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Abstract

We propose to apply the idea of analytical continuation in the complex domain to
the problem of geodesic completeness. We shall analyse rather in detail the cases
of analytical warped products of real lines, these ones in parallel with their complex
counterparts, and of Clifton-Pohl torus, to show that our definition sheds a bit of
new light on the behaviour of ’singularities’ of geodesics in space-time. We also show
that some geodesics, which ’end’ at finite time in the classical sense, can be naturally
continued besides their ends. As a matter of fact, complex metrics naturally show
a meromorphic behaviour, or a degenerating one, so we shall study also this fact in
detail.

1 Foreword

Within the framework of Riemannian geometry, geodesic and metric completeness are well
known to be equivalent: this is Hopf-Rinow’s theorem, a consequence of the positivity of
Riemannian metrics.
This equivalence does not hold for semi-Riemannian metrics, and there exist even com-

pact lorentzian manifolds which are geodesically incomplete: a well known exemple is
Clifton-Pohl torus (see e.g. [ONE], 7.16).
In this paper we propose a definition of geodesic completeness from a complex point of

view, that is to say we shall look rather at complexified pseudo-Riemannian manifolds
with complex-symmetric metrics.
By a philosophical point of view, our goal is to shed a little bit of light on the behaviour

of ’singularities’ of geodesics in space-time and show that some geodesics, which seem to
’end’ at finite time can be naturally continued besides their ends. This will be done by
running along complex trips close to the real line.
Since our approach will use complex-analytical methods and analytical continuation leads

in general to poles and zeroes, we shall need the idea of a meromorphic metric on a complex
manifold M (see [LEB] for the definition of a holomorphic metric; see also [MAN]; see
[BFV] about the relationship with anti-Kähler geometry; see [CSB] and [CSC] for physical
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motivations). This will amount to a possibly degenerating symmetric meromorphic section
of the twice covariant holomorphic tensor bundle T 2

0 M.
Of course, it carries no ’signature’. However, by simmetry, it induces a canonical mero-

morphic Levi-Civita’s connexion on M, allowing to define geodesics as the auto-parallel
paths. For the sake of completeness this aspects will be dealt with in some details.
It is worth noticing that, if M arises as a ’complexification’ of a semi-Riemannian manifold

N, it is easily seen that the real geodesics of N are restrictions to the real axis of the complex
ones of M and vice versa (see [LEB]).
This fact sometimes allows us to ’flank’ isolated singularities on the real line, i.e. to

’connect’ geodesics which, in the usual sense, are completely unrelated.
The problem of lorentzian geodesic completeness is investigated in [BEH], [ONE], [CR],

[RS].
We suggest a more formal idea of our notion of completeness (see also definition 7) :

given a complexification d : N → M and a real analytic curve γ : [a, b] → N, γ will be told
to be complete provided that d ◦ γ can be continued to all points in the real line, with at
most a discrete set of exceptional values, taking ’real values’ (i.e. in d(N)).
Finally, we report the main existence-and-uniqueness theorem of ordinary differential

equation theory in the complex domain: let W0 be a complex N−tuple, z0 ∈ C; let F be a
CN−valued holomorphic mapping in

∏N
j=1 D(W j

0 , b) × D(z0, a), (a, b ∈ R) with C0−norm
M and C0−norm of each ∂F/∂wj (j = 1..N) not exceeding K ∈ R.

Theorem 1. If r < min(a, b/M, 1/K), there exists a unique holomorphic mapping
W : D(z0, r) →

∏N
j=1 D(W j

0 , b) such that W ′ = F (W (z), z) and W (z0) = W0. (see e.g.
[HIL], th 2.2.2, [INC] p.281-284)

NB: in the following we shall abbreviate ’holomorphic function element’, resp. ’holomor-
phic function germ’ by HFE resp. HFG.

2 Analytical continuation

In the following, U will be a region in the complex plane and M a complex manifold:
the idea of the analytical continuation of a holomorphic mapping element (or of a germ)
f : U → M is well known see e.g. [CAS], chap. 5, rather than [FO], 1.7-1.8) and amounts
to a quadruple QM = (S, π, j, F ), where S is a connected Riemann surface over a region of
C, π : S → C is a nonconstant holomorphic mapping such that U ⊂ π(S), j : U → S is a
holomorphic immersion such that π ◦ j = id|U and F : S → M is a holomorphic mapping
such that F ◦ j = f . Each finite branch point is kept into account by the fact of lying
’under’ some critical point of π: for example, the Riemann surface of

√
z|D(1,1/2), with√

1 = 1, is
(
C, ζ �→ ζ2,

√
z|D(1,1/2), ζ �→ ζ

)
: the double branch point z = 0 of the analytical

continuation lies under the critical point ζ = 0, branching being taken into account by the
squaring function.
A morphism between two analytical continuations (S, π, j, F ) and (T, �, �,G) of the same

element (U, f) is a holomorphic mapping h : T → S such that h ◦ � = j. Note that
a morphism between two analytical continuations is a nonconstant (in particular open)
mapping, uniquely determined on j(U), hence everywhere on S, by � ◦ j−1. Moreover,
� ◦ h = π and G ◦ h = F on j(U), hence everywhere on S.
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The only existing morphism between an analytical continuation and itself is the identity
mapping; the composition of two morphisms is a morphism; if a morphism admits a
holomorphic inverse mapping, this is a morphism too: in such a case we talk about
isomorphisms of analytical continuations.

Definition 1. An analytical continuation S of the element (U, f) is maximal if for every
regular analytical continuation Ŝ of (U, f) there exists a morphism h : S → Ŝ.

Two maximal continuations of the same element must be isomorphic, since they admit
morphisms one into each other; thus the maximal regular analytical continuation of an
element is unique up to isomorphisms.
The following is a well known result (we refer to [CAS], th.5.6.4, pages 262-266).

Theorem 2. Every element (U, f) (hence every germ) of holomorphic function admits a
maximal analytical continuation, called the Riemann surface, of (U , f).

Definition 2. A logarithmic singularity q of QM = (S, π, j, F ) (in the following: L-
singularity) is a decreasing sequence of open sets {Vk}k≥K of S such that:
• (LS1) for every k ≥ K, Vk is a connected component of π−1(D(z0, 1

k ) \ {z0}) and π|Vk
is

a topological covering of (D(z0, 1
k );

• (LS2)
⋂

k≥K Vk = ∅;
• (LS3) for every k ≥ K and every (real) nonconstant closed path γ : [0, 1] →
D(z0, 1/k) \ {z0}, with nonzero winding number around z0, every lifted path γ̃ : [0, 1] →
π−1(D(z0, 1/k) \ {z0}) is such that γ̃(0) �= γ̃(1);
• (LS4) there exists m ∈ M such that

⋂
k≥K F (Vk) = m.

Consider now the set B of the L-singularities of QM: let S

 := S

⋃
B as a set and intro-

duce a topology on S
: open sets are the open sets in S and a fundamental neighbourhood
system of the L-singularity q = {Vk}k≥K ∈ B is yielded by the sets V 


k = Vk
⋃
{q}. It is

easily seen that S
 admits no complex structure at q = {Vk}k≥K . Indeed, were there one,
we could find charts (W, φ) around q and (V, ψ) around z0 such that ψ ◦ π ◦ φ−1(ζ) = ζN

for some integer N > 0. This fact would imply π|W\{q} to be a n-sheeted covering of
V \ {z0}; it is easily seen tha this fact would contradict (LS2) in definition 2.

Lemma 1. (A): π admits a unique continuous extension π
 to S
; (B): for every loga-
rithmic singularity r of QM, F admits a unique continuous extension F 
 to r.

Proof. (A): let b ∈ B and {Vk} be the sequence spotting b: define π
(q) = π(q) if
q ∈ Vk and π
(b) = z0, where z0 is the common centre of the discs onto which the V ′

ks are
projected. Now π
 is continuous at all points in Vk; moreover, for every neighbourhood
G of z0, π
 −1(G) ⊃ π
 −1(z0)

⋃
π−1(G \ {z0}), hence, if we set H = {b}

⋃
π−1(G \ {z0}),

we have that H is a neighbourhood of b in S
 such that π
(H) ⊂ G, proving continuity
at b. Arguing by density, we conclude that this extension is unique; the proof of (B) is
analogous. �

Definition 3. A quadruple Q�

M = (S�, π�, j�, F �), is an analytical continuation with L-
singularities of the function element (U, f) if there exists an analytical continuation QM
of (U, f) such that S� \ S consists of L-singularities of F , π� is the unique continuous
extension of π to S�, j� = idS→S� ◦ j and F admits a unique continuous extension F � to
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S�. Q�

M is: maximal provided that so is QM and Q�

M \ QM contains all L-singularities of
QM.

Lemma 2. (1): let f and g be two complex-valued holomorphic germs, each one inverse
of the other; let (R, π, j, F ) and (S, ρ, �,G) be their respective Riemann surfaces: then
F (R) = ρ(S);
(2): let f , g, h be three HFG’s such that f ◦g = h. Let (R, π, j, F ) be the Riemann surface
of f , (S, ρ, �,G) the one of g and (T, σ,m,H) the Riemann surface with L-singularities of
h: then F (R) \ (C \ (σ(T ))) ⊂ ρ(S).

Proof. (1) a): F (R) ⊂ ρ(S): let ξ ∈ R and F (ξ) = η; there exist: an open neighbour-
hood U1 of ξ; open subsets U2 ⊂ π(U1) and V2 ⊂ F (U1) and a biholomorphic function
g2 : V2 → U2, with inverse function f2 : U2 → V2 such that: (U2, f2) and (U , f) are con-
nectible and so are (V2, g2) and (V, g). By construction there hence exist two holomorphic
immersions ̃ : U2 → R and �̃ : V2 → S such that π ◦ ̃ = id and ρ◦ �̃ = id. Let V1 = F (U)1
and Σ = {(x, y) ∈ U1 × V2 : F (x) = y}; moreover let J : V2 → Σ be defined by setting
J(v) = (̃◦g2(v), v). Then (Σ, pr2, J, π◦pr1) is an analytical continuation of (V2, g2); indeed
π ◦pr1 ◦J = π ◦ ̃◦g2 = g2. But (V∈, g2) is connectible with (V, g), hence (Σ, pr2, J, π ◦pr1)
is an analytical continuation of (V, g). Eventually, there exists a holomorphic function
h : Σ → S such that ρ ◦ h = pr2: hence η = pr2(ξ, η) = ρ ◦ h(ξ, η) ∈ ρ(S).
b): ρ(S) ⊂ F (R): let s ∈ S: there is a neighbourhood V of s in S such that V \ {s}
consists entirely of regular points both of ρ and G, not excluding that s itself be regu-
lar for ρ or G or both. This fact means that for each s′ ∈ V \ {s} there exists a HFE
(ρ(s′),V ′, g̃s′) connectible with (V, g) and, besides, a holomorphic immersion �̃ : V ′ → V .
By a): already proved, G(s) ∈ π(R), hence there exist p ∈ R such that π(p) = G(s) and
a neighbourhood W of p in R such that π−1(g̃(V ′))

⋂
W �= ∅. Set W ′ = π−1(g̃(V ′))

⋂
W :

we may suppose, without loss of generality, that π is invertible on W ′: hence there exists
a (open) holomorphic immersion ̃ : g̃(V ′) → W . Therefore, for each ζ ∈ ̃(g̃(V ′)), there
exists η ∈ �̃(V ′) such that F (ζ) = F (̃◦ g̃ ◦ρ(η)). Now, by definition of analytical continua-
tion there holds F ◦ ̃ ◦ g̃ = id, hence we have F (ζ) = ρ(η). Consider now the holomorphic
function Ξ : W × V → C defined by setting Ξ(w, v) = F (w) − ρ(v): we have Ξ ≡ 0 on
the open set ̃(g̃(V ′))× �̃(V ′), thus Ξ ≡ 0 on W × V : this in turn implies F (p) = ρ(s).
Therefore we have proved that for each s ∈ S there exists p ∈ R such that F (p) = ρ(s):
this eventually implies that ρ(S) ⊂ F (R).
(2): let ξ ∈ R such that η = F (ξ) �∈ C \ (σ(T )): there exist: an open neighbourhood U1

of ξ, open subsets U2 ⊂ π (U1), V2 ⊂ F (U1) and W2 ⊂ σ (T ) and biholomorphic functions
f2 : U2 → W2, g2 : V2 → U2 and h2 : V2 → W2 such that: (U2, f2) and f are connectible,
(V2, g2) and g are connectible, (V2, h2) and h are connectible, and f2 ◦ g2 = h2.
By construction there hence exist three holomorphic immersions ̃ : U2 → R, �̃ : V2 → S,
m̃ : W2 → T such that π ◦ ̃ = id, ρ ◦ �̃ = id and σ ◦ m̃ = id.
Let V1 = F (U1), W1 be the connected component of σ−1 (F (U1)) in T and Σ =

{(x, y) ∈ U1 × W1 : F (x) = H(y)}; moreover let J : V2 → Σ be defined by setting
J(v) = (̃ ◦ g2(v), m̃(v)).
Then (Σ, pr2, J, π ◦ pr1) is an analytical continuation, with logarithmic singularities of

(V2, g2); indeed π ◦ pr1 ◦ J = π ◦ ̃ ◦ g2 = g2; but (V∈, g2) is connectible with (V, g), hence
(Σ, pr2, J, π ◦ pr1) is an analytical continuation of (V, g).
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Thus there exists a continuous function h : Σ → S, holomorphic on the interior of Σ,
such that ρ ◦ h = pr2 : hence η = pr2 (ξ, η) = ρ ◦ h (ξ, η) ∈ ρ (S). �

3 Paths

Let’s start with a slight reformulation of the notion of path: to achieve this goal, we adopt
the point of view according to which a ’path’ or even a ’curve’ are analytical continua-
tions of some initial germs, generally yielded by local solutions of systems of differential
equations.
We shall also deal with the velocity field of a path: to define it we shall need to single out

a vector field on its domain of definition, which will have to be related with the natural
derivation field d/dz on C.
Let M be a connected complex manifold: in the continuation, abusing language but

following Wells (see e.g. [WEL] or [GRO]), we shall name TM (resp.T ∗M) its holomorphic
tangent (resp. cotangent) bundle and, more generally, T s

r M its holomorphic r-covariant and
s-contravariant tensor bundle; as usual, Π: T s

r M → M will denote the natural projection.
A closed hypersurface F in M is a closed subset such that there exists a maximal atlas

{Un} for M and, for each n, a holomorphic function Ψn, not vanishing everywhere, such
that Un

⋂
F = {X ∈ Un : Ψn(X) = 0}.

The following definition is adapted from [ONE], definition 2.4 and lemma 2.5:

Definition 4. let E be a closed hypersurface in M, N another connected complex manifold
and F ∈ O(M,N): an E-meromorphic section of T s

r N over F is a holomorphic section
Λ of T s

r N over F |M\E such that π ◦ Λ admits analytical continuation up to the whole M

and for every p ∈ E and every coordinate system
(
U , (z1...zn)

)
around F (p), there exists

a neighbourhood U of p and r · s pairs of C−valued holomorphic functions φi1...ir , ψl1...ls ,
with ψl1...ls �= 0 on U \ E , such that

Λ
(
dzl1 ...dzls ,

∂

∂zi1
...
∂

∂zir

)
=
φi1...ir
ψl1...ls

.

Definition 5. A path in M is a quadruple QM = (S, π, j, F ), where S is a connected
Riemann surface, π : S → C is a branched covering of S over π(S), F : S → M is a
holomorphic mapping, U ⊂ C is an open set wich admits a holomorphic (hence open)
immersion j : U → S \ Σ such that π ◦ j = id|U .

We are now turning to define the velocity field of a path QM: it will be defined as a
suitable meromorphic section over F of the holomorphic tangent bundle TM. To achieve
this purpose, we need to lift the vector field d/dz on C with respect to π.
Of course, in general, contravariant tensor fields couldn’t be lifted; notwithstanding, we

may get through this obstruction by keeping into account that C and S are one-dimensional
manifolds and allowing the lifted vector field to be meromorphic: these matters are fath-
omed in next statements: recall that P is the set of branch points of π.

Lemma 3. There exists a unique P -meromorphic vector field d̃/dz on S such that, for
every r ∈ S \ P , π∗|r

(
d̃/dz|r

)
= (d/dz) |π(r).
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Proof. Consider ω = π∗dz and Λ = π∗(dz � dz) on S: the latter establishes an iso-
morphism between the holomorphic cotangent and tangent bundles of S \ P . Call V
the holomorphic vector field corresponding to ω in the above isomorphism: we claim
that V = d̃/dz on S \ P . To show this fact, we explicitely compute the components of
V with respect to a maximal atlas B = {(Uν , ζν)} for S \ P : let ω(ν) 1 = ω(∂/∂ζ(ν)),

g(ν) 11 = Λ(∂/∂ζ(ν), ∂/∂ζ(ν)); then, set V 1
(ν) = ω(ν) 1/g(ν) 11 the collection

{
(Uν , V 1

(ν))
}
of

open sets and holomorphic functions is such that, on overlapping local charts (Ua, ζa) and
(Ub, ζb), we have

V 1
(a) =

ω(a) 1

g(a) 11
=
ω(b) 1(dζ(b)/dζ(a))
g(b) 11(dζ(b)/dζ(a))2

= V 1
(b)

dζ(a)

dζ(b)
,

that is to say that collection defines a holomorphic vector field. Now for every r ∈ S \ P ,

dz|π(r)(π∗|rd̃/dz|r) = π∗dz|r(d̃/dz|r) =
π∗dz|r(∂/∂ζ|r)
dz|π(r)(π∗∂/∂ζ|r)

= 1,

hence π∗|r(d̃/dz|r) = (d/dz)|π(r), proving the asserted.

Let’s prove that d̃/dz may be extended to a meromorphic vector field on S: if p ∈ P
then we can find local charts (U,ψ) around p, (V, φ) around π(p), and an integer N > 0
such that φ ◦ π ◦ ψ−1(u) = uN . Now we have

(ψ−1 ∗π∗φ∗(dw)
d

du
)(u) = dw(φ∗π∗ψ−1

∗
d

du
)|u) = dw((φπψ−1)′

d

dw
)) = NuN−1;

but φ and ψ are charts, hence π∗dz itself is vanishing of order N−1 at p; as already proved,
π∗|r(d̃/dz|r) = (d/dz)|π(r) on U \ {p} and, consequently, (π∗dz)(d̃/dz) = dz(d/dz) = 1 on

U \ {p}, hence on U . Now, in local coordinates, (π∗dz) = αdφ and d̃/dz = y ∂/∂φ, where
α is a suitable holomorphic function on U , vanishing of order N − 1 at p and y is a
holomorphic function on U \ {p}. By the above argument, yα = 1, hence y has a pole
of order N − 1 at p: a similar argument holds for each isolated point in P , proving the
meromorphic behaviour of d̃/dz. �

Definition 6. A finite-velocity point of a path QM = (S, π, j, F,M) is a point r ∈ S
such that d̃/dz is holomorphic at r.

We are ready to define the velocity field : let at first be r a finite-velocity point of
QM; since d̃/dz is holomorphic at r, we could define the holomorphic velocity at r as

Vr = F∗
(
(d̃/dz)|r

)
: now define the mapping V

(
QM
)
: S \ P → TM by setting r �→(

F, F∗
(
d̃/dz (r)

))
.

Lemma 4. The mapping V
(
QM
)

can be extended to a P-meromorphic section of TM over
F .

Proof. Trivially Π ◦ V |R\P = F |R\P . Let’s show the meromorphic behaviour of V : if
p ∈ P there is a neighbourhood U of p such that, for every local chart ζ : U → Cw there
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exist holomorphic functions f, g ∈ H (ζ(U)) such that

d̃

dz
|ζ−1(U) = ζ

−1
∗

(
f

g
(w)

d

dw
|w
)
;

moreover, for every local chart Ψ =
(
u1...um, du1...dum

)
in TM we obtain

Ψ ◦ V ◦ ζ−1(w) =

= Ψ ◦
(
F ◦ ζ−1(w), F∗|ζ−1(w)

(
d̃

dz
|ζ−1(w)

))

= Ψ ◦
(
F ◦ ζ−1(w), F∗|ζ−1(w)ζ

−1
∗

(
f

g
(w)

d

dw
|w
))

= Ψ ◦
(
F ◦ ζ−1(w),

f

g
(w)

d

dw
(F ◦ ζ−1)(w)

)
=
(
u1 ◦ Fζ−1(w)...um ◦ Fζ−1(w),

f

g
(w)

d

dw

(
u1 ◦ F ◦ ζ−1

)
(w)...

f

g
(w)

d

dw

(
um ◦ F ◦ ζ−1

)
(w))

)
�

According to lemma 4, the velocity field of a path QM = (S, π, j, F,M) will be just the
meromorphic mapping V

(
QM
)
.

3.1 Definition of completeness

Definition 7. A M-valued path (S, π, j, F ) is complex-complete provided that C \ π (S)
is a finite set in the complex plane; a real-analytic curve γ in a real-analytic manifold N
admitting a complexification d : N → M is real-complete (or, briefly, complete) provided
that the Riemann surface (S, π, j,G) of d o γ is such that R \ π(G−1(d(N))) is a finite set.

4 Complex-Riemannian metric structures

The intuitive geometry of the real euclidean space R3 can be easily brought back to its nat-
ural inner product, which allows basic geometrical operations, like measuring the length
of a tangent vector, or angles between tangent vectors: Riemannian real geometry gener-
alizes all this to ’curved’ spaces, which is based on the concept of positive definite bilinear
forms: weakening definiteness to nondegeneracy leads us in the realm of Lorentz geometry,
originating from the problems posed by Einstein’s general relativity theory.
A little bit less intuitive is the idea of starting from the basic geometry of C3 (meant

as a ’complexification’ of the usual real euclidean space) to get formal extension of the
geometric properties of real ’curved’ manifolds. Introducing this complex environment
could allow us to hope to get able to handle some types of metrical singularities which
naturally arise in dealing with real manifolds with indefinite metrics.
It is immediately seen that the nondegeneracy hypothesis itself should be dropped, as the

following considerations show (see [DNF] p.186 ff): consider the space F of antisymmetric
covariant tensors of rank two in Minkowski’s space R1,3: electromagnetic fields are such
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ones. Let F ∈ F : we can write F =
∑

i<j Fijdx
i ∧ dxj where x0...x3 are the natural

coordinate functions on R1,3. At each point, the space Fp of all tensors in F evaluated at
p is a six-dimensional real vector space; moreover, the adjoint operator ∗ with respect to
Minkowski’s metric is such that ∗∗ = −1: all these facts imply that Fp could be thought
of as a complex three dimensional vector space Gp by setting (a+ ib)F = aF + b ∗F . Now
∗ is SO(1, 3)−invariant, hence SO(1, 3) is a group of (complex) linear transformations of
Gp, preserving the quadratic form 〈F, F 〉 = −∗ (F ∧ (∗F ) + iF ∧ F ): this means that this
’norm’ is invariant by Lorentz transformations, hence it is of relevant physical interest. If
we introduce the following coordinate functions on Gp: z1 = F01 − iF23, z2 = F02 + iF13

and z1 = F03 − iF12, we have that 〈F, F 〉 = (z1)2 + (z2)2 + (z3)2, hence there naturally
arises the so called complex-Euclidean metric on C3: on one hand, by changing coordinates
we are brought to a generic symmetric bilinear form on C3; on the other, there arise ’poles’
if we attempt to extend the above construction e.g. to (P1)3. Now the idea of generalizing
to the curved framework is quite natural: let M be a complex manifold, D and E closed
hypersurfaces in M.

Definition 8. A holomorphic (resp.E-meromorphic) metric on M is a holomorphic (resp.E-
meromorphic) section Λ: M → T 2

0 M which is symmetric, that is to say, for every m ∈ M and
every pair of holomorphic tangent vectors Vm andWm atm, there holds Λ(m) (Vm,Wm) =
Λ(m) (Wm, Vm) ;. The rank of Λ at p ∈ M is the rank of the bilinear form Λ(p); Λ is
nondegenerate at p if rk(Λ(p)) = dim(M), degenerate otherwise; if D is a hypersurface
in M and Λ is degenerate only on D, we shall say that Λ is D-degenerate. We say that p
is a metrically ordinary point in M if Λ is holomorphic and nondegenerate at p.

In the following we shall consider only metric which degenerate only on closed hypersur-
faces.

Definition 9. A holomorphic Riemannian manifold is a complex manifold endowed
with a holomorphic metric; a nondegenerate holomorphic Riemannian manifold is
a complex manifold endowed with a nondegenerate holomorphic metric ; ameromorphic
Riemannian manifold is a complex manifold endowed with a meromorphic metric.

Thus, strictly speaking, all the above objects are pairs consisting in complex manifolds
and metrics, but we shall often understand metrics and denote them by the only underlying
complex manifolds.

4.1 The meromorphic Levi-Civita connexion

We begin this section by introducing the holomorphic Levi-Civita connexion induced on
a holomorphic nondegenerate Riemannian manifold by its metric structure: this is done
in a quite similar way to that pursued in (real) differential geometry, apart from a slight
difference, which naturally arises: the action of the Levi-Civita connexion is defined at
first on ’local’ vector fields, producing local ones as well, then it is globalized as a collection
of local operators.
Let now (M,Λ) be a nondegenerate Riemannian holomorphic manifold, A a maximal atlas

for M, U ∈ A a domain of a local chart. Let also X (U) be the Lie algebra of holomorphic
vector fields on U and O (U) the ring of holomorphic functions on U .
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Definition 10. A connexion on U is a mapping D : X (U)×X (U) → X (U) such that:
(D1) DVW is H (U)-linear in V ; (D2) DVW is C-linear in W and (D3) DV (fW ) =
(V f)W + fDVW for every f ∈ H (U).

DVW is called the covariant derivative of W with respect to V in the connexion D.
By axiom (D1), DVW has tensor character in V , while axiom (D3) tells us that it is not
a tensor in W .
Our next step is to show that there is a unique connexion characterized by two further

properties, (D4) and (D5) below, namely being anti-Leibnitz like with respect to the Lie
bracket operation and Leibnitz like with respect to the metric. In the following we use the
alternative notation 〈V,W 〉 instead of Λ (V,W ).

Lemma 5. Let U be an open set belonging to a maximal atlas A for the nondegenerate
holomorphic Riemannian manifold M. If V ∈ X (U), let V ∗ be the holomorphic one-form
on U such that V ∗(X) = 〈V,X〉 for every X ∈ X (U): then the mapping V �→ V ∗ is a
O-linear isomorphism from X (U) to X ∗ (U).

Proof. Since V ∗ is O-linear, it is in fact a one-form, and V �→ V ∗ is O-linear too. We
claim:

(a) if 〈V,X〉 = 〈W,X〉 for every X ∈ X (U) then V =W ;

(b) given any one-form ω ∈ X ∗ (U) there is a uique vector field V ∈ X (U) such that
ω(X) = 〈V,X〉 for every X ∈ X (U).

Let U = V − W ; the nondegeneracy of the metric tensor implies that, if p ∈ U and
〈Up, Xp〉 = 0 for every X ∈ X (U), then U = 0; this proves (a).
To prove (b), let

(
z1...zN

)
be local coordinates on U .

Then ω =
∑N

i=1 ωidz
i; let {gij} be the representative matrix of Λ|U in

(
z1...zN

)
:

by nondegeneracy, it admits a holomorphic inverse matrix {gij}: set now V =∑N
j=1

(∑N
i=1 g

ijωi

)
∂
∂zj .

We have 〈V,X〉 =
〈∑N

j=1

(∑N
i=1 g

ijωi

)
∂
∂zj ,
∑N

k=1X
k ∂
∂zk

〉
=
∑

ijk g
ijωiX

kgjk =∑
ik δ

i
kX

kωi =
∑

kX
kωk = ω (X). �

The following theorem can be proved exactly as in classical differential geometry.

Theorem 3. Let U be an open set belonging to a maximal atlas A for the nondegenerate
holomorphic Riemannian manifold M. There exists a unique connexion D on U , called the
Levi-Civita connexion, such that:

(D4) [V,W ] = DVW −DWV ;

(D5) X 〈V,W 〉 = 〈DXV,W 〉+ 〈V,DXW 〉 for every X,V,W ∈ X (U).

Moreover D is characterized by the ’Koszul’s formula’: 2 〈DVW,X〉 = V 〈W,X〉 +
W 〈X,V 〉−X 〈V,W 〉−〈V, [W,X]〉+ 〈W, [X,V ]〉+ 〈X, [V,W ]〉, for every X,V,W ∈ X (U).
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If we have to emphasize the open set U in theorem 3 we shall write D [U ] instead of D:
if U1,U2 ⊂ M in a maximal atlas A for M are overlapping open sets, then U1

⋂
U2 is in A

too and D [U1] |X (U1
⋂ U2) = D [U1] |X (U1

⋂ U2), hence we can collect all local definitions of
Levi-Civita connexions:

Definition 11. the Levi-Civita connexion (or metric connexion) D of (M,Λ) is the
collection consisting of all the metric connexions {D [Ui]}i∈I as Ui runs over any maximal
atlas A = ({Ui})i∈I on M.

So far we have studied nondegenerate holomorphic Riemannian manifolds: this situation
is quite similar to real Riemannian geometry.
Things are different, instead, if we allow metrics to have meromorphic behaviour, or to

lower somwhere in their ranks. These metric ’singularities’ will be generally supposed to
lie in closed hypersurfaces; Levi Civita connexions may still be defined, but, as one could
expect, they will turn out to be themselves ’meromorphic’.
Let now (N,Λ) be a meromorphic Riemannian manifold admitting closed hypersurfaces

D and E such that Λ|N\E is holomorphic and Λ|(N\E)\D is nondegenerate. Since N \ E is
connected, we have that (N\E)\D,Λ|(N\E)\D is a nondegenerate holomorphic Riemannian
manifold admitting, as such, a canonical holomorphic Levi-Civita connexion D.
Now, if p ∈ D

⋃
E and V,W are holomorphic vector fields in a neighbourhood V of p, it

will result that we are able to define the vector field DVW on V \ (D
⋃

E), and this will
be a meromorphic vector field.
Let’s state all this more precisely:

Definition 12. Let Z = (z1 · · · zm) be a coordinate system on an open set U ⊂ N: the
Christoffel symbols of Z are those complex valued functions, defined on U \ (D

⋃
E)

by setting Γkij = dz
k
(
D ∂

∂zi

(
∂
∂zj

))
.

Now the representative matrix (gij) of Λ with respect to the coordinate system Z is
holomorphic in U , with nonvanishing determinant function on U \ (D

⋃
E); as such it

admits a inverse matrix gij , whose coefficients hence result in being D
⋃
E-meromorphic

functions.

Lemma 6. (a) D ∂

∂zi

(∑m
j=1W

j ∂
∂zj

)
=
∑m

k=1

(
∂Wk

∂zi +
∑m

j=1 Γ
k
ijW

j
)

∂
∂zk as meromorphic

vector fields; (b) 2Γkij =
∑N

m=1 g
km (−gij,m + gim,j + gjm,i) = 2Γkij as meromorphic func-

tions.

Proof. At first note that the operation of associating Christoffel symbols to a coordinate
system is compatible with restrictions, in the sense that the Christoffel symbols of the
restriction of Z to a smaller open set are its Christoffel symbols restricted to that set.
Now, if p ∈ U

⋂
{n ∈ N : Λ is holomorphic and nondegenerate at n} and Vp ⊂ U is a

neighbourhood of p, contained in U , we have that Λ is holomorphic and nondegenerate in
Vp: hence (a): by Koszul’s formula we have

2
N∑
a=1

Γaijgam = 2
〈
D ∂

∂zi

∂

∂zj
,
∂

∂zm

〉
=

∂

∂zi
gjm +

∂

∂zj
gim +

∂

∂zm
gij ;
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multiplying both side by gmk and summing over m yields the desired result; (b) follows
immediately from (D3) of definition 10. Now the fact that (a) and (b) hold in fact on U
follows by analytical continuation: note that this result does not depend on the choice of
p. �

Proposition 13. For every pair V,W of holomorphic vector fields on the open
set U ( belonging to a maximal atlas) in the meromorphic Riemannian mani-
fold (N,Λ), DVW is a well defined vector field, holomorphic on U

⋂
{n ∈ N :

Λ is holomorphic and nondegenerate at n} and may be extended to a meromorphic vector
field on U .

Proof. There exist holomorphic functions {V i}, {W j} and a coordinate system Z =(
z1.....zN

)
on U such that V =

N∑
i=1

V i ∂

∂zi
and W =

N∑
j=1

W i ∂

∂zj
. By lemma 6(a),

DVW =
N∑
i=1

V iD ∂

∂zi

 N∑
j=1

W j ∂

∂zi

 =
N∑
k=1

 N∑
i,j=1

V i

(
∂W k

∂zi
+ ΓkijW

j

) ∂

∂zk
:

this is a vector field whose components are meromorphic functions. �

Summing up, we yield:

Definition 14. Given a D-degenerate and E-meromorphic Riemannian manifold (N,Λ),
with D and E closed hypersurfaces in N, the Levi-Civita metric connexion (or mero-
morphic metric connexion) of N is the collection consisting of the metric connexions
{D [Ui \ (D

⋃
E)]}i∈I as U}i runs over any maximal atlas B = ({U}i)i∈I on N.

4.2 Meromorphic parallel translation

We turn now to study vector fields on paths: an obvious example is the velocity field (
see lemma 4): just as in semi-Riemannian geometry, there is a natural way of defining the
rate of change X ′ of a meromorphic vector field X on a path. We study at first paths with
values in a nondegenerate holomorphic Riemannian manifold M: let QM = (S, π, j, γ,M) be
a path in M, P be the set of branch points of π, r ∈ S \ P be a finite-velocity point of
QM. Moreover, let V ⊂ S \ P be a neighbourhood of r such that γ (V) is contained in a
local chart in M, H (V) be the ring of holomorphic functions on V, Xγ (V) the Lie algebra
of holomorphic vector fields over γ on V.
Due to the locally nondegenerate holomorphic environment, the following proposition

can be proved in quite a classical fashion.

Proposition 15. There exists a unique mapping ∇γ′ : Xγ (V) → Xγ (V), called induced
covariant derivative on QM in V, (or on γ in V) such that:

(a) ∇γ′ (aZ1 + bZ2) = a∇γ′Z1 + b∇γ′Z2, a, b ∈ C;

(b) ∇γ′ (hZ) =

(
d̃

dz
h

)
Z + h∇γ′Z, h ∈ H (V);

(c) ∇γ′ (V ◦ γ) (r) = D
γ∗|r( d̃

dz
|r)
r ∈ V,
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where V is a holomorphic vector field in a neighbourhood of γ(r). Moreover,

d̃

dz
〈X,Y 〉 =

〈
∇γ′X,Y

〉
+
〈
X,∇γ′Y

〉
X,Y ∈ Xγ(V).

Now let R = {Vk}k∈K be a maximal atlas for S \ P ; we may assume that, for every k,
maybe shrinking Vk, γ (Vk) is contained in some local chart Ui in the already introduced
atlas A for M.
By proposition 15, if V1 and V2 are overlapping open sets in R, V1

⋂
V2 ∈ R too, and

∇γ′ [V1] |V1
⋂ V2

= ∇γ′ [V2] |V1
⋂ V2

.
Now let’s complete R to an atlas S for S: keeping into account that the local coordinate

expression of the induced covariant derivative is

∇γ′Z =
m∑
k=1

 d̃

dz
Zk +

m∑
i,j=1

Γkij
d̃

dz

(
ui ◦ γ

)
Zj

 ∂

∂uk
.

and arguing in the same way as about the meromorphic Levi-Civita connexion, we are able
to show that pairs of holomorphic vector fields on γ are transormed into P -meromorphic
vector fields on γ.

Definition 16. The P -meromorphic induced covariant derivative, or the P -
meromorphic parallel translation on a path QM = (S, π, j, γ, ) with set of branch points
P and taking values in a nondegenerate Riemannian manifold M is the collection con-
sisting of the induced covariant derivatives ∇γ′ [Vk \ P ] as Vk runs over a maximal atlas
S = ({Vk})k∈K on S.

Let’s turn now to dealing with meromorphic parallel translations induced on a pathQN =
(T, �, j, δ), in a meromorphic Riemannian manifold (N,Λ) admitting closed hypersurfaces
D and E such that Λ|N\E is holomorphic and Λ|(N\E)\D is nondegenerate. We set F = D

⋃
E

and restrict our attention to paths starting at metrically ordinary points.

Lemma 7. Set M = N \ F , S = δ−1(M): then T \ S is discrete, hence S is a connected
Riemann surface.

Proof. Suppose that there exists a subset V ⊂ T \ S admitting an accumulation point
t ∈ V and consider a countable atlas for B = {Un}n∈N for N such that, for every n, there
exists Ψn ∈ O ({Un}) such that Un

⋂
F = {X ∈ Un : Ψn = 0}.

Set δ−1(Un) = Tn ⊂ T and suppose, without loss of generality, that δ(t) ∈ U0.
We have Ψ0 ◦ δ|V∩T0 = 0 and t ∈ V ∩ T0 is an accumulation point of V ∩ T0 , hence

Ψ0 ◦ δ|T0 = 0 and δ(T0) ⊂ F .
Suppose now that TN �= ∅ for some N : we claim that this implies δ(TN ) ⊂ F : to

prove the asserted, pick two points τ0 ∈ T0 and τn ∈ Tn and two neighbourhoods T ′
0,

T ′
N of τ0 and τn in T0 and Tn respectively, such that �|T ′

0
and �|T ′

N
are biholomorphic

functions. Now the function elements
(
�(T ′

0), δ ◦
(
�|T ′

0

)−1
)

and
(
�(T ′

N ), δ ◦
(
�|T ′

N

)−1
)

are connectible, hence there exists a finite chain {Wν}ν=0...L such that W0 = �(T ′
0), WL =

�(T ′
N ), Wν

⋂
Wν+1 �= 0 for every ν.
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Without loss of generality, we may suppose that each Wν admits a holomorphic, hence
open, immersion jν → T , hence, setting S0 = T0, Sλ = jλ(Wλ) for λ = 1...L and SL+1 =
TN yields a finite chain of open subsets {Sλ}λ=0...M of T connecting T0 and TN .
Let’s prove, by induction, that, for every λ, δ(Sλ) ⊂ F .
• At first recall that δ(S0) ⊂ U0

⋂
F as already proved; suppose now that δ(Sk−1) ⊂ F .

We have Sk−1
⋂
Sk �= ∅, hence δ(Sk−1)

⋂
δ(Sk) �= ∅.

For every m set Σkm = δ(Sk−1)
⋂
δ(Sk)

⋂
Um: if Σkm �= ∅, then Ψm ◦ δ ≡ 0 on

δ−1(Σkm)
⋂
Sk−1

⋂
Sk; but δ−1(Σkm)

⋂
Sk−1

⋂
Sk is open in δ−1 (δ(Sk)

⋂
Um)

⋂
Sk, thus

Ψm ◦ δ ≡ 0 on δ−1 (δ(Sk)
⋂
Um)

⋂
Sk, that is to say δ(Sk)

⋂
Um ⊂ F .

• On the other hand, if Σkm = ∅, but δ(Sk)
⋃
Um �= ∅ we claim that δ(Sk)

⋂
Um ⊂ F

as well: proving this requires a further induction: pick a UM such that ΣkM �= ∅ and a
finite chain of open sets B′ = {U ′

µ}µ=0...J ⊂ B (with U ′
µ

⋂
δ(Sk) �= ∅ for each µ) connecting

UM and Um. Since ΣkM �= ∅, δ(Sk)
⋂
U ′

0 = δ(Sk)
⋂
UM ⊂ F .

Suppose by induction that δ(Sk)
⋂
U ′
l−1 ⊂ F .

Then Ψl◦δ ≡ 0 on δ−1
(
δ(Sk) ∩ U ′

l−1 ∩ U ′
l

)
∩ Sk, hence Ψl◦δ ≡ 0 on δ−1 (δ(Sk) ∩ U ′

l ) ∩ Sk
i.e. δ(Sk)

⋂
U ′
l ⊂ F : this ends the induction and eventually implies δ(Sk)

⋂
Um =

δ(Sk)
⋂
U ′
J ⊂ F .

Summing up, δ(Sk) =
⋃

m (δ(Sk)
⋂
Um) ⊂ F , for each k. Hence δ(TN ) = δ(SM ) ⊂ F

and eventually δ(T ) = δ
(⋃

N∈N TN
)
⊂ F , hence δ cannot start at a point in N \ F . �

In the following considerations, there will still hold all notations introduced in preceding
lemma: given a path QN = (T, �, j, δ), set π = �|S , γ = δ|S and note that, since QN is
starting from a metrically ordinary point m, j may be supposed to take values in fact in S;
since the preceding lemma shows that S is a connected Riemann surface, QM = (S, π, j, δ|S)
is in fact a path in M, which we call the depolarization of QN. But M is a nondegenerate
holomorphic Riemannian manifold, hence if P is the set of branch points of π, there is
a P -meromorphic induced parallel translation on QM, got following definition 16 and its
substratum. Finally, we introduce a maximal atlas T for T and yield the following:

Definition 17. Let (N,Λ) be a E- meromorphic and D-degenerate Riemannian mani-
fold, M = N \ (D

⋃
E), QN = (T

⋃
, �, j, δ) a path: the

(
P
⋃
δ−1 (D

⋃
E)
)
-meromorphic

induced covariant derivative on QN is the collection consisting of all induced covari-
ant derivatives ∇γ′ [Vk

⋂
S] as Vk runs over a maximal atlas T = ({Vk})k∈K for T and

QM = (S, π, j, δ|S) is the depolarization of QN.

4.3 Geodesics

Definition 18. A meromorphic (in particular, holomorphic) vector field Z on a path
QM = (S, π, j, γ) is parallel provided that ∇Z = 0 (as a meromorphic field on QM).

Definition 19. The acceleration ℵ
(
QM
)
of QM is the meromorphic field ∇

(
V
(
QM
))

on
QM yielded by the induced covariant derivative of its velocity field; the speed of a path is

the ’amplitude’ function of its velocity field: S
(
QM
)
(r) =

〈
γ∗|r

(
d̃
dz

)
, γ∗|r

(
d̃
dz

)〉
. This is

a meromorphic function. A path is null provided that its speed is zero everywhere.

Definition 20. A geodesic in a meromorphic (in particular, holomorphic) Riemannian
manifold is a path whose velocity field is parallel, or, equivalently, one of zero acceleration
(see definition 19). A geodesic is null provided that so is as a path.
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The local equations of elements of geodesics (U, β)
••
β k +

∑N
i,j=1 Γ

k
ij(β)

•
β i

•
β j = 0, (k =

1.....N) are a system of N second-order ordinary differential equations in the complex
domain, with meromorphic coefficients, in turn equivalent to an autonomous system of
2N first-order equations, hence, as a consequence of the general theory (see theorem 1)
we have the following

Theorem 4. For every metrically ordinary point p ∈ M, every holomorphic tangent vector
Vp ∈ TpM and every z0 ∈ C, there exists a unique germ βz0 of geodesic such that βz0 (z0) = p
and βz0 ∗ (d/dz)|z0 = Vp; moreover any analytical continuation of βz0 is a geodesic.

5 Completeness theorems

5.1 Complex warped products

In this section we shall be concerned with warped products of Riemann surfaces, each
one endowed with some meromorphic metric: in this framework we shall prove a geodesic
completeness criterion.
Let now Ui, (i = 1....N), N ≥ 2 be either a copy of the unit ball in the complex plane,

or the complex plane itself, whose coordinate function we shall call ui.
Moreover, let each Ui be endowed with a (not everywhere vanishing) meromorphic

metric, which we denote by b1(u1) du1 � du1 on U1 , or by fi(ui) dui � dui if i ≥ 2, where
both b1 and the fi’s are nonzero meromorphic functions.
Consider now the meromorphic Riemannian manifold

U = U1 ×a2(u1) U2 ×a3(u1) U3 × ........×aN (u1) UN ,

where the ak’s (k ≥ 2) are nonzero meromorphic warping functions defined on U1, i.e.
depending solely on u1.
We could write down the meromorphic metric Λ of U in the form

Λ
(
u1.....uN

)
= b1(u1) dui � dui +

N∑
i=2

ai(ui)fi(ui) dui � dui.

In other words, the matrix of Λ, with respect to the canonical coordinates of U , inherited
from CN , is of the form (gik) = diag

(
b1(u1), a2(u1)f2(u2), a3(u1)f3(u3), ...aN (u1)fN (uN )

)
.

The following lemma can be proved by easy calculations:

Lemma 8. The meromorphic Levi-Civita connexion induced on U by Λ admits the
following Christoffel symbols: 2Γ1

11 = b′1(u
1)/b1(u1); Γ1

ij = 0 if i �= j; 2Γ1
ii =

−
[
a′i(u

1)fi(ui)
]
/b1(u1) if 1 ≤ i ≤ N ; 2Γkkk = f ′k(u

k)/f(uk) if 2 ≤ k ≤ N and
2Γkik = a

′
k(u

1)/ak(u1) if i = 1 and 2 ≤ k ≤ N . Finally, Γkij = 0 otherwise.

As an immediate consequence, we have:

Lemma 9. Each element of geodesic of (U ,Λ) satisfies the following system of N ordinary
differential equations in the complex domain:
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••
u 1 + b′1(u

1)
2b1(u1)

(•
u 1
)2

−
∑N

l=2
a′l(u

1)fl(u
l)

2b1(u1)

(•
u l
)2

= 0
••
u k + f ′

k(uk)

2fk(uk)

(•
u k
)2

+ a′k(u1)

ak(u1)

(•
u 1
)(•
u k
)
= 0, k = 2...N,

(5.1)

provided that it starts at a metrically ordinary point. Here, and in the following, uk =
uk(z).

Lemma 10. The system (5.1) of the differential equations of elements of geodesics z �→(
u1(z)...uN (z)

)
of (U ,Λ) such that the initial values

(
u1(z0).....uN (z0),

•
u 1(z0).....

•
uN (z0)

)
of γ yield a metrically ordinary point of (U ,Λ) u1 is not a constant function admits the
following first integral:(•

u 1
)2 (

b1
(
u1
))

= A1 −
N∑
l=2

Al

al (u1)
(5.2)

(•
u k
)2
fk

(
uk
) [
ak
(
u1
)]2 = Ak k = 2...N (5.3)

Here the Ak’s are suitable complex constants.

Proof. Let us prove at first the set of equations (5.3) corresponding to k = 2...N .
If uk is a constant function, then

•
u k ≡ 0 and the k-th equation in (5.3) holds, with

Ak = 0.
Otherwise, we could divide the k-th equation in (5.1) by uk, this division being lead

within the ring of meromorphic functions in a neigbhourhood of z0. We get 2
••
u k

•
u k

+

f ′k
(
uk
)

fk(uk)
•
u k+2

a′k
(
u1
)

ak(u1)
•
u 1 = 0. Therefore, integrating once,

(•
u k
)2
fk
(
uk
) [
ak
(
u1
)]2 = Ak

where we have set Ak =
(•
u k(z0)

)2
fk
(
uk(z0)

) [
ak
(
u1(z0)

)]2. Note that Ak is a well

defined complex number, since U (z0) =
(
u1(z0)...uN (z0)

)
is a metrically ordinary point.

Let us now prove (5.3): we can multiply the first equation of (5.1) by 2b1
(
u1
) •
u 1, since

this last function is not everywhere vanishing.
We get

2b1
(
u1
) •
u 1 ••
u 1 + b′1(u

1)
(•
u 1
)3

−
N∑
l=2

a′l(u
1)fl(ul)

(•
u l
)2 •
u 1 = 0;

by 5.3 already proved,
(•
u l
)2

= Al/[fl(ul)
[
al(u1)

]2], hence
2b1
(
u1
) •
u 1 ••
u 1 + b′1(u

1)
(•
u 1
)3

−
N∑
l=2

Al
a′l(u

1)

[al(u1)]2
•
u 1 = 0.

Integrating once, b1
(
u1
) (•
u 1
)2

+
∑N

l=2
Al

al(u1)
= K where K = b1

(
u1(z0)

) (•
u 1(z0)

)2
+∑N

l=2
Al

al(u1(z0))
.
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Dividing by b1
(
u1
)
, keeping into account that b1

(
u1(z0)

)
�= 0 (due to the metrical

ordinariness of the initial point of the geodesic) and eventually setting A1 = K/b1
(
u1(z0)

)
ends the proof. �

Lemma 11. Every element of geodesic z �→
(
u1...uN

)
of (U ,Λ) such that the initial values(

u1(z0).....uN (z0),
•
u 1(z0).....

•
uN (z0)

)
of γ yield a metrically ordinary point of (U ,Λ) and

u1 is a constant function admits the following first integral:(•
u k
)2
fk

(
uk
)
= Ak k = 2...N. (5.4)

Here the Ak’s are suitable complex constants.

Proof. If uk is a constant function, then
•
u k ≡ 0 and the k-th equation in 5.4 holds, with

Ak = 0.
Otherwise, we could divide the k-th equation in (5.1) by uk, this division being lead

within the ring of meromorphic functions in a neigbhourhood of z0.

By keeping into account that
•
u 1 ≡ 0 we get: 2

••
u k

•
u k

+
f ′k
(
uk
)

fk(uk)
•
u k = 0. Therefore,

integrating once,
(•
u k
)2
fk
(
uk
)
= Ak, where we have set Ak =

(•
u k(z0)

)2
fk
(
uk(z0)

)
.

Note that Ak is a well defined complex number, since U (z0) =
(
u1(z0)...uN (z0)

)
is a

metrically ordinary point: this fact ends the proof. �

Remark 21. In the following we shall be concerned with ’extracting square roots’ of
nonvanishing elements, or germs, of holomorphic functions at some points in the complex
plane: more precisely, let (U,Ψ) be a never vanishing HFE: then there exist two HFE’s
(U,Ξ1) and (U,Ξ2) such that Ξ2

1 = Ψ and Ξ2
2 = Ψ on U : the Riemann surfaces of (U,Ξ1)

and (U,Ξ2) are isomorphic, since either the Riemann surface
(
R, p, i, Ũ

)
of (U,Ψ) is such

that Ũ is never vanishing, nor has it got any poles; then the Riemann surfaces of (U,Ξ1),
(U,Ξ2) and (U,Ψ) are all isomorphic, or the Riemann surface

(
R, p, i, Ũ

)
of (U,Ψ) is

such that there exists some point p ∈ R such that Ũ(p) = 0 or such that Ũ has a pole
in p: then the function elements (U,Ξ1) and (U,Ξ2) are connectible, hence their Riemann
surfaces are again isomorphic. The same argument could be applied without changes to
the Riemann surfaces of the HFE’s

(
U,
∫
Ξ1

)
and

(
U,
∫
Ξ2

)
.

Definition 22. A meromorphic warped product

U = U1 ×a2(u1) U2 ×a3(u1) U3 × ........×aN (u1) UN

of complex planes or one-dimensional unit balls with metric

Λ
(
u1.....uN

)
= b1(u1) dui � dui +

N∑
i=2

ai(ui)fi(ui) dui � dui,

where b1, the ak’s and the fk’s are nonzero meromorphic functions is coercive provided
that, for every metrically ordinary point X0 =

(
x1

0...x
N
0

)
and
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• for every n-tuple (A1...AN ) ∈ CN such that b1(x1
0) �= 0 and A1−

∑N
l=2

Al

al(x
1
0)

�= 0 and
for each one of the two HFG’s ℵ1 and ℵ2 such that

(ℵi)
2 =

[
1
b1

(
A1 −

N∑
l=2

Al

al

)]
x1
0

i = 1, 2,

the Riemann surface (S1, π1, j1,Φ1,U) of both the HFG’s (see remark 21)[∫ u1

x0

d η

ℵi(η)

]
x1
0

i = 1, 2; (5.5)

is such that C \ Φ1(S1) is a finite set;

• for each k, 2 ≤ k ≤ N and for each one of the two HFG’s φk1 and φk2 such that

(φki)
2 = [fk]x1

0
, i = 1, 2

the Riemann surface (Sk, πk, jk,Φk,U) of both the HFG’s (see remark 21)[∫ uk

x1
0

φki(η) dη

]
x1
0

i = 1, 2 (5.6)

is such that C \ Φk(Sk) is a finite set.

Remark 23. Definition 22 may be checked for just one metrically ordinary point X0: this
is proved in lemma 12; moreover, we may assume,without loss of generality X0 = 0: were
not, we could carry it into 0 by applying an automorphism of U , that is to say a direct
product of automorphisms of the unit ball or of the complex plane, according to the nature
of each Ui. Then a simple pullback procedure would yield back the initial situation: in
the following we shall understand this choice.

In the following lemma we shall use the ’square root’ symbol in the meaning of definition
22, or remark 21: in other words, given a HFG, which is not vanishing at some point, it
should denote any one of the two HFG’s yielding it back when squared.

Lemma 12. For every metrically ordinary point
(
ξ1...ξN

)
of U and every n-tuple

(A1...AN ) ∈ C
N such that b1(x1

0) �= 0, A1 −
∑N

l=2
Al

al(x
1
0)

�= 0, b1(ξ1) �= 0 and

A1−
∑N

l=2
Al

al(ξ1)
�= 0, set Ψ(η) := A1 −

N∑
l=2

Al

al(η)
: then the Riemann surfaces of the HFG’s∫ u1

ξ1

√
b1(η)/Ψ(η) dη at ξ1 and

∫ u1

0

√
b1(η)/Ψ(η) dη at 0 are isomorphic: moreover so

are, for each k, those of
∫ uk

ξk

√
fk(η) dη at ξk and

∫ uk

0

√
fk(η) dη at 0.

Proof. The statement easily follows from the fact that those germs are connectible. �

Here is the main result concerning warped products of Riemann surfaces:
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Theorem 5. A meromorphic warped product

U = U1 ×a2(u1) U2 ×a3(u1) U3 × ........×aN (u1) UN

of complex planes or one-dimensional unit balls with metric

Λ
(
u1.....uN

)
= b1(u1) du1 � du1 +

N∑
i=2

ai(u1)fi(ui) dui � dui,

is geodesically complete if and only if it is coercive.

Proof. a) Suppose that U is coercive and that U , defined by z �→
(
u1...uN

)
, is an el-

ement of geodesic, defined in a neighbourhood of 0 in the complex plane and such that(
u1(0)...uN (0)

)
is a metrically ordinary point; moreover, let

(•
u 1(0)...

•
uN (0)

)
be the initial

velocity of U .
Suppose at first that z �→ u1 is a constant function (hence

•
u 1(0) = 0 ): then, by lemma

11, the equations of U are(•
u k
)2
fk

(
uk
)
= Ak k = 2...N, (5.7)

where the Ak’s are suitable complex constants; here u1 ≡ A1.
Now the Riemann surface of the HFE z �→ u1 is trivially isomorphic to (C, id, id, A1);

if Ak = 0 the Riemann surface of z �→ uk is isomorphic to (C, id, id, A) for some complex
constant A; if Ak �= 0 we could rewrite the k-th equation of (5.7) in the form:

1
Bk

∫ uk

uk(0)
φ(η) dη = z, (5.8)

where φ2
k = fk and B2

k = Ak, the choice of φk and Bk being made in such a way that
•
u k(0) =

Bk

φk(0)
.

By hypothesis, the Riemann surface (Sk, πk, jk,Φk) of the HFG
∫ uk

0
φk dη at 0 is such

that C \ Φ1(S1) is a finite set; by lemma 12 the Riemann surface of the HFG
∫ uk

uk(0)
φk dη

at uk(0) is isomorphic to (Sk, πk, jk,Φk); but, by (5.8), the germs uk
z=0 and

∫ uk

uk(0)
φk dη at

uk(0) are each one inverse of the other; hence, by lemma 2 the Riemann surface of uk
z=0 is

complete; this eventually implies that the Riemann surface of the element z �→
(
u1...uN

)
is complete too: this fact ends the proof of a) in the case that u1 is a constant function.
On the other side, suppose that u1 is not a constant function: then, by lemma 10, the

equations of U are
(•
u 1
)2 (

b1
(
u1
))

= A1 −
∑N

l=2
Al

al(u1)(•
u k
)2
fk
(
uk
) [
ak
(
u1
)]2 = Ak k = 2...N.

(5.9)
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for suitable complex constants A1...AN .
Consider now the germ z �→ u1 in z = 0: rewrite the first equation of (5.9) in the form:∫ u1

u1(0)

dη

ℵ(η)u1(0)
= z, (5.10)

where
(ℵ(η)u1(0)

)2 =

[
A1 −

N∑
l=2

Al/al(η)

]
/b1(η) in a neighbourhood of z = 0, the choice

of the square root ℵk being made in such a way that ℵu1(0)

(
u1(0)

)
= 1/

•
u 1(0).

Denote now by ℵu=0 the HFG defined by setting

(ℵ0)
2 =

[
1
b1

(
A1 −

N∑
l=2

Al

al

)]
0

,

the choice of the ’square root’ ℵ0 being arbitrary.

By hypothesis, the Riemann surface (S1, π1, j1,Φ1) of the HFG
∫ u1

0
1/ℵ0 at 0 is such

that C \ Φ1(S1) is a finite set.

By lemma 12 the Riemann surfaces of
∫ u1

0
1/ℵ0 (at 0) and of

∫ u1

u1
0

1/ℵ0 (at u1
0) are both

isomorphic to (S1, π1, j1,Φ1); but, by (5.8), the germs u1
z=0 and

∫ u1

0
1/ℵ0 (at u1(0)) are

each one inverse of the other; hence, by lemma 2 the Riemann surface of u1
z=0 is complete.

Let now 2 ≤ k ≤ N : if Ak = 0 the Riemann surface of z �→ uk is isomorphic to
(C, id, id, A) for some complex constant A; if Ak �= 0 we could rewrite the k-th equation
of (5.9) in the form:∫ uk

uk(0)
φ(η) dη =

∫ z

0

Bk dz

ak (u1)
, (5.11)

where φ2
k = fk and B2

k = Ak, the choice of φk and Bk being made in such a way that
•
u k(0)φ

(
uk(0)

)
ak
(
u1
)
= Bk.

Denote now by [ϕk]uk=0 the HFG defined by setting [ϕk]2uk=0 = [fk]uk=0, the choice of
the ”square root” [ϕk]uk=0 being arbitrary.

By hypothesis, the Riemann surface (Sk, πk, jk,Φk) of the HFG
∫ uk

0
ϕk (at 0) is such

that C \ Φ1(S1) is a finite set; moreover, by lemma 12 the Riemann surfaces of the

HFG
∫ uk

uk(0)
φk dη ( at uk(0)) is isomorphic to (Sk, πk, jk,Φk); but, by (5.11) the germs[

z → uk
]
z=0

,
∫ uk

uk(0)
φk dη (at uk(0) and z →

∫ z

0

Bk

ak (u1(ζ))
dζ ( at z = 0) satisfy, in the

above order, the hypotheses of lemma 2; moreover, the Riemann surface with logarithmic

singularities of
∫ uk

uk(0)
φk dη ( at uk(0)) is complete, since the one of [φk]uk(0) is complete

without logarithmic singularities.
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Therefore the Riemann surface with logarithmic singularities of uk
z=0 is complete; this

eventually implies that the Riemann surface with logarithmic singularities of the element
z �→

(
u1...uN

)
, is complete too: this fact ends the proof of a).

Vice versa, suppose that U = U1 ×a2(u1) U2 ×a3(u1) U3 × ........×aN (u1) UN is not coercive:
then either there exists a complex n-tuple (A1...AN ) ∈ C

N such that b1(x1
0) �= 0, A1 −∑N

l=2
Al

al(x1
0)

�= 0 and for each one of the two HFG’s ℵ1 and ℵ2 such that

(ℵi)
2 =

[
1
b1

(
A1 −

N∑
l=2

Al

al

)]
0

i = 1, 2,

the Riemann surface (S1, π1, j1,Φ1) of both the HFG’s (see remark 21)
∫ u1

x0

d η

ℵi(η)
( at

x1
0( i = 1, 2)) is such that C\Φ1(S1) is an infinite set; or there exists k, 2 ≤ k ≤ N such that,

for each one of the two HFG’s [φk1]0 and [φk2]0 such that [φki]0 = [fk]0 , (i = (1, 2)) the

Riemann surface (Sk, πk, jk,Φk) of both the HFG’s (see remark 21)

[∫ uk

0
φki(η) dη

]
0

i =

1, 2 is such that C \ Φ1(S1) is an infinite set.
In the first case the geodesic element z �→ U =

(
u1...uN

)
starting from 0 with velocity

(L1...LN ), such that

L2
1 =

1
b1(0)

(
A1 −

N∑
l=2

Al

al(0)

)
, L2

k =
Ak

fk(0)ak(0)
, k = 2...N,

satisfies the equation
∫ u1

0
dη

ℵi(η)
= z, i = 1, 2; by lemma 2, this fact implies that

[
z �→ u1

]
0

has an incomplete Riemann surface, hence the same holds about z �→ U too.
Consider now the second case: first construct a geodesic element z �→ U =

(
0...uk...0

)
,

with all components which have to be constant functions except uk, k ≥ 2 (this element is
easily seen to exist).
Now recall lemma 11 to conclude that z �→ uk satisfies, in a neighbourhood of z = 0 the

equation
1
Ck

∫ uk

0
φki(η) dη = z, for a suitable complex constant Ak; therefore its Riemann

surface is incomplete by lemma 2; this fact ends the proof. �

Definition 24. Let U and V be meromorphic warped products of complex planes and
unit balls; U and V are directly biholomorphic provided that they are biholomorphic
under a direct product of biholomorphic functions between each Ui and each Vi.

Remark 25. Definition 22 is invariant under direct biholomorphism (see definition 24):
in other words, if U and V are directly biholomorphic, then U is coercive if and only V is
too: this is a simple consequence of ’changing variable’ in integrals 5.5 and 5.6.

Therefore, we could yield the following

Definition 26. An equivalence class [U ] of meromorphic warped products of complex
planes and unit balls, consisting of mutually directly (see definition 24 ) biholomorphic
elements is coercive provided that any one of its representatives is coercive.
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Our goal is now to extend definitions 22 and 26 to warped products containg some P1’s
among their factors.
Keeping into account remark 25, this could be readiliy pursued: indeed, consider a

meromorphic warped product

U = U1 ×a2(u1) U2 ×a3(u1) U3 × ........×aN (u1) UN

of Riemann spheres, complex planes or one-dimensional unit balls with metric

Λ
(
u1.....uN

)
= b1(u1) dui � dui +

N∑
i=2

ai(ui)fi(ui) dui � dui.

Let L ⊂ {1...N} be the set of indices such that Ul - P
1 for each l ∈ L.

Definition 27. Let Y =
(
y1...yN

)
∈ U : then (Y, L) is a principal multipole of U

provided that b1(y1) = ∞ and fl(yl) = ∞ for each l ∈ L \ {1}.

Definition 28. A meromorphic warped product

U = U1 ×a2(u1) U2 ×a3(u1) U3 × ........×aN (u1) UN

of Riemann spheres, complex planes or one-dimensional unit balls with metric is partially
projective if some one of its factors is biholomorphic to the Riemann sphere P1.

Definition 29. A partially projective warped product U =
N∏
i=1

Ui is coercive in opposi-

tion to the principal multipole (Y, L) if, set Wi = Ui if i �∈ L, Wi = Ui \ {yi} ifi ∈ L,

then
N∏
i=1

Wi is coercive in the sense of definition 26, that is to say, belongs to a coercive

equivalence class with respect to direct biholomorphicity.

5.2 Warped product of Riemann surfaces

Consider now a warped product of Riemann surfaces

S = S1 ×a2 S2 ×a3 S3 × ........×aN SN ,

where each Si is endowed with meromorphic metric λi: S’s metric Λ is defined by setting

Λ = λ1 +
N∑
k=2

akλk,

where each ak is a meromorphic function on Si.

Theorem 6. S admits universal covering Ψ : U → S, where U is a direct product of
Riemann spheres, complex planes or one-dimensional unit balls: this universal covering is
unique up to direct biholomorphisms.

Proof. This is a simple consequence of Riemann’s uniformization theorem. �
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Now U could be endowed with the pull-back meromorphic metric Ψ∗Λ, hence U itself
results in a meromorphic warped product.

Definition 30. The manifold S is totally unelliptic provided that none of the Si is
elliptic; L-elliptic provided that there exists a nonempty set of indices L such that Sl is
elliptic if and only if l ∈ L.

Definition 31. Let S be a L-elliptic warped product, with universal covering Ψ : U → S:
then (Z,L) is a principal multipole for S provided that Z ∈ S and each Y ∈ Ψ−1 (Z) is a
principal multipole for U .

Definition 32. A totally unelliptic warped product of Riemann surfaces is coercive pro-
vided that its universal covering is coercive in the sense of definition 26. A L-elliptic warped
product of Riemann surfaces is coercive in opposition to the principal multipole
(Z,L) provided that its universal covering U is coercive in opposition to each principal
multipole (Y, L) as Y runs over Ψ−1(Z).

Theorem 7. A totally unelliptic warped product of Riemann surfaces S is geodesically
complete if and only if it is coercive.

Proof. Let Ψ : U → S be the universal covering of S: by definition 30 U is coercive,
hence geodesically complete by theorem 5.
Let now γ be a germ of geodesic in S, starting at a metrically ordinary point: since Ψ is

a local isometry, there exists a germ β of geodesic in U , starting at a metrically ordinary
point, such that γ = Ψ ◦ β.
By definition of completeness, the Riemann surface with logarithmic singularities

(Σ, π, j, B,U) of β is such that C \ π (Σ) is a finite set; moreover, (Σ, π, j,Ψ ◦B,S) is
an analytical continuation, with logarithmic singularities, of γ.
This proves that, if

(
Σ̃, π̃, ̃, G,S

)
is the Riemann surface with logarithmic singularities

of γ, then P1 \ π̃
(
Σ̃
)
is a finite set too, hence S is geodesically complete.

On the other side, if S admits an incomplete germ of geodesic γ, starting at a metrically
ordinary point, then there exists an incomplete germ of geodesic β in U , starting at a
metrically ordinary point, such that γ = Ψ ◦ β; this means by theorem 5, that U is not
coercive; eventually, by definition 30, S is not coercive: this fact ends the proof. �

Theorem 8. A L-elliptic warped product of Riemann surfaces S is geodesically complete
if and only if) it is coercive in opposition to some principal multipole.

Proof. Suppose that S is coercive in opposition to some principal multipole (Z,L): then,
by theorem 7, S is coercive in opposition to (Z,L) if and only if S \ Z is geodesically
complete; since Z is not metrically ordinary, S is geodesically complete.
On the other hand, suppose that S admits an incomplete geodesic (Σ, π, j, γ,S): let

(Z,L) be a principal multipole of S wich is known to exist; set R = γ−1 (S \ Z) ⊂ Σ.
Now (R, π|R, j, γ|R,S \ Z) is an incomplete geodesic of S \Z: this fact implies that S \Z

is not geodesically complete, hence it is not coercive, that is to say, S is not coercive in
opposition to (Z,L).
The arbitrariness of Z allows us to conclude the proof. �
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5.2.1 Examples

We shall now show a wide class of warped products sharing all characteristics defining
coercivity: they will hence result in being geodesically complete.
We recall, without proof, the following results from the theory of meromorphic functions

(see [NEV] or [HAY]):

Theorem 9. A meromorphic function in the complex plane takes all P1’s values but at
most two ones; a meromorphic function in the unit disc, whose characteristic function T
is such that the ratio T (r)/log(1 − r) is unlimited as r → 1, takes all P1’s values but at
most two ones.

In the following we shall need some technicalities from integral calculus, hence we state:

Proposition 33. If ∆ := b2 − 4ac then
[∫ d η√

aη2+bη+c

]
0

equals one and only one (up to

additive constants) of the following expressions, in a neighbourhood of 0:

(A)



[
1√
a
log

(
η +

b

2a
+

√
η2 +

b

a
η +

c

a

)]
0

the same branch of
√

, any branch of log

if a �= 0 and ∆ �= 0

(B)


[

1√
a
log
(
η + b

2a

)]
0

any branch of log

if a �= 0 and ∆ = 0

(C)


[
2
b

√
bη + c

]
0

the same branch of
√

if a = 0 and b �= 0

(D)


[η/

√
c]0

the same branch of
√

if a = b = 0.

Let now h, f2...fN be meromorphic functions on C and P2...PN polynomials of degree at
most two. Consider on CN the meromorphic metric

Λ
(
u1...uN

)
=
[
h′(u1)

]2
du1 � du1 +

N∑
k=2

[
fk(uk)

]2
Pk (h(u1))

duk � duk.

Theorem 10.
(
C
N ,Λ

)
is coercive (hence geodesically complete).

Proof. For every n-tuple (A1...AN ) ∈ C
N such that h′(0) �= 0 and A1−

∑N
l=2AlPl(0) �= 0,

set Ψ(x) = A1 −
∑N

l=2AlPl(x). There holds
∫ u1

0
(Ψ ◦ h(η))−1/2h′(η)d η = Φ

(
h(u1)

)
,

where Φ is one (depending on the constants A1...AN ) of the HFG’s on the right hand
member of proposition 33. This fact shows that the maximal analytical continuation of
u1 → Φ

(
h(u1)

)
takes all P1’s values but a finite number, because so does the meromorphic

function h (see theorem 9).
Moreover, for each k, 2 ≤ k ≤ N , each one of the two HFG’s± [fk]0 , could be continuated

to ±fk which, by theorem 9, takes all values but at most two ones. �
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Remark 34. Extending the validity of preceding example to the partially projective case
is straightforward.

Let now Si, i = 1..N be Riemann surfaces, which we suppose for simplicity to be
parabolic or hyperbolic, pi : Ui → Si their universal covering, where each Ui is isomorphic
either to the unit disc or to the complex plane; finally, let φi be meromorphic functions
such that φ1 ◦ p1 and (φi ◦ pi)′, i = 1..N take all complex values but at most a finite
number (the hypothesis on φi ◦ pi could be weakened; even dropped, if Si is parabolic: see
[HAY]).
Moreover, let ai, bi, ci, i = 1..N be complex numbers such that, for each i, ai �= 0 or
bi �= 0 or ci �= 0.
Set S =

∏N
i=1 Si, U =

∏N
i=1 = Ui and p = (p1....pN ); consider the meromorphic metric

Λ = dφ1 � dφ1 +
N∑
i=1

dφi � dφi
aiφ2

1 + biφ1 + ci
.

Theorem 11. (U ,Λ) is coercive (hence geodesically complete).

Proof. By pulling back Λ with respect to the universal covering p we get

p∗Λ(z1...zN ) =
[
(φ1 ◦ p1)′

]2
dz1 � dz1 +

N∑
i=1

[(φi ◦ pi)′]2 dzi � dzi
ai(φ1 ◦ p1)2 + biφ1 ◦ p1 + ci

.

We claim that (U , p∗Λ) is coercive: in fact, for every n-tuple (A1...AN ) ∈ C
N such that(φ1 ◦ p1)′(0) �= 0

A1 −
∑N

l=2Alai(φ1 ◦ p1)2 + biφ1 ◦ p1 + ci
∣∣∣
0
�= 0,

set Ψ(x) := A1 −
∑N

l=2Alai(x)2 + bix+ ci, there holds∫ u1

0
(Ψ(φ1 ◦ p1(η)))−1/2(φ1 ◦ p1)′(η)d η =

∫ φ1◦p1(u1)

φ1◦p1(0)
= Φ(φ1 ◦ p1) ,

where Φ is one (depending on the constants A1...AN ) of the holomorphic function germs
on the right hand member of proposition 33.
This fact shows that the maximal analytical continuation of u1 → Φ

(
φ1 ◦ p1(u1)

)
takes

all P1’s values but a finite number, because so does the meromorphic function φ1 and
hence φ1 ◦ p1; moreover, for each i, 2 ≤ i ≤ N , each one of the two HFG’s ± [(φi ◦ pi)′]
could be continuated to ± [(φi ◦ pi)′] which, by assumption, takes all values but at most
two ones. �

The preceding examples may be readily extended to the following two (alternative) cases,
mostly following the outline of the above reasoning:

• DN taking place of CN and h, f2...fN meromorphic functions on D satisfying theorem
9;

• P2...PN polynomials of degree at most four: similar conclusions may be drawn by
means of elliptic integrals.
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5.3 Pseudo-Riemannian warped products

Definition 35. A pseudo-Riemannian manifold is geodesically complete provided that it
admits a complexification M such that the Riemann surface, with logarithmic singularities,
of each (complexified) geodesic germ is real-complete.

Definition 36. A warped product

U = U1 ×a2(u1) U2 ×a3(u1) U3 × ........×aN (u1) UN

of real intervals, real lines or S1’s with nondegenerating real-analytic pseudo-Riemannian
metric

Λ
(
u1.....uN

)
= b1(u1) dui � dui +

N∑
i=2

ai(ui)fi(ui) dui � dui,

of arbitary signature is coercive provided that, called K the canonical complexification
RN → CN , for one (hence every) point X0 = (x1

0...x
N
0 ) there holds:

• for every n-tuple (A1...AN ) ∈ R
N such that b1(x1

0) �= 0 and A1 −
∑N

l=2
Al

al(x1
0)

�= 0

and for each one of the two HFG’s ℵ1 and ℵ2 such that

(ℵi)
2 = K ◦

[
1
b1

(
A1 −

N∑
l=2

Al

al

)]
x1
0

i = 1, 2,

the Riemann surface (S1, π1, j1,Φ1) of both the HFG’s (see remark 21)[∫ u1

x0

d η

ℵi(η)

]
x1
0

i = 1, 2; (5.12)

is such that R \ Φ1(S1) is a finite set;

• for each k, 2 ≤ k ≤ N and for each one of the two HFG’s φk1 and φk2 such that

(φki)
2 = K ◦ [fk]x1

0
, i = 1, 2

the Riemann surface (Sk, πk, jk,Φk) of both the holomorphic function germs (see
remark 21)[∫ uk

x1
0

φki(η) dη

]
x1
0

i = 1, 2 (5.13)

is such that R \ Φk(Sk) is a finite set.

We confine ourselves in stating the real analogue of our main theorem (the proof is
almost identical):
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Theorem 12. A warped product

U = U1 ×a2(u1) U2 ×a3(u1) U3 × ........×aN (u1) UN

of real intervals, real lines or S1’s with nondegenerating real-analytic pseudo-Riemannian
metric

Λ
(
u1.....uN

)
= b1(u1) dui � dui +

N∑
i=2

ai(ui)fi(ui) dui � dui,

of arbitary signature is geodesically complete if and only if it is coercive.

5.4 The Clifton-Pohl torus

Consider now N := R2 \ {0}, with the Lorentz metric du� dv/(u2 + v2); the group D
generated by scalar multiplication by 2 is a group of isometries of N; its action is properly
dicontinuous, hence T = N/D is a Lorentz surface. Topologically, T is the closed annulus
1 ≤ � ≤ 2, with boundaries identified by the action of D, i.e. a torus; notwithstanding, T
is geodesically incomplete, since t �→ (1/(1− t), 0) is a geodesic of M (see [ONE]). In the
following, we shall study directly N rather than T, since our conclusions could be easily
pushed down with respect to the action of D. Consider now the holomorphic Riemannian
manifold M =

[
C2 \ ((1, i)C ∪ (1,−i)C), du� dv/(u2 + v2)

]
.

Lemma 13. The geodesic equations of both M and N are:
••
u = 2u/(u2 + v2)

•
u 2,

••
v =

2v/(u2 + v2)
•
v 2; they are meant to be real or complex depending on the fact that they

concern M or N.

Proposition 37. All null geodesics of N are complete.

Proof. We may deal with the only case v = const := A. Lemma 13 imply
••
u =

2u/(u2 +A2)
•
u 2, which is solved by t �→ (C − Bt)−1 if A = 0 and by t �→ tan(At + B)

if A �= 0, for suitable real constants B and C. The above functions are restrictions of
meromorphic functions, hence, by definition 7, yield complete geodesics. �

We turn to nonnull geodesics of N:

Lemma 14. The Cauchy’s problem
•
ϕ = 2AChϕ

√
B2 − 2/AChϕ ϕ(0) = ϕ0, (with B2 −

2/AChϕ0 > 0) has complete solutions, in the real domain, with respect to the canonical
complexification, if and only if 0 < AB2 ≤ 2.

Proof. Set F (ϕ) = 2AChϕ
√
B2 − 2/AChϕ and G(ϕ) :=

∫ ϕ
ϕ0
d ν/F (ν), where by the

integral sign we mean the choice of the only primitive of 1/F vanishing at ϕ0. Rewrite
the problem in the form G(ϕ) = id: this shows that ϕ and G are inverse elements of
holomorphic functions in neighbourhoods of ϕ0 and G(ϕ0).
Suppose AB2 ≥ 2 or AB2 < 0: then F never vanishes; since 1/F (ν) = O(e−|ν|) as
ν → ∞, G takes a bounded set of values, hence, by lemma 2, ϕ is not complete.
If, instead, 0 < AB2 ≤ 2, then there exists a branch of F admitting a zero on the real

line, hence there exists a branch f̃ of 1/F whose absolute value takes all large enough
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values. However f̃ can be analytically continued, by admitting complex trips, up to
{ϕ : Chϕ ≥ 2/AB2}, in such a way that an even function f is yielded.
Now |

∫ ϕ
ϕ0
f(ν) dν| takes all positive values; but g :=

∫ ϕ
ϕ0
f is an odd function plus a real

constant on {ϕ : Chϕ ≥ 2/AB2}, hence it takes all real values with at most the exception
of its asympotical value σ. Thus, if (S, �, �,H) is the Riemann surface of ϕ, then, by
lemma 2, �(H−1(R)) ∩ R ⊃ g(R) ⊃ R \ {σ}. �

Definition 38. The impulse function P : TN \ {null vectors} → R is defined by setting
P (α, β, x, y) = (α2 + β2)−1(2αβ + α2y/x+ βx/y).

Theorem 13. A nonnull geodesic γ starting from (α, β), with velocity (x, y) is complete
if and only if 0 < P (α, β, x, y) ≤ 2.

Proof. We may suppose α �= 0 and β �= 0. Moreover, we have x �= 0 and y �= 0. The
equations in lemma 13 can be integrated once to yield:

•
u

•
v = A(u2 + v2), u/

•
u+v/

•
v = B, (5.14)

where A = xy/(α2 + β2) and B = α/x+ β/y; note that AB2 = P (α, β, x, y).
Introduce now the supplementary hypothesis that u > 0 and v > 0: by performing the

change of coordinates u = eω, v = eη, (5.14) is turned into

•
ω

•
η = 2ACh(ω − η), 1/

•
ω+1/

•
η = B. (5.15)

We can solve with respect to
•
ω and

•
η, getting

•
ω = 2

(
B −

√
B2 − 2/[ACh(ω− η)]

)−1

•
η = 2

(
B +

√
B2 − 2/[ACh(ω− η)]

)−1
.

(5.16)

Subtract and set ϕ := ω− η; this yields the equation in ϕ studied in lemma 14, with the
appropriate initial value ϕ(0) = log(u/v); this Cauchy’s problem has complete solutions if
and only if 0 < P (α, β, x, y) ≤ 2.
Now the fact that ϕ is incomplete easily implies that so is γ. Suppose, instead, that
ϕ is complete: from (5.16), we get that bothm

•
η and

•
ω is complete; since passing to a

primitive preserves completeness, so are η and ω: but u = eω and v = eη: this eventually
implies that γ is complete.
To remove the hypothesis that u > 0 and v > 0, consider two geodesics γ, δ, starting

from, say, (α, 0), the former with velocity (x, y) and the latter (x,−y) (y > 0). The first
order systems, like (5.14), of γ and δ differ only in the signs of constants in their first
equations. Thus, the equations of those pieces of γ lying in Q1 = {u > 0, v > 0} and of
those ones of δ lying in Q2 = {u > 0, v < 0} are transformed into the same system (5.15)
by performing the change of coordinates (u, v) = (eω, eη) in Q1 , resp. (u, v) = (eω,−eη)
in Q2; an analogous argument holds for the other octants. It is easily seen that if a nonnull
geodesic intersects one of the coordinate axes at a point P , it does with finite (nonnull)
velocity, hence it can be analytically continued across P , changing octant: thus, once
obtained the (maximal) curve t �→ (ω(t), η(t)), we can reconstruct the original (maximal)
geodesic t �→ (u(t), v(t)) by choosing the only smooth curve starting from (α, β) whose
graph is contained in the set (t, u, v ∈ R3) : u = ±eω(t), v = ±eη(t). �
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[VRA] G Vranceanu, Leçons de géométrie différentielle,, Editions de l’académie de la république
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