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Abstract. Cellular automaton (CA) has been widely investigated as random number generators 
(RNGs). However, the CA rule and the number of neighbors must be chosen carefully for good 
randomness. In Ref. [11], non-uniform CA with next nearest neighborhood was applied to generate a 
pseudo-random sequence. Considering that non-uniform CA has more complex implementation in 
hardware and needs lager memory to store different rules than uniform CA. In this paper, we propose 
new RNGs based on uniform CA with next nearest neighborhood. Time spacing technique and NIST 
statistical test suite are used to find optimal rules for uniform CA. Experiment results show that the 
sequences generated by uniform CA with optimal rules successfully passed all tests in the NIST suite. 

Introduction 

Random number generators (RNGs) are useful for many purpose including cryptography devices, 
Monte Carlo simulations, Built-In Self-Test circuits, etc. In the last decades, cellular automaton 
(CA)-based RNGs were studied extensively [1-4]. The notable features of CA, such as simple 
components, regular structure, local interconnection and massive parallelism, make them easier and 
faster to implement in hardware than other models.  

Wolfram [5] was the first researcher who proposed a random number generator by 
one-dimensional (1-D) uniform CA with rule 30. But it was later cryptanalyzed by Miere and 
Stafflebach [6] mainly due to its correlation. Subsequently, many researchers focused on 
non-uniform CA [7-9], where each cell may contain a different rule in contrast to the uniform CA. In 
[10], an evolutionary technique called cellular programming was proposed and a set of 47 rules with 
radius one and two was discovered by using cellular programming. These rules, characterized with 
high values of entropy, were potentially suitable for generating high-quality random sequences. It 
was shown that the performance of non-uniform CA based RNGs are superior to that of uniform CA. 
In [11], the above set is reduced to five rules with radius two by a genetic algorithm and experiments 
was shown that each set of rules passed all FIPS 140-2 tests. In these non-uniform CA based works, 
rules for non-uniform CA play an important role in the quality of the random sequence, so they must 
be chosen carefully. The main concern of this paper is to design random number generators based on 
uniform CA with next nearest neighborhood. To find appropriate rules for uniform CA, time spacing 
technique and NIST statistical test suite are used. Experimental results show that the suggested 
random number generators have good randomness. 

Cellular Automaton 

Cellular automata are abstract dynamical systems in which state, space and time are discrete. A 
1-D cellular automaton is defined as 1-D lattice of cells, each of which can take a finite number of 
discrete states, updated synchronously in discrete time steps, according to a local, identical, 
deterministic rule: 

 1 ( ,..., ,..., ),t t t t
i i r i i rs f s s s+

− +=  (1) 

Here, t
is  denotes the state of cell i  at time step t , r  is the rule radius, and the local rule f  is a 

combinatorial function that gives the new state of a cell in terms of the current states of all cells in its 
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neighborhood. The nearest neighborhood, having a radius 1r = , consists of three cells 1 1, ,t t t
i i is s s− + . 

The next nearest neighborhood, having a radius 2r = , consists of five cells 2 1 1 2, , , ,t t t t t
i i i i is s s s s− − + + . In 

this work, we concentrate on the next nearest-neighbor CA which has two possible states (0 or 1), and 

rules with radius two. There are 
522  possible different rules for next nearest-neighbor CA. Each rule 

specified by a decimal number is conventionally referred to as rule number. When considering finite 
CA, cyclic boundary conditions are frequently applied. If all CA cells obey the same rule, then the 
CA is said to be uniform CA. Otherwise, it is called non- uniform CA. 

Overview of Two Existing Algorithm 

PNSs Based on Non-Uniform CAs with Rule Radius One and Two 
In [10], CAs are applied to generate a pseudo-random sequence (PNS) which is used during the 

encryption process. Rules of radius 1r = and 2 for non-uniform 1-D CAs have been considered. 
Instead of design rules for CAs, an evolutionary technique called cellular programming (CP) is 
employed to discover rules for non-uniform CAs. In the result of CP searching process a set of 47 
rules, including 8 rules of radius one and 39 rules of radius two, was found. Then, these rules which 
are characterized with high values of entropy are further tested by FIPS 140-2 and Marsaglia 
statistical tests. As a result, a small set of 8 rules has been selected: 30, 86, 101 ( 1r = ), and 
869020563, 1047380370, 1436194405, 1436965290, 1705400746, 1815843780, 2084275140, 
2592765285 ( 2r = ). Experimental results show that selected rules working collectively in 
non-uniform CA are able to produce high quality PNSs. However, works in [16] point out that some 
specific assignments of these rules to CA cells may lead to poor quality of PNSs. 

PNSs Based on Non-Uniform CAs with Rule Radius Two 
Considering that the quality of PNSs highly depends on the assignments of applied rules, a genetic 

algorithm (GA) is used in [11] to find suitable rules from the set of 47 rules. Some sets of bad 
combination of rules are eliminated by GA and 10 subsets of rules are finally selected from 47 rules. 
All these 10 subsets are composed of rules from the set of five rules: 1436194405, 1436965290, 
1721325161, 1704302169, 1705400746 ( 2r = ). The advantage of this method is that high quality of 
PNSs can be obtained by using non-uniform CAs with any assignments of rules in the sets. 

Finding Optimal Rules of Radius 2r = by NIST Test Suite 

Many researchers focused on non-uniform CA for cryptographic application. But, non-uniform 
CAs have more complex hardware implementation and need lager memory to store different rules 
than uniform CAs. The purpose of this paper is to find uniform CA rules of radius 2r =  that the 
PNSs produced by them have good random property. 

NIST Statistical Test Suite 
Among the numerous standard tests for randomness, a convincing way to show the randomness of 

the produced sequences is to confront them to the NIST (National Institute of Standards and 
Technology) Statistical Tests [12]. The NIST STS (statistical test suite) consisting of 15 tests. These 
tests focus on variety of different types of non-randomness that could exist in a sequence. 

NIST suggests two approaches to interpret test results: the proportion of sequences passing a test 
and the distribution of P-values. A significance level 0.01α = , as recommended by NIST, was used 
for the analysis of P-values obtained from various tests. A sequence passes a statistical test whenever 
the P-value α≥  and fails otherwise. 

(1) Proportion of sequences passing a test 
The range of acceptable proportions is defined as, 

 
ˆ ˆ(1 )

ˆ 3 ,
p p

p
m

−±  (2) 
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where ˆ 1p α= − , and m  is the sample size. If the proportion falls outside of this interval, then 
there is evidence that the data is non-random. For instance, if m=100, so the range of acceptable 
proportion is 0.99 0.02985±  ([0.96015,1.01985] ). 

(2) Distribution of P-values 
The distribution of P-values is checked to ensure uniformity. The interval [0, 1] is divided into 10 

sub-intervals and the computation is as follows: 

 
210

2

1

( / 10)
,

/ 10
i

i

F m

m
χ

=

−=  (3) 

where iF  is the number of occurrences that the P-values is in sub-interval i  and m  denotes the 

sample size. A P-value is calculated such that 

 
29

( , ),
2 2TP value igamc

χ− =  (4) 

where igamc is the incomplete Gamma function. If 0.0001TP value− ≥ , then the sequences can 

be considered to be uniformly distributed. 
In our following tests, parameters used for NIST test suite are listed in Table 1. 

Table 1 Parameters used for NIST Test Suite 

  Statistical Test Name                       Test Parameter Statistical Test Name Test Parameter 

 Block Frequency                                  M=20000 
Non-overlapping Templates             m=9, B=000000001 
Overlapping Templates                    m=9, B=111111111 
Approximate Entropy                               m=10 

Serial                                                  m =16, 
2
m∇Ψ  

Linear Complexity                          M=500 
Cumulative Sums                           Forward  
Random Excursions                           x=-1 
Random Excursions Variant              x=-1 

Finding Optimal Rules 
Instead of finding appropriate rules in huge rule space, we use a new set of 10 rules of radius 2r = : 

R1=1436194405, R2=1436965290, R3=1721325161, R4=1704302169, R5=1705400746, 
R6=869020563, R7=1047380370, R8=1815843780, R9=2084275140, R10=2592765258, which has 
been discovered by [10] and [11]. All these rules are tested by NIST statistical test suite. The method 
of testing is given as follows: 

Step 1: One rule is selected from the new set. 
Step 2: Uniform CA consisting of 50 cells is initialized with 50 bit random stream. Periodic 

boundary is adopted. 
Step 3: This CA evolves 80000 time steps with the selected rule and generates 4000000-bit 

sequence. 
Step 4: Time spacing technology [13] is applied to decorrelate bit sequence. Here, a time-spacing 

parameter of 4 is adopted, which means only bits of time steps 0, 4, 8,… are considered as part of the 
output sequence. Thus, we obtain a 1000000-bit output sequence. 

Step 5: Repeat Step 2 to step 4 100 times so as to get 100 samples of 1000000-bit output sequence. 
Step 6: 100 samples of different bit sequence are tested by NIST STS (version 2.1.1). 
The results of proportions of the sequences passing the tests for 9 rules are presented in Table 2. 

The test result of rule 2592765258 has not been included in Table 2, because it even cannot pass 
Frequency Test which is the basis of all subsequent tests. In fact, the space-time diagram for rule 
2592765258 tells us why it cannot pass the Frequency Test. Fig. 1 shows a space-time diagram for 
rule 2592765258. The black block represents ‘1’ and the white block represents ‘0’. It is well known 
that the number of ones and zeroes in a sequence should be about the same for a truly random 
sequence. But, it is obvious that the number of zeroes is more than the number of ones in Fig.1. So the 
sequence generated by rule 2592765258 is not random enough. 

From Table 2, it can be seen that rule 1047380370 fails to pass four tests. Rules 1436194405, 
869020563, 1815843780 and 2084275140 fail to pass two tests. Rule 1704302169 gives better results 
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but still has one failed tests. The highest randomness is obtained using rules 1436965290, 
1721325161, 1705400746 which have passed all tests. 

If the test sequences are truly random, P-value is expected to appear uniform in [0, 1]. Hence, the 
randomness of rule 1436965290, 1721325161, 1705400746 is further checked by uniformity of 
P-value of the test samples. Fig. 2 illustrates the distribution of P-values for three rules. Dashed line 
represents the threshold value of TP value− . It is easy to see that all TP value− are above the 

threshold 0.0001, which means the sequences produced by three tested rules can be considered to be 
uniformly distributed. 

Through the above analysis, the optimal rules for uniform CA generating high quality PNSs have 
been found. There are rules 1436965290, 1721325161, 1705400746, which passed all NIST 
statistical tests. 

 
(a) No time spacing 

 
(b) Time spacing of 4 

Fig. 1 Space-time diagram 
for rule 2592765258 

Fig. 2 P-valueT for each NIST statistical test 

Table 2 The results of proportion`s of the sequences passed the tests 

No. Statistical Test Proportion 

  R1 R2 R3 R4 R5 R6 R7 R8 R9 

1 Frequency 1.00 0.99 1.00 0.99 0.98 1.00 0.97 1.00 0.96

2 Block Frequency  0.94* 0.99 1.00 0.98 0.98 1.00 0.87* 0.98 0.97

3 Runs 1.00 0.97 1.00 0.98 0.99 1.00 1.00 0.98 0.98

4 Longest Runs 0.99 0.99 0.97 0.98 0.98 1.00 0.99 0.99 0.97

5 Rank 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.97 0.99

6 Spectral DFT 0.98 0.99 0.98 0.97 0.98 0.00* 0.07* 0.98 0.97

7 Non-overlapping Templates 0.99 0.98 1.00 0.98 1.00 0.99 0.98 1.00 0.98

8 Overlapping Templates  0.99 0.99 0.99 0.99 0.99 0.96 0.99 1.00 0.98

9 Universal 0.13* 0.98 0.97 0.23* 0.96 0.94* 0.99 0.98 0.98

10 Linear Complexity  1.00 1.00 0.98 0.98 1.00 1.00 1.00 0.99 1.00

11 Serial  1.00 0.99 0.99 0.98 0.99 0.99 0.00* 0.70* 0.43*

12 Approximate Entropy 1.00 0.97 0.99 0.98 0.98 0.99 0.00* 0.33* 0.04*

13 Cumulative Sums 1.00 0.98 1.00 0.99 0.97 1.00 0.97 0.99 0.97

14 Random Excursions 1.00 1.00 1.00 0.98 0.98 1.00 0.98 0.97 1.00

15 Random Excursions Variant 1.00 1.00 0.98 1.00 1.00 0.96 0.98 1.00 0.98

Conclusions 
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In this paper we concentrate on generating pseudo-random sequences by employing uniform CA 
with next nearest neighborhood. To find appropriate rules, NIST statistical test suite and a sampling 
technique called time spacing technique are used. As a result, three optimal rules of radius 2r =  
(1436965290, 1721325161, 1705400746) are discovered from a set of 10 rules. Experiment results 
demonstrate that uniform CA based RNGs can perform at least as well as non-uniform CA based 
RNGs if appropriate rules are applied. With respect to hardware implementation and memory 
requirement, uniform CA outperform non-uniform CA for its simple structure and identical rule. 
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