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Abstract

This paper deals with a method for the linearization of nonlinear autonomous dif-
ferential equations with a scalar nonlinearity. The method consists of a family of
approximations which are time independent, but depend on the initial state. The
family of linearizations can be used to approximate the derivative of the nonlinear
vector field, especially at equilibrium points, which are of particular interest, it can be
used also to determine the asymptotic stability of equilibrium point, especially in the
non-hyperbolic case. Using numerical experiments, we show that the method presents
good agreement with the nonlinear system even in the case of highly nonlinear systems.

1 Introduction

Many physical systems are modeled by nonlinear autonomous differential equations of the
following form

dkx (t)
dtk

+ bk−1
dk−1x (t)
dtk−1

+ ...+ b0x (t) = f (x (t)) (1.1)

where f : IR −→ IR is a nonlinear function, bi are real numbers, k is the order of the
system. If we put x (t) = x1 (t) ,

dx(t)
dt = x2 (t) , ...,

dk−1x(t)
dtk−1 = xk (t), system (1.1) is written

equivalently as{
dxi(t)

dt = xi+1 (t) , i = 1, ..., k − 1
dxk(t)

dt = −b0x1 (t)− b1x2 (t)− ...− bk−1xk (t) + f (x1 (t))
(1.2)

We associate to system (1.2) an initial state x1 (t0) = x10, ..., xk (t0) = xk0. We assume
that conditions on f for which the solution of the initial value problem exists and is unique
are satisfied. Note that in general, the nonlinear vector field is a function of all the state
variables, system (1.2) is a particular case. Of course, the dynamics of the system depend
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crucially on the scalar nonlinear function. System (1.2) associated with an initial state
has the following general form{

dX(t)
dt = F (X (t))

X (t0) = X0
(1.3)

where X = [x1, x2, ..., xk]
T is the state vector, F : IRk −→ IRk is the vector field.

In general, when dealing with the dynamics of nonlinear systems, linearization plays
an important role; since it provides simple models which are locally equivalent to non-
linear systems. In fact, it turns out in many situations that nonlinear systems can be
approximated in some regions of operation by linear systems. Furthermore, the theory
of linear systems is more complete comparing to nonlinear systems. A classical example
is the asymptotic stability, where the method the most used for the determination of the
stability type of an equilibrium point is based on the linearization around the equilibrium.

The most classical linearization is based on Fréchet derivative at the equilibrium point.
Recall that an equilibrium point Xeq of system (1.3) satisfies F (Xeq) = 0, where Xeq =
[xeq1, xeq2, ..., xeqk]

T . In the particular case of system (1.2), the equilibrium is given by
Xeq = [xeq1, 0, ..., 0]

T . The classical linearization near the equilibrium point Xeq is given
by

DF (Xeq) =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
r0 −b1 −b2 · · · −bk−1


 (1.4)

where r0 = −b0 + f
′
(xeq1). DF (Xeq1) is the Jacobian matrix at the equilibrium point.

Unfortunately the classical linearization near an equilibrium point Xeq has the following
drawbacks

1. When DF (Xeq) presents at least a zero eigenvalue or a pair of purely imaginary
eigenvalues, there is no equivalence between the linear and the nonlinear systems, i.e., the
behavior of the linearized system can be very different from the nonlinear system. This
statement results from the Hartman-Grobman theorem.

2. The classical linearization is a first order approximation, the quality of the approxi-
mation degenerates for highly nonlinear systems.

3. In many cases, it happens that the Jacobian matrix at the equilibrium point does
not exist. Classical linearization theorems do not apply in this case.

As a result to these drawbacks, various complementary methods have been suggested
to be used for some specific problems, and especially to overcome the drawbacks of the
classical linearization.

A least squares linearization method was suggested in [2] and [3] to approximate non-
linear circuits equations. Benouaz and Arino [4] gave to the method the mathematical
validity and they show the applicability of the method to solve stability problems. In fact
they have shown that in the first order case, the nonlinear system described by{

dx(t)
dt = −b0x (t) + f (x (t))

x (t0) = x0
(1.5)
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can be approximated near the origin by the following linear system

{
dx(t)

dt = ax (t)
x (t0) = x0

(1.6)

where a is a real number given by

a = −b0 + 2
x2

0

∫ x0

0
f (x) dx (1.7)

where the approximation is not defined for x0 = 0. The real number a was computed
under the assumption that the nonlinear vector field presents negative spectrum around
the origin; this is an important restriction. In this paper, our aim is to make some progress
regarding the approximation. We first relax the assumption of the negative spectrum and
second, we introduce a family of linearizations which is a generalization of equation (1.7).
We show that the method allows to approximate the derivative of the nonlinear vector
field. We also establish a comparison with the classical linearization.

2 Generalization of the approximation

In this section, we relax the assumption on the spectrum of f in the first order case, we
generalize the method to a family of approximations, and we show that the generalization
to systems of order k is straightforward. Consider the first order nonlinear system given
by (1.5) with f (0) = 0. We associate to system (1.5) a linear system such as (1.6). In [4],
the linearized system was determined by the minimization of the following cost function

Φ (a) =
∫ +∞

t0

|−b0x (t) + f (x (t))− ax (t)|2 dt (2.1)

under the assumption that f
′
(x) is negative around the origin. The solution obtained by

the minimization of the cost function (2.1) is the following

at≥0 = −b0 +
∫ +∞
t0

[f (x (t))x (t)] dt∫ +∞
t0

x2 (t) dt
(2.2)

where at≥0 denotes the real number a obtained by the minimization of the cost function
(2.1) for forward time.

The assumption of negative spectrum is necessary for the convergence of the solution,
however it is easy to see that the convergence problem can be solved when f

′
(x) is positive

near the origin by considering the backward evolution of time. We denote by at≤0 the real
number a obtained by the minimization of the cost function (2.1) for backward time. We
get in this case

at≤0 = −b0 +
∫ t0
+∞ [f (x (t))x (t)] dt∫ t0

+∞ x2 (t) dt
(2.3)
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By inverting the bounds of the integration in (2.3), it turns out that at≥0 and at≤0 are
computed using the same formula. After a variable change t → x (t) ; where x (t) is the
solution of the linear system, with dt = dx

ax(t) , we get

a = −b0 +
∫ x0

0 f (x) dx∫ x0

0 xdx
= −b0 + 2

x2
0

∫ x0

0
f (x) dx (2.4)

Equation (2.4) is valid for both at≥0 and at≤0, and the approximation is unique and optimal
in the least squares sense.

As a generalization of the approximation given by equation (2.4), we define the following
family of approximations

an = −b0 + n+ 2
xn+2

0

∫ x0

0
xnf (x) dx (2.5)

where n is an integer which satisfies n ≥ 0. an are not defined for x0 = 0. Qualitatively,
there is no difference between different an, but we will see in the application that there
exists some difference in terms of the error due to the approximations. In fact, for higher
values of n, the error in the neighborhood of the initial state decreases considerably, and
increases in the neighborhood of the origin. The approximations an can be seen as the
result of the minimization of the following cost functions

Φ (an) =
∫ +∞

t0

|xn (t) [−b0x (t) + f (x (t))− anx (t)]|2 dt (2.6)

n = 0, 1, 2, ...

Equation (2.4) corresponds to the particular case when n = 0. When the initial state is
small, the following linear systems{

dx
dt = anx (t) , n = 0, 1, 2, ...
x (t0) = x0

(2.7)

approximate the nonlinear vector field near the origin, and the solutions of the linear
systems which are given by x (t) = ean(t−t0)x0; (n = 0, 1, 2...) approximate the nonlinear
solution. Note that an are time invariant but they depend on the initial state. This makes
an important difference with the classical linearization which is independent of the initial
state.

Similar results can be obtained for systems of order k. We associate the following linear
system to equation (1.1){

dkx(t)
dtk

+ bk−1
dk−1x(t)

dtk−1 + ...+ b1
dx(t)

dt = ax (t)
X (t0) = X0

(2.8)

where a is a real number to be determined.
We assume that the origin is an equilibrium point for the nonlinear vector field, i.e.,

F (0) = 0 which means that f (0) = 0. This is not a restriction since it can be performed
by a simple shift of coordinates. The classical linearized system near the origin has the
following form{

dkx(t)
dtk

+ bk−1
dk−1x(t)

dtk−1 + ...+ b1
dx(t)

dt =
[
−b0 + f

′
(0)

]
x (t)

X (t0) = X0

(2.9)
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The linear equivalent system (2.8) is obtained by straightforward generalization of the first
order case, and we get the following family of linear systems (n = 0, 1, 2...){

dkx(t)
dtk

+ bk−1
dk−1x(t)

dtk−1 + ...+ b1
dx(t)

dt = anx (t)
X (t0) = X0

(2.10)

where an are given by

an = −b0 + n+ 2
xn+2

0

∫ x0

0
xnf (x) dx (2.11)

The second term in the expression of an is due to the nonlinear function. This term will
be denoted ãn and is given by

ãn =
n+ 2
xn+2

0

∫ x0

0
xnf (x) dx (2.12)

The coefficients ãn allow us to approximate the area under f (x) in the interval x ∈ [0, x0].
This can be seen easily in the particular case when n = 0. The area under f is given by

S =
∫ x0

0
f (x) dx (2.13)

It is easy to see from the formula of an that S is given by

S = a0
x2

0

2
(2.14)

This property is illustrated in figure 1 for f (x) = x3, x0 = 4. The area under f (x) is
compared with the area under the lines of slopes ã0, ã1 and ã2, with ã0 = 8, ã1 = 48

5 ,
ã2 = 16

3 .
In the next section, we discuss the relation between the approximation and the derivative
of the nonlinear vector field.

3 Approximation of the derivative of the nonlinear vector
field

In this section, we discuss the relation of the family of approximations an with the classical
linearization near the origin, which is assumed to be an equilibrium point for the nonlinear
system i.e., f (0) = 0. In fact, it can be proven using a simple L’Hopital’s rule that

f
′
(0) = lim an (x0) + b0;x0 → 0 (3.1)

So, if x0 is very small, an can be seen as a perturbation of f
′
(0)− b0. In this case, we can

write

an (x0) = −b0 + f
′
(0) + h (x0) (3.2)

where h (x0) is a small quantity which goes to zero when x0 → 0.
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Figure 1. An illustration of the area approximation property

It is also possible to show that the derivative at any point x = β of the nonlinear vector
field can be approximated using an. Let us define a modified version of an by

cn (x0, β) = −b0 + n+ 2
xn+2

0

∫ x0

0
xn [f (x+ β)− f (β)] dx (3.3)

with f (0) = 0. The derivative of f at the point β can be computed by

f
′
(β) = lim cn (x0, β) + b0;x0 → 0 (3.4)

This also can be proven using L’Hopital’s rule. We have when x0 → 0

lim cn (x0, β) = lim
[
−b0 + f (x0 + β)− f (β)

x0

]
= −b0 + f

′
(β) (3.5)

This means that if x0 is very small, then we can write

cn (x0, β) = −b0 + f
′
(β) + h (x0) (3.6)

where h (x0) is a small quantity which goes to zero when x0 → 0. The relationship of
the method with the classical linearization shows the evidence of the method and the
possibility to use an (x0) to study the stability of the origin in a similar way to the Fréchet
derivative when x0 is small. Furthermore, the method can be used for the numerical
calculations of the derivative. This result can be extended easily to systems of order k.
We define the following matrices (n = 0, 1, 2...)

An =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
an −b1 −b2 · · · −bk−1


 (3.7)
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where an are given by (2.11) . Matrices An approximate the Jacobian matrix at the origin
when the initial state is small. Furthermore, matrices

Bn =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
cn −b1 −b2 · · · −bk−1


 (3.8)

approximate the Jacobian matrix at the point X = [β, x2, ..., xk]
T , where cn are given by

(3.3) .

4 Order of the approximation

The classical linearization is well-known to be a first order linearization method. This
is not the case for the family of linearizations suggested here. To show this property we
consider the particular case where the nonlinear function is written under the form of a
polynomial, i.e.,

f(x) = c1x+ c2x
2 + c3x

3 + ...+ ckx
k (4.1)

=
k∑

j=1

cjx
j

The family of approximations gives

an =
k∑

j=1

(n+ 2)
n+ j + 1

cjx
j−1
0 (4.2)

and the linearized system is the following

ẋ = anx =


 k∑

j=1

(n+ 2)
n+ j + 1

cjx
j−1
0


x (4.3)

It is clear that system (4.3) has the same order k as the nonlinear function, and the order
does not depend on n. Equation (4.3) shows the classical linearization (where the only
term kept is the term in c1) as a particular case of the family of linearizations introduced
here.

5 Relation with the asymptotic stability

In this section, we discuss, the relation of the method with the asymptotic stability of the
equilibrium point and we focus on the case when the equilibrium is non-hyperbolic. In
general, a non-hyperbolic equilibrium point is characterized by at least a zero eigenvalue
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or a pair of eigenvalues with zero real parts. Since the nonlinear function is scalar, we
focus on the scalar case. Let us rewrite system (1.6) under the following form

dx
dt = g (x)
x (t0) = x0

(5.1)

with

g (x) = b0x+ f (x) (5.2)

In the scalar case, a non-hyperbolic equilibrium point is characterized by g
′
(xeq) = 0.

(obviously, xeq is hyperbolic when g
′
(xeq) �= 0). Usually the stability of a nonlinear

system near its equilibrium point is deduced from linearization at the equilibrium point.
The following theorem states condition under which linear and nonlinear systems are
equivalent.

Theorem 1. (Hartman-Grobman)
If the linearization leads to hyperbolic equilibrium point, then the nonlinear system near
an equilibrium point is topologically equivalent its linearized system.

As a result to this theorem, the stability type of a hyperbolic equilibrium point can be
deduced from linearization. However, this is not the case with non-hyperbolic equilibrium
points, and the stability depends on higher order terms. The classical linearization fails
in this case. Our aim is to show that the suggested method can be used to overcome this
problem. The linearized system is characterized by

an =
2 + n

x2+n

∫ x0

0
xng (x) dx (5.3)

We assume for simplicity and without loss of generality that the origin is an equilibrium
point for the nonlinear system, which means that g (0) = 0. A non-hyperbolic equilibrium
point situated at the origin is characterized by g

′
(0) = 0. an (x0) can be used in the same

way as g
′
(0) to determine the nature of an equilibrium point. For the linearization near

the origin, x0 is chosen small. In this section we consider a0 only. Note that according to
the sign of a0 (x0) we have

1. a0 (x0) < 0 for x0 ∈ [−δ, δ], where δ is a small real number.
2. a0 (x0) > 0 for x0 ∈ [−δ, δ].
3. a0 (x0) > 0 for x0 ∈ (0, δ] (or [−δ, 0)), and a0 (x0) < 0, for x0 ∈ [−δ, 0) (or (0, δ]).
Our aim is to show the possibility of construction of Lyapunov function using the

linearization. For n = 0, let’s define

v (x) =
1
2
x2a0 (x) (5.4)

Clearly, v (x) has the same sign as a0 (x) with v (0) = 0.

Proposition 1. If v (x) < 0 for x ∈ [−δ, δ] − {0}, where δ is a small real number, then
v (x) is a Lyapunov function and the origin is asymptotically stable.
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Proof. In this case, v (x) < 0 for x �= 0 and v (0) = 0, which means that v (x) is negative
definite candidate Lyapunov function. The time derivative of v (x) is given by ∂v(x)

∂t =
g2 (x) , which is positive, thus v (x) is a Lyapunov function, and the origin is asymptotically
stable. �

Proposition 2. If v (x) > 0 for x ∈ [−δ, δ] − {0}, where δ is a small real number, then
the origin is unstable.

Proof. In this case, v (x) > 0 for x �= 0 and v (0) = 0, which means that v (x) is positive
definite. The time derivative of v (x) is given by ∂v(x)

∂t = g2 (x) , which is positive, thus the
origin is unstable. �

Case (1) corresponds to negative definite Lyapunov function, with positive derivative
with respect to time, the origin is asymptotically stable. Case (2) corresponds to positive
definite Lyapunov function with positive derivative with respect to time, the origin is un-
stable. In case (3), the origin is half stable, where the stability depends on the sign of x0.
The case of half stable equilibrium exists only for non-hyperbolic equilibria.
The construction of Lyapunov function using a0 (x) is valid for both hyperbolic and non-
hyperbolic equilibria, however it is more useful in the case of non-hyperbolic equilibria.
We restricted ourselves to the case of n = 0 because the Lyapunov function constructed
using an (x) for higher values of n results in complicated functions. An illustration is given
in the next section.

Example. In this example we illustrate the construction of Lyapunov function for a non-
hyperbolic equilibrium point. Consider the following nonlinear system

{
dx(t)

dt = rx− αx3

x (t0) = x0
(5.5)

with α > 0. This system undergoes a pitchfork bifurcation at r = 0. We are interested in
studying the stability of the origin at the bifurcation value (r = 0), since the origin is a
non-hyperbolic point at this value. In this case the classical linearization fails as a result
of Hartman-Grobman theorem. Using the suggested method we get (for r = 0)

a0 = −2
4
αx2

0 (5.6)

The construction of the Lyapunov function from (5.4) gives us

v (x) = −1
4
αx4 (5.7)

Clearly, we have:
(i) v (0) = 0
(ii) v (x) < 0 for x �= 0.
Since conditions (i) and (ii) are satisfied, v (x) is a candidate Lyapunov function. The
time derivative of v (x) is given by

∂v (x)
∂t

=
(
αx3

)2 (5.8)
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Figure 2. Solution for system (5.5) and its linearized systems for r = 0

The time derivative of v (x) is positive, which means that the origin is asymptotically
stable. The solutions for r = 0 of the nonlinear system (5.5), the classical linearization
and linearization given by a0 for x0 = ±0.5 are shown in figure 2. Clearly, the classical
linearization does not reflect the nonlinear behavior. However there exists good agreement
between the linearization given by a0 and the nonlinear system. Note that in the case where
α < 0, a0 is positive (which corresponds to case (2)) and v (x) is positive definite with
positive derivative with respect to time, thus the origin is unstable in this case.

The property which allows us to determine the nature of non-hyperbolic equilibria using
an is the order of the method. In fact an has the same order as the nonlinearity as we
mentioned previously.
A comparison between the classical linearization and the suggested linearization when
g (x) is anlytic function can be shown as follows:
Let g (x) be an analytic function, then we can write (the origin is an equilibrium point)

g (x) = g
′
(0)x+

g(2) (0)
2!

x2 + ...+
g(m) (0)

m!
xm + ... (5.9)

The classical linearization is given by

dx

dt
= g

′
(0)x (5.10)

and fails when g
′
(0) = 0. We get for a0 (x0)

a0 (x0) = g
′
(0) +

g(2) (0)
2!

2x0

3
+

g(3) (0)
3!

2x2
0

4
+ ...+

g(m) (0)
m!

2xm−1
0

m+ 1
+ ... (5.11)

where x0 is near the origin. Thus, even when g
′
(0) = 0, a0 (x0) does not vanish, since

higher order terms are included in the expression of a0 as a function of the initial state. The
generalization to equations of order k is simple in this case, since the nonlinear function
is scalar.
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The main drawback of the method appears for high values of n, where it becomes
difficult to find an in closed form for many nonlinear functions. In this situation, numerical
integration becomes necessary to compute an.

The next section is to test the method by considering a numerical example for a second
order system.

6 Numerical example

For the application, we consider a nonlinear system modeling an overdamped bead on
rotating hoop [1]. The system is modeled by the following equation

mr
d2φ

dt2
+ b

dφ

dt
= −mg sin (φ) +mrω2 sin (φ) cos (φ) (6.1)

where φ is an angle, b is the damping constant, ω is a constant angular velocity and r is
a radius. If we put ε = m2gr

b2
, γ = tω2

g , τ = mg
b , we get following the dimensionless system

d2φ

dt2
+
1
ε

dφ

dt
=
1
ε
[− sin (φ) + γ sin (φ) cos (φ)] (6.2)

with

f (φ) =
1
ε
[− sin (φ) + γ sin (φ) cos (φ)] (6.3)

We suggest to linearize the system of equation (6.2) near the origin, the closed form
solution for a0 is given by

a0 =
2
φ2

0

[
1
ε
(cos (φ0)− 1) +

γ

ε

(
1
2
− 1
2
cos2 (φ0)

)]
(6.4)

Observe that a0 depends on the nonlinear model parameters γ and ε. For γ = 0.1, ε = 0.2,
φ (t0) = π

2 and dφ(t0)
dt = 1, we get for the following table for different values of n

n 0 1 2 3 4 10
an −3.8502 −3.7182 −3.62974 −3.5663 −3.5186 −3.3751

Table 1: values of an for n = 0, 1, 2, 3, 4 and 10. Where an are obtained by a simple
integration of the nonlinear vector field. The classical linearized system is given by

DF (0) =

[
0 1

f
′
(0) −1

ε

]
=

[
0 1
1
ε
(γ − 1) −1

ε

]
=

[
0 1
−4.5 −5

]
(6.5)

The solutions for φ (t) and dφ(t)
dt for a0, a1, a2 and DF (0) and the nonlinear system are

depicted in figures 3 and 4, respectively. The absolute error due to the approximations
‖xnonlinear − xlinear‖ is depicted in figure 5. The error goes to zero uniformly when time
goes to infinity. We observe that near the initial state, the approximation is better for
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Figure 3. Solution for φ (t)

Figure 4. Solution for dφ(t)
dt

higher values of n, and all an are better than the classical linearization. In the neighbor-
hood of the origin, the classical linearization becomes the best. This confirms that the
classical linearization is the best approximation near the origin.

φ0 π/3 π/4 π/5 π/6 π/7
a0 −4.2175 −4.3429 −4.4001 −4.4488 −4.4493
a1 −4.1603 −4.3113 −4.3800 −4.4169 −4.4391
a2 −4.1221 −4.2910 −4.3665 −4.4076 −4.4323
Table 2: values of an for n = 0, 1, 2 for different values of the initial state φ0.

Table 2 shows an for n = 0, 1, and 2 for different initial states. It is clear that all the
an go to f

′
(0) when the initial state x0 becomes smaller. This shows the ability of an

to approximate f
′
(0) when x0 → 0, and confirms our previous result about the relation

between the approximation and the derivative of the nonlinear vector field at the origin.
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Figure 5. Error due to the approximations

7 Conclusion

In this paper, we presented a method for the linearization of a class of nonlinear au-
tonomous systems. The method consists of a family of linearizations which are time
independent but depend on the initial state. It is shown that the method can approxi-
mate the derivative of the nonlinear vector field. A relation between the method and the
stability type of a non-hyperbolic equilibrium point is elaborated. Using numerical exper-
iments, it is shown that the method presents good agreement with the nonlinear system.
Furthermore, the family of linearizations present better performance in terms of the error
in the neighborhood of the initial state.
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