x,λ))= F(α1 (x,λ)). 
To transform the problem (DCMP) into a d.c. programming, let β(x):=g(x), y(x):= xβ. Since 

g(x)>0 for all Xx ∈ , we have β(x)>0 for any x∈X. Given a point x0∈X, we can obtain (y0, β0) 
∈Rn+1, where y0=y(x0),β0=β(x0). Define S:={(y, β)∈Rn+1|∃x∈X such that β=g(x), y= xβ}. Then, for 
any  (y, β) ∈S,  we have  

F(y, β)= βf(y/β)= βf(x)= f(x) g(x),  G(y, β)= βg(y/β)= βg(x)= β2.                     (2) 
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Let βl:=min{g(x)| x∈X },βu:=max{g(x)| x∈X }, then we get S⊆{(y, β)∈Rn+1| H(y, β)≤0,βl≤β≤βu}∩{(y, 
β)| β2－G(y, β)≤0}.Now we consider the following d.c. programming problem: 

(P1)  max   F(y, β) 
         s.t.  β2－G(y, β)≤0,                                                 (3) 
             H(y, β)≤0,βl≤β≤βu                   

From (3) and problems (DCMP) and (P1). it is easy to see that max (DCMP) ≤ max(P1). 
Moreover, the following theorem shows that (DCMP) is equivalent to (P1). From Lemma 1, we see 
that the function H is convex and F and G are d.c. function. Let F1(y, β)= βf1(y/β), F2(y, β)= βf2(y/β), 
then F1, F2 are convex. Denote G1(y, β)= βg1(y/β) and G2(y, β)= βg2(y/β), then are convex. Then 
problem (P1) can be rewritten as 

(P1)  max  F1(y, β)－F2(y, β) 
         s.t.  β2－G1(y, β)+G2(y, β)≤0,                                         (4) 
             H(y, β)≤0,βl≤β≤βu 

Theorem 3. If (y*,β*) is an optimal solution of (P1) then y*/β* is an optimal solution of (DCMP). 
If x* is an optimal solution of (DCMP), then (x*g(x*), g(x*)) is an optimal solution of (P1). 

Proof. Let (y*,β*) is an optimal solution of (P1), then (y*,β*) is a feasible solution of the problem 
(P1). So β*≥βl>0 and β*h(y*/β*)≤0 due to H(y*,β*)≤0.It follows that y*/β* is a feasible solution of the 
problem (DCMP). Let (y,β) be any feadible point of (P1), then we have  

Βf(y/β)= F(y, β) ≤ F(y*,β*)=β*f(y*/β*).                                          (5) 

Assume that y*/β* is not an optimal solution of (DCMP), then there exists x0∈X such that 
f(x0)g(x0)  > f(y*/β*)g(y*/β*). Let β0=g(x0),y0=β0x0. Then (y0,β0)is a feasible point of (P1). Since 
(β*)2≤G(y*,β*), we see β0f(y0/β0)= f(x0)g(x0)> f(y*/β*)g(y*/β*)=(1/β*) f(y*/β*)β*g(y*/β*)≥β*f(y*/β*). It 
contradicts (5), that is, y*/β* is an optimal solution of (DCMP). Now, let x* is an optimal solution of 
(DCMP). Then, for all x∈X, f(x*)g(x*)≥f(x)g(x) and (x*g(x*),g(x*)) is a feasible point of (P1). If 
(x*g(x*),g(x*)) is not an optimal solution of (DCMP), there exists a feasible point (y0,β0) of (P1) such 
thatβ0f(y0/β0)> f(x*)g(x*). We see (β0)2≤ G(y0,β0) and H(y0,β0)≤0.  It follows that y0/β0∈X from 
h(y0,β0)≤0, and from β0≤g(y0/β0), we have f(y0/β0)g(y0/β0)≥β0f(y0/β0) . So, f(y0/β0)g(y0/β0) 
≥β0f(y0/β0)>f(x*)g(x*). It contradicts that is an optimal solution of (DCMP). 

Then, we see that the constraintβl≤β≤βu of (P1) can be simply replaced by β>0. Denoted by D 
the feasible region of (P1) and bd(D) the boundary of D. 

Theorem 4. If (y*,β*) is an optimal solution of (P1), then (y*,β*)∈bd(D). 
Proof. Let (y*,β*) is an optimal solution of (P1), and  (y*,β*)∉bd(D). Then there exists a 

neighborhood Nε(y
*,β*) with a radius of ε>0 such that Nε(y

*,β*). So, (1+ε0)(y
*,β*)∈Nε(y

*,β*)∈D,  
where ε0=ε/(2||(y*,β*)||). From lemma 2, we see F((1+ε0)(y

*,β*))> F((y*,β*)). This is a contradiction 
of the maximality of (y*,β*). 

Similarly, we have the following corollary. 
  Corollary 5. If(y*,β*) is an optimal solution of (P1), then G(y*,β*)=(β*)2. 
By introducing two additional variables μ and ν, we transformed the problem (P1) into a 

equivalent programming as follows: 

(Pmain)  max  F1(y, β)－μ 
          s.t.  F2(y, β)－μ≤0,β2+G2(y, β)－δ≤0,                                  (6) 
              δ－G1(y, β) ≤0,H(y, β)≤0,βl≤β≤βu. 

Moreover, we denote that F={(y,β,μ,δ)∈Rn+3| F2(y,β)－μ≤0}, G1={(y,β,μ,δ)∈Rn+3| δ－G1(y, β) 
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≤0}, G2={(y,β,μ,δ)∈Rn+3|β2+G2(y,β)－δ≤0}, H={(y,β,μ,δ) ∈Rn+3| H(y, β)≤0,βl≤β≤βu }.Then the 
feasible region of the problem (Pmain) is (F∩G2∩H)\G1, The constraint is reverse convex constraint 
since F, G1, G2, H are convex sets. 

Algorithm and convergence 

To establish an outer approximation algorithm for problem (Pmain), we suppose:(i) int(Ω)≠∅, 
where Ω:=(F∩G2∩H)\G1. (ii) there exists (y0,β0,μ 0,δ 0) ∈ int(F∩G2∩H∩G1). Denote Ω1:= 
(F∩G2∩H). So, Ω1 is convex. Then there exists convex function FΩ such that Ω1={(y,β,μ,δ) ∈Rn+3| 
FΩ(y,β,μ,δ)≤0}. In our algorithm, we must generate a sequence of conical partition sets {Tk}k∈I such 
that Ω1⊆Tk  and Tk +1⊆Tk for all i∈I. Let a polytope T0 is with n+3 dimensions be an initial one. 
We can get a simplex containing Ω1 as T0. Suppose that Tk is given at step k, we consider problem 
as follows: 

(Pk)  max  F1(y, β)－μ 
        s.t.  (y,β,μ,δ) ∈ Tk.                       

Obviously, the optimal value of the problem(Pk) is an upper bound of (Pmain). Assume that Tk 
includeseveral polyhedral convex cones Cki(i=1,2,…,kq) having n+3 edges which emanate from a 
point (y0,β0,μ 0,δ 0) of assumption (ii). Let z0=(y0,β0,μ 0,δ 0) and omit the subscript of C. Hence we 
see that there exist n+4 affinely independent points z0, z1, …, zn+3 such that C={z∈Rn+3|z= 

}0,)(
3

1i

00 ≥+− +

= i

n i
i zzz ηη . For all i=1,2,…,n+3, we assume without loss of generality that ||zi||=1, 

θi=sup{θ∈R|z0+θ(zi－z0)∈G2∩H∩G1},wi=z0+θi(z
i－z0),U=(w1－z0,…,wn+3－z0) and L2:={z∈Rn+3|z 

=z0+Uη,eTη≥1}, where η=(η1,…, ηn+3),e=(1,1,…,1)T. Because z0, z1,…,zn+3 are affinely independent, 
U is a nonsingular matrix. So, L2:={z∈Rn+3|eTU(z-z0)≥1}. It is easy to get the following result. 

Lemma 6 Ω∩C⊆ L2∩C and Ω∩C⊆(L2∩{z|τ(z) ≤0})∩C.  
Base on Lemma 6, we can get an upper bound of (Pmain). Denote 

u:=max{ F1(y, β)－μ|(y,β,μ,δ)∈(L2∩{z|τ(z) ≤0})∩C }.                            (7) 

Then(L2∩{z|τ(z) ≤0})∩C is polyhedral. If (L2∩{z|τ(z) ≤0})∩C≠∅, the value s attained at one of 
its vertices, otherwise, let u:=-∞. For any i=1,2,…,n+3, let }.Ω)(|sup{: 00 ∈−+= zzθzθθ i

i If ii θθ ≤ , 

then )( 00 zzθz i
i −+  and )( 00 zzθz i

i −+ are feasible point of (Pmain). Therefore,  

{ }3,,2,1],,[),(),,,(|),(max: 00 +=∈−+=−= nizzzyyFl i
i θθθθνμβμβ         (8) 

is lower bound of (Pmain) on Ω∩C. Assume that the lower bound l  is get at (yi,βi,μ i,δ i). Then we 
can obtain that F(λyi, λβi,μ i,δ i)>λF(yi,βi,μ i,δ i) for all λ>1 form Lemma 2. So, 

l≥:=max{ F(λyi, λβi,μ i,δ i)| F(λyi, λβi,μ i,δ i)∈Ω, λ>1},                             (9) 

greater than or equal to l. 
Now, we establish a global algorithms solving the problem (Pmain). We use a cuttingplane 

method to approximate Ω, and use a conical partition to fulfill an exhaustive process. During each 
iteration  k, let Tk:={Ck1,…, Ckq} be a conical partition of Ω. For Cki∈Tk, we compute uki by (7) and 
a polytope iii kkk CzzL  }0)(|{2 ≤ which approximates Ω ki∩Cki from Lemma 6. Compute lki by (8) 
and (9). After knowing uk=min{uki} and lk=max{lki}, the algorithm to be proposed chooses one cone 
Cki∈Tk as a candidate to be divided into smaller, and repeats the process. 

Algorithm: 
Step 0：Let T0 is a initial conical partition emanating from z0 such that Ω∈T0, l0=-1, u0=∞, k=0. 
Step 1：For any Cki∈Tk, compute uki and lki, and get the solutions ),,,( iiii kkkk νμβy and 
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),,,( iiii kkkk νμβy , respectively. Set iiii kkkk CzzLC  }0)(|{: 2 ≤= . If there exists i such that lki ≥lk, then 

lk:=lki.If there exists i such that uki< uk set uk:=uki. 
Step 2：If uk-lk=0, then terminate. Otherwise M:={Cki|uki ≥lk }. Choose C∈{ Cki | uki= uk}, create a 

conical partition Y of C. 
Step 3：Tk+1:=(M\C)∪Y, lk+1:=lk, uk+1:=uk , k:=k+1, go to step 1. 
Theorem 7 Suppose that a conical partition generated by algorithm is exhaustive. If algorithm 

does not terminate after a finite number of iterations, then every accumulation point of the sequence 
),,,( iiii kkkk νμβy  of the algorithm is an optimal solution of the problem (Pmain). 

  Proof. It is obviously.  
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