

Compare of Formal Analysis and Testing for Verification of
Safety-critical Systems: a Case Study

Juan Zhang, Guoqi Li and Xiao Liu
School of reliability and system engineering, Beihang University,

100191 Beijing, China

zhangjuan198804@163.com, gqli@buaa.edu.cn, liuxiaork@hotmail.com

Keywords: formal analysis, testing, verification, safety-critical systems

Abstract. Safety-critical system attracts more attention in recent years. During the development of
safety-critical systems, verification plays the most important role and includes many high cost
activities. Testing and formal analysis are two mainstream ways for verification. This paper describes
new tools and procedures for testing and formal analysis for verification of safety-critical systems.
Compare them in detail in a case study. Conclusion and future works are given finally.

Introduction

Safety-critical systems are computer, electronic or electromechanical systems in which failure
may have severe consequences such as injury or death of humans. Popular to speak, a safety critical
system is designed to lose less than one life per billion hours of operation. In many domains, such as
medical instrumentation, railway signaling, air traffic control, onboard systems and etc.. Safety
critical systems require the utmost care in their specification and design as well as implementation.
Nowadays, Safety-critical systems are usually controlled by embedded computers and software plays
a dominant role in their operation.

Software safety verification is to check if the safeties of software satisfy the development
requirements according to the contract in the development and using stage. Additionally, to give the
advices for inspection, examination, testing, or evaluation works.

Verification of safety-critical software
DO-178C/ED-12C [1] is the current standard for software assurance in the civil aeronautical

domain. The verification process of DO-178C includes review/analysis activity and test activities.
The progress refer to the system requirements, high-level requirements, software architecture,
low-level requirements, source code and executable object code, which is based on the sequence of
software development process. Each step of the development process and the objectives should be
verified.

Test is used to verify that the executable object is compliant with low-level requirements and
high-level requirements or not. Test is always based on the requirements and includes normal range
and robustness case. The essence of test verification of DO-178C is requirement coverage and
structural coverage of test cases.

Formal method is stated as an effective and challenging one and it will effects the development
verification process. Formal methods can be applied to many developments and verification activities
required software. Nowadays, the using of formal methods has become relatively mature.

Compare of Formal Analysis and Testing
Formal method has applied widely in the software design and verification stages. The main

process of verification using formal methods is review, analysis, test activities and verification and
verification activities. Formal analysis can replace the conventional methods of review, analysis, and
test for some verification objective. In can also provide guarantees or proofs of software properties
and compliance with requirements, all execution cases are taken into account. We can see the
function of formal methods is powerful in the verification activities. There are many kinds of formal
analysis, but they can typically be classified in three categories: (1) deductive methods, (2) model

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0865

checking, and (3) abstract interpretation. When use the formal analysis, the results of verification of
verification process is complicated. Because guarantee software have been tested enough is by the
means of coverage analysis. [2]

In DO-178C, test is the only means envisaged for meeting the verification objectives for
executable object code，and it always be the primary means. Formal method was mentioned maybe as
the means of test coverage analysis, in some extent, review and analysis activities cannot replace all
testing, and the most probably is just a formal analysis method can replace some properties. Test is
the basic unit of all engineering discipline, and also an important of the software development. [3]

It seems that the relationship between testing and verification is clear in the theoretical point of
view, but it is difficult to understand and many people do not know how to select in practical
engineering. In the following section, a case study is given for illustration.

Case Study

Systems Being Verified
For generalization, the case is selected from a public source, demonstration of Matlab.

Fig 1. Schematic showing how the components of the elevator system are connected to one another

Aircraft elevator may be the appropriate system for our study. A typical aircraft has two elevators

attached on the horizontal tails. And they are distributed on both side of the fuselage named left
elevator and right elevator. There are number of redundant parts in the system to enhance safety of the
aircraft. As the figure 1 shows the schematic of the components of elevator system are connected to
another.

There are two independent hydraulic actuators per elevator, and three separate hydraulic circuits to
drive the actuators. PFCU1 and PFCU2 are the two primary flight control units. PFCU1 is connected
with the left outer actuator and right outer actuators. PFCU2 is connected with the left inner actuator
and right inner actuators. Two control modules per actuator are used to regulate the full range control
law and limited/reduced range control law.

For other detailed information, please refer to demonstration of Matlab.
Testing
This subsection will discuss the method of testing using Matlab verification and validation tools.

Simulink Verification and Validation automates requirements tracing, modeling standards
compliance checking, and test-harness generation. It can also provide modeling standards checks for
the DO-178BC.

The point of this section is to introduce the methods to run the test automatically using verification
and validation tools. After modeling the actuator software using Simulink we can create the test for
the system shown in figure 2:

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0866

Fig. 2. Creating test using Simulink Verification and Validation tools.

By click the item that needed, the verification tools can create the coverage report automatically,

shown in figure 3.

Fig. 3. Model coverage report

Formal verification
In this subsection, we will discuss the formal verification method. The tool used below is

Processed Analysis Toolkit (PAT), which is developed by National University of Singapore [4]. PAT
is a self-contained framework for to support composing, simulating and reasoning of concurrent,
real-time systems and other possible domains. It comes with user friendly interfaces, featured model
editor and animated simulator. Most importantly, PAT implements various model checking
techniques [5] catering for different properties such as deadlock-freeness, divergence-freeness,
reachability, LTL properties with fairness assumptions, refinement checking and probabilistic model
checking.

The point of this section is to introduce the main path to model the actuator control software
system using the language of PAT:

1) Translate the Stateflow of Matlab model to language used in PAT, the step has to done
artificially;

2) After complete modeling the actuator using PAT, the next thing to do is run the PAT
simulation and verification. PAT can verify and check the model with different aspects, such
as logical deadlock, and the trace of status;

3) PAT can also check the property of model. We can assert a property using PAT language, run
the verification, and PAT will check if the model satisfies the property. If not, the PAT will
illustrate with a counterexample. Figure 4 show a sample of a counterexample.

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0867

Fig. 4. The theory of counterexample

Summary

The primary motivation for this paper is to compare formal analysis and testing for verification of
safety-critical systems. The formal analysis can reduce the cost and improve the effectiveness of
safety verification. And it can provide with the detailed information of the software that need to be
verified. However, in some case, the test is still needed, for example in system integrating.

There are still some tasks to be done. The first thing is to improve the correctness of the PAT
model of the software. For now, we have to translate the mdl to PAT file manually, which is
error-prone. The next step of the work includes developing a method to translate the mdl file to PAT
automatically. We think the problem we met is general for similar works. From the case study, you
could see the advantage and limitation of testing and formal method in verification of safety-critical
systems.

References

[1] RTCA (Radio Technical Commission for Aeronautics) and EUROCAE (European
Organisation for Civil Aviation Equipment). DO-178C/ED-12C: Software Considerations in
Airborne Systems and Equipment Certification. (2011)

[2] B. Duncan, D. Hervé, H. Kelly and W. Virginie. Guidance for Using Formal Methods in a
Certification Context, in ERTS 2010 – 19-21, Toulouse, May 2010

[3] C. Cyrille, K. Johannes and M. Yannick. Integrating Formal Program Verification with Testing, in:
ERTS 2012, Toulouse, Feb. 2012

[4] PAT: Process Analysis Toolkit An Enhanced Simulator, Model Checker and Refinement
Checker for Concurrent and Real-time Systems, available at http://www.comp.nus.edu.sg/~pat/

[5] P. Doron, P. Patrizio and S. Paola. Model Checking, Wiley Encyclopedia of Computer Science
and Engineering, 2009.

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0868

