

Behavior Consistency Verification for Evolution of Aspectual
Component-based Software

Xue-yao Zhou a, Ning-jiang Chenb and Dan-dan Huc
 College of Computer, Electronic,and Information, Guangxi University, Nanning, P. R. China

azhouxueyao@126.com , b chnj@gxu.edu.cn , cdandan_hu@yeah.net

Keywords: Aspect-oriented software architecture; Dynamic evolution; Behavior consistency

Abstract. Aspect-Oriented Software Architecture (AOA) is a high-level abstraction and integration
blueprint of aspectual component-based software. A semantic model of aspectual component-based
software is proposed to provide behavior description and semantic foundation for the consistency
verification of software architecture dynamic evolution. By using the semantic model of Pi-calculus,
a set of the consistency verification methods of dynamic evolution from multiple aspects are
introduced. Finally, a case study shows the effect of these methods.

Introduction
In the open and dynamic environment of Internet, the modification of distributed architectural

objects is directly reflected in the evolution of system. The software dynamic evolution helps to
improve system's adaptability and flexibility, to extend the lifetime of system and to improve the
expansibility of system [1]. Aspect-oriented method is unifying the decentralized public code
crosscutting in other function modules to form aspect to achieve the absolute separation of system
concerns .At the meantime, using weaving mechanism can weave aspects into the component system
according to the need, and form aspectual component-based system [2]. The dynamic evolution of
aspectual component-based system is a complicated process. Interface behavior incompatibility, the
change of unobservable internal behavior and replacing, adding or deleting component may result in
system's function behaviors straying from the original system. For aspectual component, the special
consideration is whether the semantic of pointcuts is changed and resulting in the change of system
behavior. In order to solve the above problems in the case of non-stop and confirm whether the
evolution is reasonable and correct, we verify the behavior consistency of aspectual component
dynamic evolution using Pi-calculus and Delta analysis.

Related Work
To guarantee system consistency during component dynamic evolution has important significance

for the system running correctly. There are already a number of researches on dynamic evolution of
component-based system and the protocol of component behavior. The reflection in [3] can provide
support for the dynamic evolution of component type. Naming service, reflection and dynamic
adaptation mechanism of middleware also allow support for the dynamic replacement and upgrade of
running component. Both of PKUAS [4] and Artemis-ARC [5] system use RSA for software
maintenance and evolution. PKUAS describes RSA by extending architecture language ABC/ADL.
Artemis-ARC uses RSA as specific operational objects built-in software to decouple component and
reinterpret the interaction between components. But the built-in RSA increases the development
complexity and lacks formal foundation of component behavior and interaction. In aspect of
component behavior protocol, [6] proposes formal description and compatibility verification for the
component behavior of complex real-time system, which effectively improves system reliability, but
does not consider the component evolution. [7] summarizes the consistency validation of component
evolution and behavior protocol and puts forward an evolution behavior consistency validation
algorithm. But due to the lack of analysis on aspect as well as aspectual component evolution, it can’t
meet the requirements of verifying consistency of evolution in aspectual software. So the above

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0869

consistency verification methods of base component can't be simply applied to aspectual component.
Compared with the existing work, we specially need to consider the aspectual component evolution
(the evolution of pointcut or advice,etc). This paper considers of analyzing AOA and describing
architecture behavior through Pi-calculus in order to validate multiple behavior consistency,
especially focus on the aspectual component dynamic evolution.

Work Foundation
Pi-calculus is a computational model for the formal description and analysis of concurrent systems.

Fig 1 shows the graphical representation of Pi-calculus. The process P sends the information along
the channel through port b, and process Q receives the information along the channel.

Fig 1. Representation of Pi-Calculus.

Modeling AOA With Pi-calculus. AOA includes three elements: base_component,
aspect_component and configuration. The following is to model these three elements and finally to
give the semantic model of the whole architecture. Firstly, the structures included in the three
elements are explained in Pi-calculus―Require r (Eq. 1), Provide p (Eq. 2), JoinPoint jp (Eq. 3), bind
(Eq.4) and advice (Eq. 5).

REQ(r,l)=(r(y). y l+0). r is the channel name, y is the name of the service provider, and l is the
requested location of the service. (1)

PROV(p,s)=!(p(x). x s+0). p is the channel name, s is the service reference, and x is the requested
location of s. (2)

JP(b,jp)=(b(bcp).bcp jp+0). b is the channel name, bcp is the name of joinpoint provider, and jp is
the transmitted joinpoint. (3)

BIND(r,p)= r p. declare the binding between components, r is the request service port and p is the
provide service port. (4)

ADVICE(a,pcd,k,advice)=(a(jp).[jp=pcd](k:advice)). a is the channel name, pcd is the pointcut, k
indicates the advice type keyword (before,after and around), advice is the executed program after
capturing joinpoint and jp is the joinpoint. (5)

Secondly, the explanations of base_component (Eq.6), aspect_component (Eq.7) and
configuration (Eq. 8, Eq. 9) constituted by these structures are listed as follows.

Base_Component=(v s,l,jp)(!(PROV(p,s))|!(REQ(r,l))|!(JP(b,jp))). (6)
Aspect_Component=(v pcd,k,advice)(!ADVICE(a,pcd,k,advice)). (7)
Configuration=(!BIND(r,p))|(!(Weavingrule)). (8)
Weavingrule=(Aspect_Component,con,pcd,advice). (9)
con is the constraint(the operation of dynamic evolution of architecture), the weaving semantic is

when the constrain con is met, system will call the aspectual component interface before (after,around)
calling the base component interface which is defined in pointcut pcd.

Finally, AOA semantic model is expressed in Eq. 10.
AOA=(!Base_Component)|(! Aspect_Component)| Configuration (10)

Consistency Verification of AOA Dynamic Evolution
Behavior consistency is behavior equivalent or the evolved system being able to finish all

behaviors before evolution. Behavior consistency mentioned in this paper refers to the former. The
running conditions and aspectual components of aspect-oriented system may change, and these
changes may affect the behavior of system and lead to system error. The difficulties involve the range
of evolution and whether the behavior state is consistent after evolution. So we must decide whether
the dynamic evolution will produce inconsistent behavior in the case of non-stop. And the
consistency verification of aspectual component evolution, which is the pointcut robustness test of

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0870

system, is the most important. This kind of evolution involves the addition, deletion and change of
pointcut, advice or even aspectual component. They may lead to the loss of defined join point, or the
unintended capture of connection points. It can cause the base component being unable to be crosscut
by aspect function, or the aspect function happens in a wrong joinpoint, which is unintended system
behavior change.

The behavior of component consists of component state transition sequence, the transmitting
message, interfaces between components and the operations. It can be represented as a 4-tuple:
BC=(SC, PC, IP C, IR C) , where S represents a state collection of component C, including the initial
and final states, that is SC={SC init, ,,,, SC fina}; PC represents a path collection of state transition, i.e.
PC = {t1, t2, ,,,, tn }, and transition path ti can be represented by a 4-tuple T={d,e,a,m}, a∈(IP C∪IR
C), d means the start state, e means the end state, a means the executed operation or the function of
the provider and requester interface, m means the transmitting message. A transition path from the
initial state to the end state is p = {t1, t2, ,,,, tm}, which represents the full behavior path of the
component. The collection of the whole full path is represented by Pw(C) = {p1, p2,,,, pn}.

Definition 1: Dynamic robustness of pointcut. It indicates the behavior interaction process
between aspectual component and base component, that is, the base component meet the regulatory
requirements of the aspectual component’s interface and its requirements can be provided by
aspectual component.

Assuming the base component C and aspectual component AC interact through interface
R
CI and P

ACI , if and only if (SC init,SAC init) ⎯→⎯ wP (SC fina,SAC fina), the pointcut of AC is dynamic

robust. (SC init,SAC init) represents the initial states of the two components, and Pw represents any
existed behavior full path.

According to the above definition and the model in Section 3, If C evolves to CDE or AC evolves to
ACDE, the semantics of interaction between CDE and AC, expressed as: SE=(v R

CDE
I ,IP AC)((v

jp)JP(R
CDE

I ,jp)|(v pcd,k,advice)ADVICE(IP AC,pcd,k,advice)).And it can convert into Pi-calculus

expressions: P(CDE,AC)=CDE. DEa <jp>|AC.aDE(m1)|[m1=pcd].AC. ACa <m2>, aDE, aAC represent the

component functions and belong to P
AC

R
C II

DE
∪ , m1 and m2 are the transmitting message. Then

according to the derivation expressions of Pi-calculus and the input or output in the full path, it is to
be checked whether the Pi-calculus expressions eventually arrive to empty process 0. That means
whether the both components move to the end state. If it arrives at the empty process 0, the pointcut is
dynamic robust, otherwise it is fragile.

Definition 2: Static robustness of pointcut. It indicates whether the (jp,advice) in system are
changed after evolution, which is calculating the Delta value of AOA. Assuming AOA A evolves to
A' ,the Delta value of AOA is defined as: Δpcd(A, A')={(add(A, A'))∪(delete(A, A'))}, add(A, A')=

JPj∈
 (advice(j, A')-advice(j,A)) , delete(A, A')=

JPj∈
 (advice(j, A)-advice(j, A')). JP are all joinpoints in

A and A',and JP=joinp(A)∪joinp(A'). Meanwhile, advice(j,A) expresses all matching of joinpoint and
advice in A, and if j is not in joinp(A), the advice(j,A) is a empty set. If and only ifΔpcd(A, A') is
empty, and the evolution doesn't have an impact on the semantic of pointcut, the pointcut is static
robust, otherwise it is fragile.

Case Studies
Suppose a hotel management system running on the Internet including all elements of the aspectual

component-based system. It has three core functions: Reserve Room, Check In and Check Out. And it
has a crosscutting function for logging. Also, the system needs to deal with the situation that there is
no room can be reserved by using HWaiting List. AOSD(Aspect-Orient Software Development)
methodology based on use cases is used to analyze and design the hotel management system in order
to achieve the complete separation of concerns, and then get an analysis model describing base

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0871

component and aspectual component—the use case slice model. This model makes preparations for
the later evolution and Fig 2 expresses it.

Fig 2. The use case slice model of Hotel management system. Fig 3. The new aspectual component RoomFinder.

In order to adapt to the changes of user’s requirements and the context, the system begins to evolve
after running for some time. When the context-aware is the update of base components
CheckInHandler and CheckOutHandler,the aspectual component Logging will produce dynamic
evolution. The bold italic in Fig 2 means deletion and the boldfaced word means addition. These
changes of pointcut in aspect Logging are defined as evolution mode 1. When the context perceives
no spare room and the number of waiting list is greater than the constraint in evolution rules, the
system will perform the operations of deleting aspect HandleWaiting and adding a new aspect
RoomFinder named evolution mode 2. The new aspectual component is shown in Fig 3. Towards the
behavior Inconsistency caused by evolution mode 2, Pi-calculus is used to verify the dynamic
robustness of pointcut. And to evolution mode 1, we can use Delta analysis [9] to verify the static
robustness of pointcut.

Behavior Consistency Analysis of Dynamic Evolution. According to the AOA of hotel
management system and the evolution requirements, we use the verification process of behavior
consistency to verify whether the system is able to maintain behavior consistency and avoid errors
occurring when the above evolutions are triggered. On the basis of the method, the specific behavior
expressions of the component ReserveRoomHandler (RRH) and aspectual component RoomFinder
(RF) are shown in Table 1.

Table 1. Behavior expressions and Full pathes of RRH and RF.
Component RRH RF
Behavior
Expression

BRRH =(SRRH,PRRH,IP
RRH,IR

RRH)，SRRH ={Ainit,B,Cfina}
PRRH ={t1,t2}, IP

RRH ={retrieveRoomRates,makeR}
IR

RRH={getQuantityAvailable}

 t1=(Ainit,B,makeR, Null)
t2=(B,Cfina, getQuantityAvailable, ptionNoRoomExce)

),,,(R
RF

P
RR

RFRF
RF IIPSB = , },,,{ ''''

finainit
RF DCBAS =

},,{ '
3

'
2

'
1 tttP RF = , }{ lsnOtherHotefindRoomsII P

RF =

},{ ListNumgetWaitingmakeRI R
RF = ,

),,,('''
1 NullmakeRBAt init=

int),,,('''
2 straNumOverConListNumgetWaitingCBt = ,

),,,('''
3 NulllsnOtherHotefindRoomsIDCt fina=

Full Path Pw(RRH)={p1}, p1=<t1,t2> }{)('
1pRFPw = , >=< '

3
'
2

'
1

'
1 ,, tttp .

Then the Pi-calculus expression of the interaction between RRF and RF and the deducing process
of the full path }{)('

1pRFPw = are given as follows.

0..|

..|int(.

|..|int)(

.|)(.|.|.(),(

int

>≠<⎯⎯ →⎯><><

⎯⎯⎯⎯⎯ →⎯><

><⎯⎯ →⎯><

><><=

ptionNoRoomExceyAvailablegetQuantitRRHNulllsnOtherHotefindRoomsIRFptionNoRoomExce

yAvailablegetQuantitRRHNulllsnOtherHotefindRoomsIRFstraNumOverConListNumgetWaitingRF

ptionNoRoomExceyAvailablegetQuantitRRHNulllsnOtherHotefindRoomsIRFstraNumOverCon

ListNumgetWaitingRFNullmakeRRFptionNoRoomExceyAvailablegetQuantitRRHNullmakeRRRHRFRRHP

Null

straNUmOverCon

Null

 So, towards evolution mode 2, the behavior is inconsistent between RRF and RF. This evolution is
infeasible.

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0872

 Meanwhile, the pointcut definition in aspect Logging is significantly changed and the system
clearly introduces and deletes the associated matching of joinpoint and advice. SoΔpcd(A, A') is not
empty and the pointcut doesn't satisfy the static robustness.

Conclusions
This paper analyzes the inconsistent behavior problems occurred in the dynamic evolution process

of aspect-oriented system and puts forward the semantic model of AOA based on Pi-calculus. Then it
proposes the behavior consistency verification method with Pi-calculus and Delta analysis.
Compared with [8], the method adds the relevant examine function of Aspect. Increased behavior
consistency test of aspectual component evolution is the verification of pointcut robustness.
Compared with [9], the robustness verification in this paper is easy to understand and adds the
dynamic robustness verification based on behavioral interaction. In the scenario of hotel management
system as a case study, our method has been validated the feasibility. Due to the dynamic evolution
and behavior protocol involving wide knowledge, there are some issues still to be studied in the future
work, including the behavior analysis of the composite operations of component in evolution, the
detailed analysis of AOA aspect weaving and then explaining woven semantic.

Acknowledgment
This work is supported by the National Natural Science Foundation of China (Grant No.

61063012), the Science and Research Project of Education Department of Guangxi Zhuang
Autonomous Region under Grant No. [2010] 10, the Program for Excellent Talents in Guangxi
Higher Education Institutions under Grant No. [2011] 40.

References

[1] Guangquan Zhang, Mei Rong. A Framework for Dynamic Evolution Based on Reflective
Aspect-Oriented Software Architecture. Computer Sciences and Convergence Information
Technology, 2009:7-10.

[2] CAO Donggang, MEI Hong, ZHOU Minghui. Supporting crosscutting concern modelling in
software architecture design. Frontiers of Computer Science in China 2007, 2007,1(1): 50-57.

[3] Costa-Soria,C., Hervas-Muoz,D., Perez,J., Carsi, J.A. A Reflective Approach for Supporting
the Dynamic Evolution of Component Types. Engineering of Complex Computer Systems(ICECCS),
2009:301-310.

[4] Chao You, Minghui Zhou, Zan Xiao, Hong Mei. Towards a Well Structured and Dynamic
Application Server. Computer Software and Applications Conference (COMPSAC'09),
2009:427-434.

[5] Ping Yu, Xiaoxing Ma, Jian Lu. Dynamic software architecture oriented service composition and
evolution. Computer and Information Technology(ICCIT), 2005:1123-1129.

[6] Yangli JIA, Zhenling ZHANG, Zhoujun LI. Real-time Extension of Component Behavior
Protocol and its Compatibility Verification. Computer Science. 2010,37(10):143-147.

[7] LUO Yi, XingYu LI, LianWei GUAN, HU Hao, LU Jian. Study on Behavior Consistency of
System on Component Evolution. Computer Science. 2008,35(1):266-271.

[8] .Oquendo, F. Dynamic Software Architectures: Formally Modelling Structure and Behaviour
with Pi-ADL. Software Engineering Advances (ICSEA'08), 2008:352-359.

[9] Maximilian Stoerzer, Juergen Graf. Using Pointcut Delta Analysis to Support Evolution of
Aspect-Oriented Software. 21st IEEE International Conference on Software Maintenance,
2005:653-656.

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0873

