

Generating High-Quality Random Numbers by Next Nearest-Neighbor
Cellular Automata

Ping Pinga, Feng Xub and Zhi-Jian Wangc
College of Computer and Information, Hohai University, Nanjing 210098, China

apingpingnjust@163.com, bxufeng@hhu.edu.cn, cw51178@sina.com

Keywords: cryptography; random number generator; cellular automata; NIST statistical test suite

Abstract. Cellular automaton (CA) has been widely investigated as random number generators
(RNGs). However, the CA rule and the number of neighbors must be chosen carefully for good
randomness. In Ref. [11], non-uniform CA with next nearest neighborhood was applied to generate a
pseudo-random sequence. Considering that non-uniform CA has more complex implementation in
hardware and needs lager memory to store different rules than uniform CA. In this paper, we propose
new RNGs based on uniform CA with next nearest neighborhood. Time spacing technique and NIST
statistical test suite are used to find optimal rules for uniform CA. Experiment results show that the
sequences generated by uniform CA with optimal rules successfully passed all tests in the NIST suite.

Introduction

Random number generators (RNGs) are useful for many purpose including cryptography devices,
Monte Carlo simulations, Built-In Self-Test circuits, etc. In the last decades, cellular automaton
(CA)-based RNGs were studied extensively [1-4]. The notable features of CA, such as simple
components, regular structure, local interconnection and massive parallelism, make them easier and
faster to implement in hardware than other models.

Wolfram [5] was the first researcher who proposed a random number generator by
one-dimensional (1-D) uniform CA with rule 30. But it was later cryptanalyzed by Miere and
Stafflebach [6] mainly due to its correlation. Subsequently, many researchers focused on
non-uniform CA [7-9], where each cell may contain a different rule in contrast to the uniform CA. In
[10], an evolutionary technique called cellular programming was proposed and a set of 47 rules with
radius one and two was discovered by using cellular programming. These rules, characterized with
high values of entropy, were potentially suitable for generating high-quality random sequences. It
was shown that the performance of non-uniform CA based RNGs are superior to that of uniform CA.
In [11], the above set is reduced to five rules with radius two by a genetic algorithm and experiments
was shown that each set of rules passed all FIPS 140-2 tests. In these non-uniform CA based works,
rules for non-uniform CA play an important role in the quality of the random sequence, so they must
be chosen carefully. The main concern of this paper is to design random number generators based on
uniform CA with next nearest neighborhood. To find appropriate rules for uniform CA, time spacing
technique and NIST statistical test suite are used. Experimental results show that the suggested
random number generators have good randomness.

Cellular Automaton

Cellular automata are abstract dynamical systems in which state, space and time are discrete. A
1-D cellular automaton is defined as 1-D lattice of cells, each of which can take a finite number of
discrete states, updated synchronously in discrete time steps, according to a local, identical,
deterministic rule:

 1 (,..., ,...,),t t t t
i i r i i rs f s s s+

− += (1)

Here, t
is denotes the state of cell i at time step t , r is the rule radius, and the local rule f is a

combinatorial function that gives the new state of a cell in terms of the current states of all cells in its

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0838

neighborhood. The nearest neighborhood, having a radius 1r = , consists of three cells 1 1, ,t t t
i i is s s− + .

The next nearest neighborhood, having a radius 2r = , consists of five cells 2 1 1 2, , , ,t t t t t
i i i i is s s s s− − + + . In

this work, we concentrate on the next nearest-neighbor CA which has two possible states (0 or 1), and

rules with radius two. There are
522 possible different rules for next nearest-neighbor CA. Each rule

specified by a decimal number is conventionally referred to as rule number. When considering finite
CA, cyclic boundary conditions are frequently applied. If all CA cells obey the same rule, then the
CA is said to be uniform CA. Otherwise, it is called non- uniform CA.

Overview of Two Existing Algorithm

PNSs Based on Non-Uniform CAs with Rule Radius One and Two
In [10], CAs are applied to generate a pseudo-random sequence (PNS) which is used during the

encryption process. Rules of radius 1r = and 2 for non-uniform 1-D CAs have been considered.
Instead of design rules for CAs, an evolutionary technique called cellular programming (CP) is
employed to discover rules for non-uniform CAs. In the result of CP searching process a set of 47
rules, including 8 rules of radius one and 39 rules of radius two, was found. Then, these rules which
are characterized with high values of entropy are further tested by FIPS 140-2 and Marsaglia
statistical tests. As a result, a small set of 8 rules has been selected: 30, 86, 101 (1r =), and
869020563, 1047380370, 1436194405, 1436965290, 1705400746, 1815843780, 2084275140,
2592765285 (2r =). Experimental results show that selected rules working collectively in
non-uniform CA are able to produce high quality PNSs. However, works in [16] point out that some
specific assignments of these rules to CA cells may lead to poor quality of PNSs.

PNSs Based on Non-Uniform CAs with Rule Radius Two
Considering that the quality of PNSs highly depends on the assignments of applied rules, a genetic

algorithm (GA) is used in [11] to find suitable rules from the set of 47 rules. Some sets of bad
combination of rules are eliminated by GA and 10 subsets of rules are finally selected from 47 rules.
All these 10 subsets are composed of rules from the set of five rules: 1436194405, 1436965290,
1721325161, 1704302169, 1705400746 (2r =). The advantage of this method is that high quality of
PNSs can be obtained by using non-uniform CAs with any assignments of rules in the sets.

Finding Optimal Rules of Radius 2r = by NIST Test Suite

Many researchers focused on non-uniform CA for cryptographic application. But, non-uniform
CAs have more complex hardware implementation and need lager memory to store different rules
than uniform CAs. The purpose of this paper is to find uniform CA rules of radius 2r = that the
PNSs produced by them have good random property.

NIST Statistical Test Suite
Among the numerous standard tests for randomness, a convincing way to show the randomness of

the produced sequences is to confront them to the NIST (National Institute of Standards and
Technology) Statistical Tests [12]. The NIST STS (statistical test suite) consisting of 15 tests. These
tests focus on variety of different types of non-randomness that could exist in a sequence.

NIST suggests two approaches to interpret test results: the proportion of sequences passing a test
and the distribution of P-values. A significance level 0.01α = , as recommended by NIST, was used
for the analysis of P-values obtained from various tests. A sequence passes a statistical test whenever
the P-value α≥ and fails otherwise.

(1) Proportion of sequences passing a test
The range of acceptable proportions is defined as,

ˆ ˆ(1)

ˆ 3 ,
p p

p
m

−± (2)

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0839

where ˆ 1p α= − , and m is the sample size. If the proportion falls outside of this interval, then
there is evidence that the data is non-random. For instance, if m=100, so the range of acceptable
proportion is 0.99 0.02985± ([0.96015,1.01985]).

(2) Distribution of P-values
The distribution of P-values is checked to ensure uniformity. The interval [0, 1] is divided into 10

sub-intervals and the computation is as follows:

210

2

1

(/ 10)
,

/ 10
i

i

F m

m
χ

=

−= (3)

where iF is the number of occurrences that the P-values is in sub-interval i and m denotes the

sample size. A P-value is calculated such that

29

(,),
2 2TP value igamc

χ− = (4)

where igamc is the incomplete Gamma function. If 0.0001TP value− ≥ , then the sequences can

be considered to be uniformly distributed.
In our following tests, parameters used for NIST test suite are listed in Table 1.

Table 1 Parameters used for NIST Test Suite

 Statistical Test Name Test Parameter Statistical Test Name Test Parameter

 Block Frequency M=20000
Non-overlapping Templates m=9, B=000000001
Overlapping Templates m=9, B=111111111
Approximate Entropy m=10

Serial m =16,
2
m∇Ψ

Linear Complexity M=500
Cumulative Sums Forward
Random Excursions x=-1
Random Excursions Variant x=-1

Finding Optimal Rules
Instead of finding appropriate rules in huge rule space, we use a new set of 10 rules of radius 2r = :

R1=1436194405, R2=1436965290, R3=1721325161, R4=1704302169, R5=1705400746,
R6=869020563, R7=1047380370, R8=1815843780, R9=2084275140, R10=2592765258, which has
been discovered by [10] and [11]. All these rules are tested by NIST statistical test suite. The method
of testing is given as follows:

Step 1: One rule is selected from the new set.
Step 2: Uniform CA consisting of 50 cells is initialized with 50 bit random stream. Periodic

boundary is adopted.
Step 3: This CA evolves 80000 time steps with the selected rule and generates 4000000-bit

sequence.
Step 4: Time spacing technology [13] is applied to decorrelate bit sequence. Here, a time-spacing

parameter of 4 is adopted, which means only bits of time steps 0, 4, 8,… are considered as part of the
output sequence. Thus, we obtain a 1000000-bit output sequence.

Step 5: Repeat Step 2 to step 4 100 times so as to get 100 samples of 1000000-bit output sequence.
Step 6: 100 samples of different bit sequence are tested by NIST STS (version 2.1.1).
The results of proportions of the sequences passing the tests for 9 rules are presented in Table 2.

The test result of rule 2592765258 has not been included in Table 2, because it even cannot pass
Frequency Test which is the basis of all subsequent tests. In fact, the space-time diagram for rule
2592765258 tells us why it cannot pass the Frequency Test. Fig. 1 shows a space-time diagram for
rule 2592765258. The black block represents ‘1’ and the white block represents ‘0’. It is well known
that the number of ones and zeroes in a sequence should be about the same for a truly random
sequence. But, it is obvious that the number of zeroes is more than the number of ones in Fig.1. So the
sequence generated by rule 2592765258 is not random enough.

From Table 2, it can be seen that rule 1047380370 fails to pass four tests. Rules 1436194405,
869020563, 1815843780 and 2084275140 fail to pass two tests. Rule 1704302169 gives better results

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0840

but still has one failed tests. The highest randomness is obtained using rules 1436965290,
1721325161, 1705400746 which have passed all tests.

If the test sequences are truly random, P-value is expected to appear uniform in [0, 1]. Hence, the
randomness of rule 1436965290, 1721325161, 1705400746 is further checked by uniformity of
P-value of the test samples. Fig. 2 illustrates the distribution of P-values for three rules. Dashed line
represents the threshold value of TP value− . It is easy to see that all TP value− are above the

threshold 0.0001, which means the sequences produced by three tested rules can be considered to be
uniformly distributed.

Through the above analysis, the optimal rules for uniform CA generating high quality PNSs have
been found. There are rules 1436965290, 1721325161, 1705400746, which passed all NIST
statistical tests.

(a) No time spacing

(b) Time spacing of 4

Fig. 1 Space-time diagram
for rule 2592765258

Fig. 2 P-valueT for each NIST statistical test

Table 2 The results of proportion`s of the sequences passed the tests

No. Statistical Test Proportion

 R1 R2 R3 R4 R5 R6 R7 R8 R9

1 Frequency 1.00 0.99 1.00 0.99 0.98 1.00 0.97 1.00 0.96

2 Block Frequency 0.94* 0.99 1.00 0.98 0.98 1.00 0.87* 0.98 0.97

3 Runs 1.00 0.97 1.00 0.98 0.99 1.00 1.00 0.98 0.98

4 Longest Runs 0.99 0.99 0.97 0.98 0.98 1.00 0.99 0.99 0.97

5 Rank 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.97 0.99

6 Spectral DFT 0.98 0.99 0.98 0.97 0.98 0.00* 0.07* 0.98 0.97

7 Non-overlapping Templates 0.99 0.98 1.00 0.98 1.00 0.99 0.98 1.00 0.98

8 Overlapping Templates 0.99 0.99 0.99 0.99 0.99 0.96 0.99 1.00 0.98

9 Universal 0.13* 0.98 0.97 0.23* 0.96 0.94* 0.99 0.98 0.98

10 Linear Complexity 1.00 1.00 0.98 0.98 1.00 1.00 1.00 0.99 1.00

11 Serial 1.00 0.99 0.99 0.98 0.99 0.99 0.00* 0.70* 0.43*

12 Approximate Entropy 1.00 0.97 0.99 0.98 0.98 0.99 0.00* 0.33* 0.04*

13 Cumulative Sums 1.00 0.98 1.00 0.99 0.97 1.00 0.97 0.99 0.97

14 Random Excursions 1.00 1.00 1.00 0.98 0.98 1.00 0.98 0.97 1.00

15 Random Excursions Variant 1.00 1.00 0.98 1.00 1.00 0.96 0.98 1.00 0.98

Conclusions

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0841

In this paper we concentrate on generating pseudo-random sequences by employing uniform CA
with next nearest neighborhood. To find appropriate rules, NIST statistical test suite and a sampling
technique called time spacing technique are used. As a result, three optimal rules of radius 2r =
(1436965290, 1721325161, 1705400746) are discovered from a set of 10 rules. Experiment results
demonstrate that uniform CA based RNGs can perform at least as well as non-uniform CA based
RNGs if appropriate rules are applied. With respect to hardware implementation and memory
requirement, uniform CA outperform non-uniform CA for its simple structure and identical rule.

References

[1] P. D. Hortensius, R. D. McLeod, W. Pries, D. M. Miller and H. C. Card, Cellular automata-based
pseudorandom number generators for Built-In Self-Test, IEEE Trans. Comput. Aid. D 8 (1989)
842-859.

[2] S. U. Guan, S. Zhang, An evolutionary approach to the design of controllable cellular automata
structure for random number generation, IEEE Trans. Evolut. Comput. 7 (2003) 23-36.

[3] S. U. Guan, S. K. Tan, Pseudorandom number generation with self-programmable cellular
automata, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 23
(2004) 1095–1101.

[4] B. H. Kang, D. H. Lee, C. P. Hong, High performance pseudorandom number generator using
two-dimensional cellular automata, In: 4th IEEE International Symposium on Electronic Design,
Test & Application, Enero, 2008, pp. 597-602.

[5] S. Wolfram, Random sequence generation by cellular automata, Advances in applied
mathematics 7 (1986) 123-169.

[6] W. Meier, O. Staffelbach, Analysis of pseudo random sequences generated by cellular automata,
Advances in Cryptology: Proceedings of EUROCRYPT, 1991, pp. 186-199.

[7] M. Tomassini, M. Sipper, and M. Perrenoud, On the generation of high-quality random numbers
by two-dimensional cellular automata, IEEE Trans. Comput. 49 (2000) 1146-1151.

[8] R. Dogaru, Hybrid cellular automata as pseudo-random number generators with binary
synchronization property, International Symposium on Signals, Circuits and Systems, 2009, pp. 1-4.

[9] K. Chakraborty, D. Chowdhury, CSHR: Selection of Cryptographically Suitable Hybrid Cellular
Automata Rule, In: 10th International Conference on Cellular Automata for Research and Industry,
ACRI 2012, pp. 591-600.

[10] F. Seredynski, P. Bouvry, A. Zomaya, Cellular automata computation and secret key
cryptography, Parallel Computation 30 (2004) 753-766.

[11] M. Szaban, F. Seredynski, P. Bouvry, Collective behavior of rules for cellular automata-based
stream ciphers, In: IEEE Congress in Evolutionary Computation, 2006, pp. 179-183.

[12] Rukhin A et al. A statistical test suite for random and pseudorandom number generators for
cryptographic applications. NIST Special Publication 800-22 (with revisions dated April, 2010).

[13] M. Tomassini, M. Sipper, M. Zolla, M. Perrenoud, Generating high-quality random numbers in
parallel by cellular automata, Future Generation Computer System 16 (1999) 291-305

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0842

