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Abstract

In addition to obtaining supersymmetric structure related to the partner Hamiltoni-
ans, we get another supersymmetric structure via factorization method for both the
3D harmonic oscillator and Morse quantum potentials. These two supersymmetries
induce also an additional supersymmetric structure involving simultaneous laddering
relations with respect to two different parameters for both models. These lead to the
realizing of Heisenberg Lie superalgebras with two, four and six supercharges.

1 Introduction

Since the 3D isotropic (central) harmonic oscillator potential only depends on the radial
distance, Hamiltonian has rotational symmetry which can be solved by separating vari-
ables. Radial part of the 3D isotropic harmonic oscillator Hamiltonian is a well-known
differential equation which can be factorized as the operator products [6]. There are ap-
plication aspects for the 3D isotropic harmonic oscillator. For example, it has been shown
that for the screened 3D isotropic harmonic oscillator there exist an infinite number of
closed orbits for suitable angular momentum values so that the dynamical symmetry SU(2)
is only preserved at the aphelion (perihelion) points of classical orbits in the eigencoor-
dinate system [26]. The q-deformed 3D harmonic oscillator model is also applied to the
description of atomic metal clusters [21], and the successful prediction of magic numbers in
alkali metal clusters, of up to 1500 atoms per cluster [4], are in agreement with experiment.
On the other hand, the 1D Morse potential, which was first introduced by Morse in

1929 [19], is one of the most successful models for the states of the diatomic molecules
[7]. On a real axis like θ from −∞ to +∞, the Morse partner potentials are defined as
(Aeθ − Bn)2 − 2Aeθ and (Aeθ − Bn+1)2 + 2Aeθ. In fact, although the Morse potential
does not have the θ−γ dependence with γ > 0, it gives a good overall approximation
for small systems. The Morse potential has been widely used in many areas such as
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molecular systems, quantum chemistry and, in particular, chemical bonds [20]. In the
context of supersymmetric quantum mechanics [2, 6, 15, 23, 25], the energy spectrum and
the eigenfunction of the Morse potential have been calculated by variational method for
various diatomic molecules in Ref. [9]. In algebraic models of the molecular structure,
the Morse potential is related to the Lie algebra su(2), and the bound states are labelled
by the representations of the algebra [13]. In the approaches of potential group, Lie
algebra su(1, 1) and other dynamical algebras many studies have been done for obtaining
the energy spectrum and the eigenfunctions of the Morse potential [3]. Considerations
pointed out above reveal importance of the following studies.
In recent years, shape invariance [6, 11, 14, 16, 17] with respect to one parameter

has been a rich facet of quantum mechanical solvable models [6, 18, 19]. This is because
shape invariance with respect to one parameter represents not only supersymmetry algebra
[6, 15, 17, 25] but also the parasupersymmetry algebra of arbitrary order [6, 16, 22]. Using
the idea of shape invariance one can also construct solvable 2D Schrödinger or Dirac
equations [5, 16]. In Ref. [11], using the idea of master function theory we have shown
that most of shape invariant potentials are classified in two different classes. In the first
class, the superpotentials are labelled in terms of a pair of quantum numbers n and m,
whereas in the second class, the superpotentials are labelled in terms of a single quantum
number m. This formalism for classifying 1D quantum solvable models leads us to the
realization of supersymmetry algebras with more generators [1]. For this, in this paper
it will be important to obtain the simultaneous shape invariance with respect to the
parameters n and m for both the 3D harmonic oscillator and the Morse solvable models.
In this paper, using factorization [11, 16, 17, 24] and shape invariance of the associated

Laguerre differential equation with respect to two parameters m and n [16, 17], we obtain
the factorized Schrödinger equations for the 3D radial harmonic oscillator and the Morse
Hamiltonians. In this process, quantum states of both models are labelled by both param-
eters n and m. The partner supersymmetric structure corresponding to the 3D harmonic
oscillator and Morse potentials describe the laddering relations for the parameters m and
n, respectively. Furthermore, we derive their laddering operators such that their indices
are displaced with the inverse order n and m, respectively. These are interpreted as the
Heisenberg Lie superalgebra H(0|2) ⊕ H(0|2) for the 3D harmonic oscillator and Morse
models. Also, we derive a nice symmetry involving simultaneous displacement of both
parameters n and m for both 3D harmonic oscillator and Morse quantum states. Finally,
we can conclude that the Heisenberg Lie superalgebra H(0|2)⊕H(0|2)⊕H(0|2) is realized
by laddering operators of both models. Since, in fact, the existence of every pair of raising
and lowering operators in quantum mechanics via introducing two supercharges operators
and one bosonic operator enable us to construct a representation of the supersymmetry
algebra.

2 Mathematical foundation

The differential equation of the so called Laguerre for given non-negative integers n ≥ 0
and 0 ≤ m ≤ n has been known to be [8, 16, 17]

xy′′ + (1 + α − βx) y′ +
[(

n − m

2

)
β − m

2

(
α+

m

2

) 1
x

]
y = 0 , (2.1)
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where its solutions y = L
(α,β)
n,m (x) in the Rodrigues representation are

L(α,β)
n,m (x) =

an,m(α, β)
xα+m

2 e−βx

(
d

dx

)n−m (
xn+αe−βx

)
, (2.2)

in which an,m(α, β) is the normalization coefficient. The above differential equation for the
special case m = 0 transforms into a differential equation corresponding to the Laguerre
polynomials. In fact, the associated Laguerre differential equation (2.1) has been obtained
by taking m-th derivative of the Laguerre polynomials differential equation, and using the
change of function by multiplying it by xm/2 as well.
Shape invariance of the associated Laguerre differential equation (2.1) with respect to

m, for a given n, is realized as [16]

A+(m;x)A−(m;x)L(α,β)
n,m (x) = (n − m+ 1)βL(α,β)

n,m (x) ,

A−(m;x)A+(m;x)L
(α,β)
n,m−1(x) = (n − m+ 1)βL

(α,β)
n,m−1(x) , (2.3)

where the differential explicit forms of the operators A+(m;x) and A−(m;x) are, respec-
tively:

A+(m;x) =
√

x
d

dx
− m − 1

2
√

x
,

A−(m;x) = −√
x

d

dx
− 2α+m − 2βx

2
√

x
. (2.4)

One may write down the shape invariance equations (2.3) as the raising and lowering
relations:

A+(m;x)L
(α,β)
n,m−1(x) =

√
(n − m+ 1)βL(α,β)

n,m (x) ,

A−(m;x)L(α,β)
n,m (x) =

√
(n − m+ 1)βL

(α,β)
n,m−1(x) . (2.5)

On the other hand, the associated Laguerre differential equation (2.1) can be factorized
with respect to the parameter n, for a given m, as [17]

A+(n,m;x)A−(n,m;x)L(α,β)
n,m (x) = (n − m)(n+ α)L(α,β)

n,m (x) ,

A−(n,m;x)A+(n,m;x)L(α,β)
n−1,m(x) = (n − m)(n+ α)L(α,β)

n−1,m(x) , (2.6)

where the differential operators as functions of the parameters n and m are calculated as
follows, respectively:

A+(n,m;x) = x
d

dx
− βx+

1
2
(2n+ 2α − m) ,

A−(n,m;x) = −x
d

dx
+
1
2
(2n − m) . (2.7)

Note that the shape invariance equations (2.6) can also be written as the raising and
lowering relations:

A+(n,m;x)L(α,β)
n−1,m(x) =

√
(n − m)(n+ α)L(α,β)

n,m (x) ,

A−(n,m;x)L(α,β)
n,m (x) =

√
(n − m)(n+ α)L(α,β)

n−1,m(x) . (2.8)
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It is clear that realization of the shape invariance equations (2.3) and (2.6) does not
impose any condition on the normalization coefficients an,m(α, β). However, realization of
the laddering equations (2.5) and (2.8) imposes two recursion relations with respect to m
and n, respectively on the coefficients. In other words, in order to realize the equations
(2.5) and (2.8), the highest power coefficients of x must be the same on both sides of them.
The mentioned method, after some calculations, leads to the following result

an,m(α, β) = (−1)m
√

βα+m+1

Γ(n − m+ 1)Γ(n+ α+ 1)
. (2.9)

The normalization coefficient (2.9) has also been so chosen that the associated Laguerre
functions L

(α,β)
n,m (x), with the same m but with different n’s, with respect to the inner

product with the weight function xαe−βx [β > 0, α > −1] form an orthonormal set in the
interval 0 ≤ x < +∞:∫ ∞

0
L(α,β)

n,m (x)L(α,β)
n′,m (x)x

αe−βxdx = δnn′ . (2.10)

3 The 3D harmonic oscillator potential

Using the function x
2α+1

4 e−
βx
2 in order to do the similarity transformation on the operators

A±(m;x) appearing in equations (2.3), together with application of the new variable r,
x = r2

4 (0 ≤ r < +∞), we can easily get the radial Schrödinger equations. According to
this procedure, the explicit forms of the raising and lowering operators corresponding to
the parameter m are calculated as

A±(m; r) = ± d

dr
+Wm(β; r) , (3.1)

where Wm(β; r) is the well-known 3D harmonic oscillator superpotential

Wm(β; r) =
1
4
βr − 2α+ 2m − 1

2r
. (3.2)

Also, with the help of the associated Laguerre functions L
(α,β)
n,m (x) we obtain the 3D har-

monic oscillator quantum states corresponding to the supersymmetric partner [15, 25]
Hamiltonians (� = 2M = 1),

A+(m; r)A−(m; r)ψn,m(r) = (n − m+ 1)βψn,m(r) , (3.3)
A−(m; r)A+(m; r)ψn,m−1(r) = (n − m+ 1)βψn,m−1(r) , (3.4)

as

ψn,m(r) =
(r

2

) 2α+1
2

e−
β
8
r2

L(α,β)
n,m (

r2

4
) . (3.5)

From equations (2.5), we can obtain the raising and lowering relations for the quantum
states of 3D harmonic oscillator as follows

A+(m; r)ψn,m−1(r) =
√
(n − m+ 1)β ψn,m(r) , (3.6)

A−(m; r)ψn,m(r) =
√
(n − m+ 1)β ψn,m−1(r) . (3.7)
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Figure 1. The lattice of points as permissible quantum states for the partner potentials of 3D
harmonic oscillator. The Figure shows that the allowed energies corresponding to all quantum
states lain on dth oblique line are (d − 1)β and dβ.

Now, using the equations (2.10) and (3.5), it is easily shown that the set of quantum states
ψn,m(r) for a given value of m form an orthonormal set∫ ∞

0
ψn,m(r)ψn′,m(r) dr = δnn′ . (3.8)

The operators A+(m; r) and A−(m; r) are Hermitian conjugate of each other with respect
to the inner product (3.8). Shape invariance equations (3.3) and (3.4) describe radial part
of the 3D harmonic oscillator as supersymmetric partner Hamiltonians with the following
partner potentials, respectively:

Vm,±(β; r) = W 2
m(β; r)±

d

dr
Wm(β; r)

=
β2

16
r2 +

(2α+ 2m − 1) (α+m − 1
2 ± 1)

2r2
− β

4
(2α+ 2m − 1∓ 1) , (3.9)

which satisfy the following shape invariance condition on the parameter m:

Vm,+(β; r) = Vm+1,−(β; r) + β . (3.10)

The parameter m distinguishes different potentials of the 3D harmonic oscillator, while
the parameter n describes radial quantization for the 3D harmonic oscillator potential.
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We have schematically shown all 3D harmonic oscillator quantum states ψn,m(r) as the
points (n,m) with 0 ≤ m ≤ n limitation in the flat plane with the horizontal n-axis
and perpendicular m-axis in Figure 1. According to (3.3) and (3.4), for a given value
of n, the quantum state ψn,n(r) corresponding to the supersymmetric partner potentials
Vn+1,−(β; r) and Vn,+(β; r) has the least possible energies of 0 and β, respectively. The
first-order differential equation (3.6) for m = n+ 1 gives the ground state ψn,n(r) as

ψn,n(r) = (−1)n
√

βn+α+1

Γ(n+ α+ 1)

(r

2

) 2n+2α+1
2

e−
β
8
r2

, (3.11)

where it is in agreement with the analytic solution given for the ground state in (3.5).
Now, by making use of the equation (3.7) for given n, one can algebraically calculate all
other quantum states on a normal line by the ground state ψn,n(r) placed on the bisector
line

ψn,m(r) =
A−(m+ 1; r)A−(m+ 2; r) · · ·A−(n; r)ψn,n(r)√

βn−mΓ(n − m+ 1)
m = 0, 1, 2, · · · , n − 1 .

(3.12)

Therefore, according to (3.6) and (3.7), the operators A+(m; r) and A−(m; r) displace
the lattice points on a vertical line towards up and down, respectively. In other words,
they are the shift operators of the second index, m, which describe the different partner
potentials of the 3D harmonic oscillator quantum states.
To obtain the raising and lowering operators of the first index n which describes radial

quantization for the 3D harmonic oscillator quantum states, we do the similarity trans-
formation by the function x

2α+1
4 e−

βx
2 on the operators A±(n,m;x) of equations (2.8):

A±(n,m; r) = ±r

2
d

dr
− β

8
r2 +

1
4
(4n+ 2α − 2m ∓ 1) , (3.13)

in which, the radial variable r has been also used. Hence, the equations (2.8) yield the
following relations for the raising and lowering of the 3D harmonic oscillator quantum
states with respect to the first index n:

A+(n,m; r)ψn−1,m(r) =
√
(n − m)(n+ α)ψn,m(r) , (3.14)

A−(n,m; r)ψn,m(r) =
√
(n − m)(n+ α)ψn−1,m(r) . (3.15)

It is obvious that the operators A+(n,m; r) and A−(n,m; r) are not Hermitian conjugate of
each other with respect to the inner product (3.8). Again, according to equations (3.3) and
(3.4), for a given value of m, the energy of ψm,m(r) corresponding to the supersymmetric
partner potentials Vm+1,−(β; r) and Vm,+(β; r) has values 0 and β, respectively. For a
given m, one can derive the lowest state ψm,m(r) as equation (3.11), with m instead of
n, from the first-order differential equation (3.15) with n = m. Now, for given partner
potentials Vm,+(β; r) and Vm+1,−(β; r), it is rather trivial to show that

ψn,m(r) =

√
Γ(α+m+ 1)

Γ(n − m+ 1)Γ(n+ α+ 1)
×

×A+(n,m; r)A+(n − 1,m; r) · · ·A+(m+ 1,m; r)ψm,m(r)
n = m+ 1,m+ 2, · · · (3.16)
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Figure 2. Sketch of the energy levels for the partner potentials of the 3D harmonic oscillator
on the basis of the shape invariance with respect to n, for two given partner potentials. In the
representation of the related supersymmetry, the energy is shifted by changing quantum number
n.

are algebraic solutions corresponding to the other quantum states with more energies.
From equations (3.14) and (3.15) it is clear that for a given m the operators A+(n,m; r)
and A−(n,m; r) shift the lattice points on a horizontal line to the right and left respectively.
Also, in Figures 2 and 3, we have schematically shown sketches of the energy levels of the
3D harmonic oscillator on the basis of the shape invariance with respect to the parameters
n and m, respectively. According to above discussion, the number of ground states -lain
on the bisector line- is infinite, and one may move either to the right on a horizontal line
(cf. Figure 2) or down on a vertical line (cf. Figure 3). It is easily seen that number of
energy levels for either one of the supersymmetric partner potentials in Figures 2 and 3
are infinite and n+ 1, respectively.
We now give an interesting feature of a simultaneous shape invariance with respect to

both parameters n and m of the 3D harmonic oscillator quantum states ψn,m(r). Defining
the differential operators of first-order as the following form which are Hermitian conju-
gates of each other with respect to the inner product (3.8)

A+(m; r) := A+(m; r)A+(n,m − 1; r)− A+(n,m; r)A+(m; r) =
d

dr
+Wm(−β; r) ,

A−(m; r) := A−(n,m − 1; r)A−(m; r)− A−(m; r)A−(n,m; r) = − d

dr
+Wm(−β; r) ,

(3.17)

and with the help of equations (3.6), (3.7), (3.14) and (3.15) one can obtain the following
relations for the raising and lowering of the quantum states ψn,m(r) with respect to both
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Figure 3. Sketch of the energy levels for the partner potentials of the 3D harmonic oscillator on
the basis of the shape invariance with respect to m, for a given n. In the representation of the
related supersymmetry, the energy is shifted by changing both partner potentials.

parameters n and m

A+(m; r)ψn−1,m−1(r) =
√
(n+ α)β ψn,m(r)

A−(m; r)ψn,m(r) =
√
(n+ α)β ψn−1,m−1(r). (3.18)

In Figure 1, if we call the bisector line and all their adjacent parallel lines respectively by
d = 1, 2, 3, · · · , then one can write the equation of dth line as n = m + d − 1. The shape
invariance relations (3.3) and (3.4) express that all quantum states on d-th line for the
partner potentials Vm+1,−(β; r) and Vm,+(β; r) have the same spectra (d − 1)β and dβ,
respectively. Therefore, the laddering equations (3.18) describe displacement of quantum
states on an arbitrary line d, in particular the ground states on the bisector line d = 1,
by the generators A±(m; r). It must be emphasized that the energy values of all quantum
states ψn,m(r) on d-th line, which satisfy the condition n = m + d − 1, are constant. In
Figure 4, we have schematically shown sketch of two different energy levels of the 3D
harmonic oscillator on the basis of the simultaneous shape invariance with respect to the
parameters n and m. As another interesting result, using the relations (3.18), one can
obtain the factorized Schrödinger equations with respect to both parameters n and m

A+(m; r)A−(m; r)ψn,m(r) = (n+ α)β ψn,m(r) ,
A−(m; r)A+(m; r)ψn−1,m−1(r) = (n+ α)β ψn−1,m−1(r) , (3.19)

which include the 3D harmonic oscillator supersymmetric partner potentials Vm,+(−β; r)
and Vm,−(−β; r), respectively. In the supersymmetric partner Schrödinger equations (3.19)
which are again the radial part of the Hamiltonian corresponding to the 3D isotropic
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Figure 4. Sketch of the energy levels for the partner potentials of the 3D harmonic oscillator
on the basis of the simultaneous shape invariance with respect to n and m, for a given d. In the
representation of the related supersymmetry, the energy is shifted by changing a potential to its
partner.

harmonic oscillator, the energy levels are independent of m unlike equations (3.3) and
(3.4), and they are described only in terms of the radial quantum number n.
Since the following relations are identically satisfied

A+(m; r)A−(n,m − 1; r)− A−(n,m; r)A+(m; r) = 0 ,

A+(n,m − 1; r)A−(m; r)− A−(m; r)A+(n,m; r) = 0 , (3.20)

it becomes obvious that we can not obtain the differential operators of first-order such
that they increase one of the indices n and m and decrease the other index by one unit.
Therefore, we have obtained three different types of the laddering relations (3.6), (3.7),

(3.14), (3.15) and (3.18) for the 3D harmonic oscillator quantum states. The existence
of each of the relations leads us to a representation of the Heisenberg Lie superalgebra
H(0|2). Meanwhile, using any type three (or different type two) of the mentioned laddering
operators we can construct the Heisenberg Lie superalgebra H(0|2)⊕H(0|2)⊕H(0|2) (or
H(0|2) ⊕ H(0|2)). For given n and m, defining the supercharges Q±

i and the bosonic
operators Hi for i = 1, 2, 3, as 6× 6 matrices with the following matrix elements:(

Q+
1

)
i j
= δi 1δj 6 A+(m; r) ,

(
Q−

1

)
i j
= δi 6δj 1 A−(m; r) ,(

Q+
2

)
i j
= δi 2δj 5 A+(n,m; r) ,

(
Q−

2

)
i j
= δi 5δj 2 A−(n,m; r) ,(

Q+
3

)
i j
= δi 3δj 4 A+(m; r) ,

(
Q−

3

)
i j
= δi 4δj 3 A−(m; r) ,

(H1)i j = δi 1δj 1 A+(m; r)A−(m; r) + δi 6δj 6 A−(m; r)A+(m; r) ,
(H2)i j = δi 2δj 2 A+(n,m; r)A−(n,m; r) + δi 5δj 5 A−(n,m; r)A+(n,m; r) ,
(H3)i j = δi 3δj 3 A+(m; r)A−(m; r) + δi 4δj 4 A−(m; r)A+(m; r) , (3.21)

one can conclude the (anti)commutation relations of the Heisenberg Lie superalgebra
H(0|2)⊕ H(0|2)⊕ H(0|2) as follows (i, j = 1, 2, 3){

Q+
i , Q−

j

}
= δi jHi ,{

Q+
i , Q+

j

}
=

{
Q−

i , Q−
j

}
= 0 ,[

Hi, Q
±
j

]
= [Hi, Hj ] = 0 . (3.22)
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Note that the Heisenberg Lie superalgebra H(0|2)⊕ H(0|2) can be extracted in a similar
manner. As example, we also remind that the supercharges Q± and the bosonic operator
H defined as

Q± = Σ3
i=1Q

±
i , H = Σ3

i=1Hi , (3.23)

satisfy the (anti)commutation relations of the Heisenberg Lie superalgebra H(0|2) as fol-
lows {

Q+, Q−}
= H ,{

Q+, Q+
}
=

{
Q−, Q−}

= 0 ,[
H,Q±]

= 0 . (3.24)

It must be pointed out that the 3D harmonic oscillator problem can be transformed to
the motion of a charged particle on the flat surface in the presence of a constant magnetic
field along z-axis (i.e. Landau problem) with dynamical symmetry groupH4. Based on the
results of this section, in Ref. [10], the Hilbert space corresponding to all quantum states
of Landau levels has been split into an infinite direct sum of infinite-dimensional Hilbert
sub-spaces. For any one of these Hilbert sub-spaces, we have calculated the generalized
type of Klauder-Perelomov and Gazeau-Klauder coherent states.

4 The Morse potential

Imposing the similarity transformation by the function x
α
2 e−

βx
2 on the operatorsA±(n,m;x)

together with the change of variable x = eθ (−∞ < θ < +∞) one can obtain the factor-
ized Schrödinger equations with respect to the parameter n for the Morse supersymmetric
partner potentials

A+(n,m; θ)A−(n,m; θ)ψn,m(θ) = (n − m)(n+ α)ψn,m(θ) , (4.1)
A−(n,m; θ)A+(n,m; θ)ψn−1,m(θ) = (n − m)(n+ α)ψn−1,m(θ), (4.2)

or the raising and lowering relations of the Morse quantum states with respect to n

A+(n,m; θ)ψn−1,m(θ) =
√
(n − m)(n+ α)ψn,m(θ) , (4.3)

A−(n,m; θ)ψn,m(θ) =
√
(n − m)(n+ α)ψn−1,m(θ) . (4.4)

The raising and lowering operators of the first index n in terms of the Morse superpotential

Wn,m(β; θ) =
1
2

(
−βeθ + 2n+ α − m

)
, (4.5)

are calculated as

A±(n,m; θ) = ± d

dθ
+Wn,m(β; θ) . (4.6)

In addition to the parameter m, the Morse superpotential also depends on n, contrary
to the 3D harmonic oscillator superpotential. Therefore, neither n nor m alone describes
quantization on θ-axis. For a given constant value of k = 2n − m the functions

ψn,m(θ) = e
α
2

θ−β
2
eθ

L(α,β)
n,m (eθ) (4.7)
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are quantum states corresponding to the Morse superpotential 1
2

(−βeθ + α+ k
)
. There-

fore, one of the parameters n or m via the relation k = 2n − m describes quantization
on θ-axis in a complicated way, and the other parameter is related to the information
of the Morse superpotential. Using the relation (2.10) it is easy to show that the set of
quantum states ψn,m(θ) corresponding to the Morse superpotential for a given m form an
orthonormal set as∫ +∞

−∞
ψn,m(θ)ψn′,m(θ) eθ dθ = δnn′ . (4.8)

The Morse supersymmetric partner potentials corresponding to equations (4.1) and (4.2)
are, respectively

Vn,m,±(β; θ) = W 2
n,m(β; θ)±

d

dθ
Wn,m(β; θ)

=
1
4

(
β2e2θ − 2β (2n+ α − m ± 1) eθ + (2n+ α − m)2

)
, (4.9)

which satisfy shape invariance condition on the parameter n as

Vn,m,+(β; θ) = Vn+1,m,−(β; θ)− 2n − α+m − 1 . (4.10)

As an application of this shape invariance, in Ref. [12], we have shown that the quantum
states of Morse potential represent the infinite-dimensional Morse Lie algebra. A repre-
sentation of the Lie algebra su(1, 1) has also been generated by means of using the ladder
operators (4.3) and (4.4). Furthermore, there we have obtained the Barut-Girardello co-
herent states as a linear combination of the quantum states corresponding to the Morse
potential. The equations (4.1) and (4.2) express that ψn,m(θ) is the quantum state of the
Morse supersymmetric partner potentials Vn,m,+(β; θ) and Vn+1,m,−(β; θ) with the spectra
(n − m)(n + α) and (n − m + 1)(n + α + 1), respectively. Therefore, for a given m, the
Morse supersymmetric partner potentials Vm,m,+(β; θ) and Vm+1,m,−(β; θ) with the same
quantum state ψm,m(θ) have energy values 0 and m + α + 1, respectively, which are the
least possible values. This means that ψm,m(θ) is the lowest (or ground) state. With the
help of equation (4.4) with n = m one can derive it as

ψm,m(θ) = (−1)m
√

βα+m+1

Γ(α+m+ 1)
e

α+m
2

θ−β
2
eθ

. (4.11)

From the equation (4.3) it becomes known that any other quantum state can be alge-
braically calculated by means of operator products

ψn,m(θ) =

√
Γ(α+m+ 1)

Γ(n − m+ 1)Γ(n+ α+ 1)
×

×A+(n,m; θ)A+(n − 1,m; θ) · · ·A+(m+ 1,m; θ)ψm,m(θ)
n = m+ 1,m+ 2, · · · . (4.12)

If we impose similarity transformation by the function x
α
2 e−

βx
2 together with the change

of variable x = eθ on the laddering equations (2.5), then we get the raising and lowering
relations with respect to the second index of the Morse quantum states

A+(m; θ)ψn,m−1(θ) =
√
(n − m+ 1)β ψn,m(θ) , (4.13)

A−(m; θ)ψn,m(θ) =
√
(n − m+ 1)β ψn,m−1(θ) , (4.14)
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with

A±(m; θ) = ±e−
θ
2

d

dθ
+

β

2
e

θ
2 − 1

4
(2α+ 2m − 1∓ 1) e− θ

2 . (4.15)

The operators A+(n,m; θ) and A−(n,m; θ) are Hermitian conjugates of each other with
respect to the inner product (4.8). For a given n, the ground state ψn,n(θ) by means of
(4.13) is again calculated as (4.11) with n instead ofm. The equation (4.14) gives algebraic
solutions for the other quantum states as

ψn,m(θ) =
A−(m+ 1; θ)A−(m+ 2; θ) · · ·A−(n; θ)ψn,n(θ)√

βn−mΓ(n − m+ 1)
m = 0, 1, 2, · · · , n − 1 .

(4.16)

Therefore, in the Morse quantum states lattice the operators A±(n,m; θ) and A±(m; θ)
displace the points along horizontal and vertical lines, respectively.
Defining the first-order differential operators as

A+(m; θ) := A+(m; θ)A+(n,m − 1; θ)− A+(n,m; θ)A+(m; θ)

= e−
θ
2

d

dθ
− β

2
e

θ
2 − 1

2
(α+m − 1) e− θ

2

A−(m; θ) := A−(n,m − 1; θ)A−(m; θ)− A−(m; θ)A−(n,m; θ)

= −e−
θ
2

d

dθ
− β

2
e

θ
2 − 1

2
(α+m) e−

θ
2 , (4.17)

which are Hermitian conjugates of each other with respect to the inner product (4.8),
and by using the equations (4.3), (4.4), (4.13) and (4.14) we can obtain the simultaneous
laddering relations with respect to both parameters n and m

A+(m; θ)ψn−1,m−1(θ) =
√
(n+ α)β ψn,m(θ) ,

A−(m; θ)ψn,m(θ) =
√
(n+ α)β ψn−1,m−1(θ) , (4.18)

A+(m; θ)A−(m; θ)ψn,m(θ) = (n+ α)β ψn,m(θ) ,
A−(m; θ)A+(m; θ)ψn−1,m−1(θ) = (n+ α)β ψn−1,m−1(θ) . (4.19)

The equations (4.1) and (4.2) show that the displacement on bisector line or the lines
parallel to it by means of the operators A±(m; θ) do not preserve a constant value for the
energy, contrary to the 3D harmonic oscillator.
The existence of identities similar to (3.20) for the operators A±(m; θ) and A±(n,m; θ)

does not permit us to obtain new operators which increase one of the parameters n and
m, and decrease the other remaining parameter. We finally note that the scenario of
simultaneous shape invariance with respect to both parameters n and m may also be
extended to other quantum solvable models introduced in Refs. [6, 11, 16, 17]. Actually,
simultaneous 1D shape invariance with respect to two parameters is a new type of shape
invariance leading to new solutions for 1D Dirac equation in the presence of a scalar field.
Moreover, they are valuable from the point of view of their transformations to 2D or 3D
Schrödinger and Dirac problems. Another interesting problem is to find a representation
for the parasupersymmetry algebra using this new type of shape invariance.
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