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Abstract

The peakons are peaked traveling wave solutions of an integrable shallow water equa-
tion. We present a variational proof of their stability.

1 Introduction

The nonlinear partial differential equation

ut − utxx + 3uux = 2uxuxx + uuxxx, (1.1)

models the unidirectional propagation of shallow water waves over a flat bottom, u(x, t)
representing the water’s free surface in non-dimensional variables [1]. For a discussion
of (1.1) in the context of water waves we refer to [13]. We consider periodic solutions
of (1.1), i.e. u : S × [0, T ) → R where S is the unit circle and T > 0 is the maximal
existence time of the solution. The interest in periodic solutions is motivated by the
observation that the majority of the waves propagating on a channel are approximately
periodic. Equation (1.1) is a bi-Hamiltonian equation with infinitely many conservation
laws [11]. The fact that (1.1) is a re-expression of the geodesic flow in the group of
compressible diffeomorphisms of the circle [16], leads to a proof that it satisfies the Least
Action Principle [6]. Moreover, for a large class of initial data, equation (1.1) is an infinite-
dimensional completely integrable Hamiltonian system [7]. Associated to (1.1) there is a
whole hierarchy of integrable equations [12]. Let us also point out that equation (1.1)
models nonlinear waves in cylindrical axially symmetric hyperelastic rods, with u(x, t)
representing the radial stretch relative to a prestressed state [10].

Equation (1.1) has the periodic traveling solutions

u(x, t) = cϕ(x − ct), c ∈ R,

where ϕ(x) is given for x ∈ [0, 1] by

ϕ(x) =
cosh(1/2 − x)

sinh(1/2)
,
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Figure 1. The peakon for c = 1.

and extends periodically to the real line. Because of their shape (they are smooth except
for a peak at their crest, see Figure 1) these solutions are called (periodic) peakons. Note
that the height of the peakon is proportional to its speed. Equation (1.1) can be rewritten
in conservation form as

ut +
1

2

(

u2 + ϕ ∗ [u2 +
1

2
u2

x]

)

x

= 0. (1.2)

This is the exact meaning in which the peakons are solutions (see Section 3).
Equation (1.1) has the conservation laws

H0[u] =

∫

S

udx, H1[u] =
1

2

∫

S

(u2 + u2
x)dx, H2[u] =

1

2

∫

S

(u3 + uu2
x)dx. (1.3)

We consider the following variational problem:

Minimize H1[u] over the class of u ∈ H1(S) such (1.4)

that H0[u] = H0[cϕ] and H2[u] = H2[cϕ].

Theorem 1. The solutions of the variational problem (1.4) are exactly all translates
cϕ(· − ξ), ξ ∈ R, of the peakons.

For a wave profile u ∈ H1(S) the functional H1[u] represents kinetic energy (see the
discussion in [6]). A standard principle in physics asserts that states of lowest energy
are stable. Since Theorem 1 classifies the peakons as minima of constrained energy, this
suggests that the peakons are stable. A small change in the shape of a peakon can yield
another one with a different speed. The appropriate notion of stability is therefore that
of orbital stability: a periodic wave with an initial profile close to a peakon remains
close to some translate of it for all later times. That is, the shape of the wave remains
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approximately the same for all times. For the peakons to be physically observable it is
necessary that their shape remains approximately the same as time evolves. Therefore
the stability of the peakons is of great interest. In [14] we proved that the peakons are
orbitally stable.

Theorem 2. [14] For every ǫ > 0 there is a δ > 0 such that if u ∈ C([0, T ); H1(S)) is a
solution to (1.1) with

‖u(·, 0) − cϕ‖H1(S) < δ,

then
‖u(·, t) − cϕ(· − ξ(t))‖H1(S) < ǫ for t ∈ (0, T ),

where ξ(t) ∈ R is any point where the function u(·, t) attains its maximum. ¤

In Theorem 2 a solution u(x, t) of (1.1) on [0, T ) with T > 0 refers to a function
u ∈ C([0, T ); H1(S)) such that (1.2) holds in distributional sense and the functionals
Hi[u], i = 0, 1, 2, defined in (1.3) are independent of t ∈ [0, T ).

In this paper we will show that the stability is a consequence of the fact that the peakons
are solutions of the variational problem (1.4). It turns out that the stability derives purely
from the three conservation laws in (1.3). No other structure of equation (1.1) is relevant.
In fact, we have the following result.

Theorem 3. For every ǫ > 0 there is a δ > 0 such that for u ∈ H1(S) we have

‖u − cϕ(· − ξ)‖H1(S) < ǫ whenever |Hi[u] − Hi[cϕ]| < δ, i = 0, 1, 2,

where ξ ∈ R is any point where u attains its maximum.

It is clear that Theorem 2 follows from Theorem 3. Indeed, if u ∈ C([0, T ); H1(S)) is
a solution to (1.1) starting close to the peakon, then Hi[u] is close to Hi[ϕ], i = 0, 1, 2.
Since the Hi’s remain constant with time, they stay close for t ∈ [0, T ). We deduce from
Theorem 3 that u(·, t) stays close to some translate of the peakon cϕ for t ∈ [0, T ).

In Section 2 we prove Theorem 1 and Theorem 3. We conclude the paper with Section
3 where we discuss various results on the existence of solutions to (1.1).

2 Proofs

For simplicity we henceforth take c = 1. We will identify S with [0, 1) and view functions
u on S as periodic functions on the real line with period one. For an integer n ≥ 1, we let
Hn(S) be the Sobolev space of all square integrable functions f ∈ L2(S) with distributional
derivatives ∂i

xf ∈ L2(S) for i = 1, . . . , n. These Hilbert spaces are endowed with the inner
products

〈f, g〉Hn(S) =

n
∑

i=0

∫

S

(∂i
xf)(x) (∂i

xg)(x)dx.

For u ∈ H1(S) we write Mu = maxx∈S{u(x)} and mu = minx∈S{u(x)}.
Note that ϕ is continuous on S with peak at x = 0,

Mϕ = ϕ(0) =
cosh(1/2)

sinh(1/2)
, mϕ = ϕ(1/2) =

1

sinh(1/2)
,
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and

H0[ϕ] =

∫ 1

0

cosh(1/2 − x)

sinh(1/2)
dx = 2.

Moreover, ϕ is smooth on (0, 1), ϕx(x) → 1 as x ↑ 1, and ϕx(x) → −1 as x ↓ 0. This gives,
as ϕxx = ϕ on (0, 1), that the integration by parts formula

∫

ϕxxfdx = −
∫

ϕxfxdx, f ∈
H1(S), holds with ϕxx = ϕ − 2δ. Here δ denotes the Dirac delta distribution and, for
simplicity, we abuse notation by writing integrals instead of the H−1(S)/H1(S) duality
pairing. We obtain

H1[ϕ] =
1

2

∫

S

(ϕ2 + ϕ2
x)dx =

1

2

∫

S

(ϕ2 − ϕϕxx)dx

=
1

2

∫

S

(ϕ2 − ϕ(ϕ − 2δ))dx = ϕ(0) = Mϕ.

Using the identity cosh 3x = cosh3 x + 3 coshx sinh2 x we also compute

H2[ϕ] =
1

2

∫

S

ϕ(ϕ2 + ϕ2
x)dx =

1

2 sinh3(1/2)

∫ 1/2

−1/2
(cosh3 x + cosh x sinh2 x)dx

=
1

2 sinh3(1/2)

∫ 1/2

−1/2
(cosh 3x − 2 cosh x sinh2 x)dx

=
sinh 3x − 2 sinh3 x

6 sinh3(1/2)

∣

∣

∣

∣

1/2

−1/2

=
sinh(3/2) − 2 sinh3(1/2)

3 sinh3(1/2)
.

Employing the identity sinh 3x = 4 sinh3 x + 3 sinhx we can rewrite this as

H2[ϕ] =
2

3
+

1

sinh2(1/2)
. (2.1)

We need the following lemmas.

Lemma 1. [14] For every u ∈ H1(S) and ξ ∈ R,

H1[u] − H1[ϕ] =
1

2
‖u − ϕ(· − ξ)‖2

H1(S) + 2u(ξ) − 2Mϕ,

where Mϕ = maxx∈S{ϕ(x)}. ¤

Lemma 2. [14] We have

max
x∈S

|f(x)| ≤
√

cosh(1/2)

2 sinh(1/2)
‖f‖H1(S), f ∈ H1(S). (2.2)

Moreover,
√

cosh(1/2)
2 sinh(1/2) is the best constant and equality holds in (2) if and only if f =

cϕ(· − ξ) for some c, ξ ∈ R, i.e. if and only if f has the shape of a peakon. ¤

Let Γ = {(M, m) ∈ R
2 : M ≥ m > 0}. For any positive u ∈ H1(S) we define

Fu : Γ → R by

Fu(M, m) = M

[

H1[u] − 1

2
m2 − M

√

M2 − m2 + m2 ln

(

M +
√

M2 − m2

m

)]

+
1

2
m2H0[u] +

2

3
(M2 − m2)3/2 − H2[u]. (2.3)
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Figure 2. The function Fϕ(M, m) near the point (Mϕ, mϕ).

Lemma 3. [14] For any positive u ∈ H1(S) we have

Fu(Mu, mu) ≥ 0,

where Mu = maxx∈S{u(x)} and mu = minx∈S{u(x)}. ¤

The next lemmas highlight some properties of the function Fϕ(M, m) associated to the
peakon. The graph of Fϕ(M, m) is shown in Figure 2 and Figure 4.

Lemma 4. [14] For the peakon ϕ we have

Fϕ(Mϕ, mϕ) = 0,

∂Fϕ

∂M
(Mϕ, mϕ) = 0,

∂Fϕ

∂m
(Mϕ, mϕ) = 0,

∂2Fϕ

∂M2
(Mϕ, mϕ) = −2,

∂2Fϕ

∂M∂m
(Mϕ, mϕ) = 0,

∂2Fϕ

∂m2
(Mϕ, mϕ) = −2.

¤

Lemma 5. The function Fϕ(M, m) has no other critical points (i.e. points where
∂Fϕ

∂M =
∂Fϕ

∂m = 0) in Γ except (Mϕ, mϕ).

Proof. Differentiation of Fu, as defined in (2.3), gives

∂Fu

∂M
=

[

H1[u] − 1

2
m2 − M

√

M2 − m2 + m2 ln

(

M +
√

M2 − m2

m

)]

+M

[

−
√

M2 − m2 − M2

√
M2 − m2

+
m2

M +
√

M2 − m2

(

1 +
M√

M2 − m2

)]

+2M
√

M2 − m2 = H1[u] − 1

2
m2 + m2 ln

(

M +
√

M2 − m2

m

)

− M
√

M2 − m2,
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and

∂Fu

∂m
= M

[

−m +
Mm√

M2 − m2
+ 2m ln

(

M +
√

M2 − m2

m

)

− m3

(M +
√

M2 − m2)
√

M2 − m2

]

− Mm + mH0[u] − 2m
√

M2 − m2.

In the above expression for ∂Fu

∂m the first, second and fourth term within the bracket cancel
to give

∂Fu

∂m
= 2Mm ln

(

M +
√

M2 − m2

m

)

− Mm + mH0[u] − 2m
√

M2 − m2.

We introduce new variables x, y > 0 by

M =
cosh x

sinh y
, m =

1

sinh y
.

We get

√

M2 − m2 =
sinhx

sinh y
and ln

(

M +
√

M2 − m2

m

)

= ln(coshx + sinhx) = x.

Hence
∂Fu

∂M
= H1[u] − 1

2 sinh2 y
+

x

sinh2 y
− cosh x sinhx

sinh2 y
,

and
∂Fu

∂m
=

2x cosh x

sinh2 y
− cosh x

sinh2 y
+

H0[u]

sinh y
− 2 sinhx

sinh2 y
.

Now take Fu = Fϕ. Recalling that H0[ϕ] = 2, we obtain

∂Fϕ

∂M
= H1[ϕ] +

1

sinh2 y

(

x − 1

2

)

− cosh x sinhx

sinh2 y
,

and
∂Fϕ

∂m
=

2 cosh x

sinh2 y

(

x − 1

2

)

+
2

sinh2 y
(sinh y − sinhx).

Therefore any critical point of Fϕ(M, m) in Γ corresponds to a solution x, y > 0 of

{

sinh2 yH1[ϕ] +
(

x − 1
2

)

− cosh x sinhx = 0,
(

x − 1
2

)

cosh x + (sinh y − sinhx) = 0.

Solving the second equation for sinh y, we obtain the equivalent system of equations

g1(x) = 0, g2(x) = sinh y, x > 0, y > 0, (2.4)

where

g1(x) = g2
2(x)H1[ϕ] +

(

x − 1

2

)

− cosh x sinhx, g2(x) = sinhx −
(

x − 1

2

)

cosh x.
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Figure 3. The graph of the function g1(x). The zero at 1
2 corresponds to the critical

point at (Mϕ, mϕ). The zero close to x = 2.1 does not correspond to a point in Γ.

We compute

g′2(x) = −
(

x − 1

2

)

sinhx,

and so

g′1(x) = −2g2(x)

(

x − 1

2

)

sinh(x)H1[ϕ] − 2 sinh2 x.

To show that there is no solution of (2.4) for x > 1
2 , note first that g2(1/2) > 0. Since

g′2(x) < 0 for x > 1
2 and limx→∞ g2(x) = −∞, there is an x0 > 1

2 such that g2(x) > 0 for
1
2 < x < x0 and g2(x) ≤ 0 for x ≥ x0. The condition y > 0 rules out all solutions with
x ≥ x0. Moreover, on 1

2 < x < x0 we obtain g′1(x) < 0. Hence, as g1(
1
2) = 0, there can be

no solutions of (2.4) with x > 1
2 .

To prove that x < 1
2 is equally impossible, recall that H1[ϕ] = cosh(1/2)/ sinh(1/2).

We get g1(
1
2) = 0 and g′1(

1
2) < 0. Since g2(0) = 1

2 and H1[ϕ] > 2, we have g1(0) > 0.
Consequently, if we can show that g′1(x) only has one zero on the open interval (0, 1/2),
then g1(x) > 0 on (0, 1/2). But g′1(x) = 0 is equivalent to w(x) = 0 where

w(x) =

(

x − 1

2

)

g2(x)H1[ϕ] + sinhx.

Observe that w(0) < 0 and w(1
2) > 0. Also,

w′(x) =

[(

1 −
(

x − 1

2

)2
)

sinhx −
(

x − 1

2

)

cosh x

]

H1[ϕ] + cosh x,

so that w′(x) > 0 on (0, 1/2). This proves that g′1(x) only has one zero in (0, 1/2), and
hence that there are no solutions of (2.4) with x < 1

2 .
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Figure 4. The function Fϕ(M, m) only gets close to zero at (Mϕ, mϕ).
(

Mϕ = cosh(1/2)
sinh(1/2) ≈ 2.16, mϕ = 1

sinh(1/2) ≈ 1.92.
)

We proved that all solutions of (2.4) must have x = 1
2 . But x = 1

2 implies y = 1
2 , so

that the corresponding critical point is exactly
(

cosh(1/2)

sinh(1/2)
,

1

sinh(1/2)

)

= (Mϕ, mϕ).

This finishes the proof of the lemma. ¤

Lemma 6. We have Fϕ(M, m) < 0 for (M, m) ∈ Γ, (M, m) 6= (Mϕ, mϕ). Moreover, Fϕ

stays bounded away from zero near the boundary of Γ and there is a constant a > 0 such
that

Fϕ(M, m) < −a‖(M, m)‖3
R2 for all large (M, m) ∈ Γ. (2.5)

Proof. We first establish the behavior of Fϕ near the boundary of Γ. It is easy to see
that on the boundary {m = M} of Γ we have Fϕ(M, m) = h(M), where

h(M) = −1

2
M3 +

1

2
H0[ϕ]M2 + H1[ϕ]M − H2[ϕ].

We will show that h(M) < 0 for M > 0. Assume the contrary. Then, since h(0) < 0 and
h(M) → −∞ as M → ∞, there is a point M0 > 0 such that maxM≥0 h(M) = h(M0) ≥ 0
and h′(M0) = 0. We have, recalling that H0[ϕ] = 2,

h′(M) = −3

2
M2 + 2M + H1[ϕ],

with zeros at

M =
2

3
± 1

3

√

4 + 6H1[ϕ].
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We infer that

M0 =
2

3
+

1

3

√

4 + 6H1[ϕ].

As a computation gives h(M0) < 0, we conclude that h(M) < 0 for M > 0. Hence
Fϕ(M, m) stays away from zero near the boundary {M = m} of Γ.

Similarly, for M > 0 we have

Fϕ(M, m) → h2(M) as m ↓ 0 where h2(M) = −1

3
M3 + H1[ϕ]M − H2[ϕ].

Just as above we prove that h2(M) < 0 for M > 0, so that Fϕ(M, m) is bounded away
from zero also along {m = 0}.

To determine the behavior of Fϕ(M, m) as (M, m) → ∞, note that as m → ∞ with
M = αm, α ≥ 1, we have

Fϕ(M, m) =

(

α ln(α +
√

α2 − 1) − α

2
− α2

√

α2 − 1 +
2

3
(α2 − 1)3/2

)

m3 + O(m2).

To establish (2.5) it is clearly enough to show that

α log(α +
√

α2 − 1) − α

2
− α2

√

α2 − 1 +
2

3
(α2 − 1)3/2 ≤ −1

2
, α ≥ 1. (2.6)

Performing the change of variables coshβ = α, (2.6) is seen to be equivalent to

h3(β) =

(

β − 1

2

)

cosh β − cosh2 β sinhβ +
2

3
sinh3 β ≤ −1

2
, β ≥ 0.

Differentiation gives

h′
3(β) =

((

β − 1

2

)

− cosh β sinhβ

)

sinhβ.

Note that h′
3(0) = 0. For β > 0, we have h′

3(β) = 0 if and only if β − 1
2 = cosh β sinhβ.

We deduce that h′
3(β) 6= 0 for β > 0 and since limβ→∞ h′

3(β) = −∞, this means that
h′

3(β) < 0 for β > 0. Hence maxβ≥0 h3(β) = h3(0) = −1/2. This proves (2.6) and also
(2.5).

It remains to prove that Fϕ(M, m) < 0 for (M, m) ∈ Γ, (M, m) 6= (Mϕ, mϕ). In view
of the behavior near the boundary, it is enough to show that the only critical point of Fϕ

in Γ is (Mϕ, mϕ). But that is the statement of Lemma 5. ¤

Lemma 7. To any u ∈ H1(S) associate the polynomial

Pu(M) = Mϕ

(

M2

2
− H0[u]M + H1[u]

)

.

Then

(Mu − mu)2 ≤ Pu(Mu).
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Figure 5. The graph of the polynomial Pϕ(M). As Mϕ ≈ 2.16, we clearly have
Pϕ(M, m) < 1 in the interval (2, Mϕ).

Proof. Applying Lemma 2 to Mu − u we get

max
x∈S

|Mu − u(x)| ≤
√

Mϕ

2
‖Mu − u‖H1(S). (2.7)

Observe that maxx∈S |Mu − u(x)| = Mu − mu. Squaring (2.7) yields

(Mu − mu)2 ≤ Mϕ

2
‖Mu − u‖2

H1(S).

Noting that

1

2
‖Mu − u‖2

H1(S) =
1

2

∫

S

(

(Mu − u)2 + u2
x

)

dx =
M2

u

2
− H0[u]Mu + H1[u],

the lemma follows. ¤

Proof of Theorem 1. Take u ∈ H1(S) with H0[u] = H0[ϕ] and H2[u] = H2[ϕ]. Suppose
H1[u] < H1[ϕ]. Let us first show that u is a strictly positive function. Since

∫

S
udx =

H0[u] = H0[ϕ] = 2, we have Mu ≥ 2. From Lemma 1 we obtain

1

2
‖u − ϕ(· − ξ)‖2

H1(S) + 2u(ξ) − 2Mϕ = H1[u] − H1[ϕ], ξ ∈ R.

As H1[u] − H1[ϕ] < 0 we deduce that u(ξ) − Mϕ < 0 for ξ ∈ R. Hence Mu < Mϕ. By
Lemma 7 we have

(Mu − mu)2 ≤ Pu(Mu) where Pu(M) = Mϕ

(

M2

2
− H0[u]M + H1[u]

)

.
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Since 2 ≤ Mu < Mϕ and Pu(M) is less than, say 1, on the interval [2, Mϕ), we get
(Mu − mu)2 ≤ 1. This gives mu ≥ 1 so that u is indeed strictly positive.

Now since H0[u] = H0[ϕ], H2[u] = H2[ϕ] and H1[u] < H1[ϕ], it follows from the defini-
tion (2.3) of Fu that Fu(M, m) < Fϕ(M, m) in Γ. We infer from Lemma 6 that Fu(M, m) <
0, (M, m) ∈ Γ. Since (Mu, mu) ∈ Γ, this contradicts the fact that Fu(Mu, mu) ≥ 0 in view
of Lemma 3. We conclude that any u ∈ H1(S) with H0[u] = H0[ϕ] and H2[u] = H2[ϕ] has
H1[u] ≥ H1[ϕ].

It remains to show that any u ∈ H1(S) with Hi[u] = Hi[ϕ], i = 0, 1, 2, is equal to a
translate of the peakon. For any such u we have Fu = Fϕ. Therefore, from Lemma 6 and
Lemma 4 we deduce that Fu(M, m) ≥ 0 only at the point (M, m) = (Mϕ, mϕ). As we
have Fu(Mu, mu) ≥ 0 by Lemma 3, this implies (Mu, mu) = (Mϕ, mϕ). Lemma 1 says
that

1

2
‖u − ϕ(· − ξ)‖2

H1(S) = 2Mϕ − 2u(ξ) + H1[u] − H1[ϕ], ξ ∈ R.

Taking ξ ∈ R such that u(ξ) = Mu = Mϕ, the right hand side is zero. Thus u = ϕ(· − ξ)
for any ξ ∈ R such that u(ξ) = Mu. This completes the proof of Theorem 1. ¤

Proof of Theorem 3. Take u ∈ H1(S) with Hi[u] = Hi[ϕ] + δi for i = 0, 1, 2. Let us
first show that u is strictly positive whenever the δi’s are small. Since

∫

S
udx = H0[u] =

H0[ϕ] + δ0 = 2 + δ0, we have Mu ≥ 2 + δ0. From Lemma 1 we obtain

1

2
‖u − ϕ(· − ξ)‖2

H1(S) + 2u(ξ) − 2Mϕ = H1[u] − H1[ϕ] = δi, ξ ∈ R.

We deduce that u(ξ) − Mϕ ≤ δi

2 for ξ ∈ R. Hence Mu ≤ Mϕ + δi

2 . Let Pu(M) be the
polynomial defined in Lemma 7. We get

Pu(M) = Pϕ(M) − δ0MϕM + Mϕδ1,

so that Pu is a small perturbation of Pϕ(M). Taking the δi’s small, we can get Pu(M) less
than, say 1, on the interval [2 + δ0, Mϕ + δi

2 ]. As we showed that Mu ∈ [2 + δ0, Mϕ + δi

2 ],
Lemma 7 gives (Mu−mu)2 ≤ Pu(Mu) < 1. With δ0 small, this implies mu > 0. Therefore
we can restrict our attention to strictly positive u ∈ H1(S).

Take a positive u ∈ H1(S) with Hi[u] = Hi[ϕ] + δi for i = 0, 1, 2. Let ǫ > 0 be given.
Employing Lemma 1 we see that if

|Mϕ − Mu| <
ǫ2

6
and |H1[u] − H1[ϕ]| <

ǫ2

6
, (2.8)

then
‖u − ϕ(· − ξ)‖2

H1(S) = 4(Mϕ − Mu) + 2(H1[u] − H1[ϕ]) < ǫ2, ξ ∈ R,

where ξ ∈ R is any point with u(ξ) = Mu. We have

Fu(M, m) = Fϕ(M, m) + Mδ1 +
1

2
m2δ0 − δ2,

so that Fu is a small perturbation of Fϕ. On any bounded subset of Γ we can make
the perturbation arbitrarily small by choosing the δi’s small. Moreover, Lemma 6 says
that there is an a > 0 such that Fϕ(M, m) < −a‖(M, m)‖3

R2 for all large (M, m) ∈ Γ.
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Consequently, as the perturbation is O(‖(M, m)‖2
R2), Fu(M, m) is clearly negative for large

(M, m) ∈ Γ. Therefore in view of Lemma 4 and Lemma 6 we can, by taking the δi’s small,
make the set of (M, m) ∈ Γ where Fu(M, m) ≥ 0, an arbitrarily small neighborhood
around (Mϕ, mϕ). We conclude that there is a δ > 0 such that

|Mϕ − Mu| <
ǫ2

6
whenever |Hi[u] − Hi[ϕ]| < δ, i = 0, 1, 2.

Shrinking δ if necessary so that δ < ǫ2

6 , we see that (2.8) holds. Hence, if ξ ∈ R is any point
where u attains its maximum, we have ‖u−ϕ(·−ξ)‖H1(S) < ǫ whenever |Hi[u]−Hi[ϕ]| < δ,
i = 0, 1, 2. This proves Theorem 3. ¤

3 Comments

The only way that a classical solution to (1.1) blows up in finite time is if the wave breaks:
the solution remains bounded while its slope becomes unbounded in finite time [5]. Certain
classical solutions of (1.1) exist for all time while others break [2, 3, 4]. We would like
to emphasize that a shallow water equation which exhibits both wave breaking as well as
peaked waves of permanent form was long time sought after [19].

We now review the issue of well-posedness. For u0 ∈ H3(S) there exists a maxi-
mal time T = T (u0) > 0 such that (1.1) has a unique solution u ∈ C([0, T ); H3(S)) ∩
C1([0, T ); H2(S)) with H0, H1, H2 conserved. For u0 ∈ Hr(S) with r > 3/2, equation (1.1)
has a unique strong solution u ∈ C([0, T ); Hr(S)) for some T > 0, with H0, H1, H2 con-
served [15, 18]. Since the peakons do not belong to the spaces Hr(S) with r > 3/2, they
have to be regarded as weak solutions to (1.1). It is known [8] that if u0 ∈ H1(S) is such
that (1 − ∂2

x)u0 is a positive Radon measure with bounded total variation (e.g. u0 = ϕ),
then (1.1) has a unique solution u ∈ C([0,∞); H1(S)) ∩ C1([0,∞); L2(S)) and H0, H1, H2

are conserved functionals. Note that if (1− ∂2
x)u0 ∈ C1(S) changes sign, then the solution

to (1.1) will develop into a breaking wave [5, 17]. Since (1−∂2
x)ϕ = 2δ, we infer that close

to a peakon there exist profiles that develop into breaking waves as well as profiles that
lead to globally existing waves. Our results apply in both cases up to breaking time.

Acknowledgement The author thanks Adrian Constantin for helpful discussions.
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