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Abstract

In this paper we further investigate some applications of Nambu mechanics in hydro-
dynamical systems. Using the Euler equations for a rotating rigid body Névir and
Blender [J. Phys. A 26 (1993), L1189-L1193] had demonstrated the connection be-
tween Nambu mechanics and noncanonical Hamiltonian mechanics. Nambu mechanics
is extended to incompressible ideal hydrodynamical fields using energy and helicity in
three dimensional (enstrophy in two dimensional). In this paper we discuss the Lax
representation of systems of Névir-Blender type. We also formulate the three dimen-
sional Euler equations of incompressible fluid in terms of Nambu-Poisson geometry.
We discuss their Lax representation. We also briefly discuss the Lax representation of
ideal incompressible magnetohydrodynamics equations.

1 Introduction

The configuration space of an incompressible fluid is the group of volume preserving dif-
feomorphisms of the three-dimensional region in R? containing the fluid.

Arnold [1] showed in 1966 that, if u(z,t) is a time-dependent divergence-free vector
field on a compact Riemannian n-manifold M and if n(z,t) is the volume-preserving flow,
then u satisfies the Euler equation

ou

N +Vyu=— grad P P = Pressure (1.1)
if and only if the curve ¢t — (-, t) is an L? geodesic in D, (M), the group of C*° volume
preserving diffeomorphism on M.

In a celebrated paper Ebin and Marsden [2] developed the analytic geometrical side of
Arnold’s paper. They showed that the spray of the Euler equation is smooth. They also
proved that on a manifold without boundary the solutions of the Navier-Stokes equation
converge to those of the Euler equations when the viscosity tends to zero.

In spite of the powerful analytical techniques in the study of fluid dynamics, it has been
accepted [3] that the three dimensional Euler equation requires more geometrical tools to
unveil this subject.
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In this paper we explore the 3D Euler equation from the Nambu-Poisson geometric
point of view. In a remarkable paper Nambu [4] initiated the study of multi-Hamiltonian
systems. Nambu’s paper was followed by a number of papers [5, 6, 7] which essentially
carry the idea from the physical point of view by showing that the classical part of it could
be cast into the frame work of classical mechanics with Dirac constraint.

Recently this research was revitalized by Takhtajan [8]. He presented a beautiful theory,
revealing deep and nontrivial connection with algebra and differential geometry. The
Nambu-Poisson structure leads to interesting mathematical developments, several authors
have studied Lie-algebraic structures [9, 10, 11, 12, 13, 14, 15, 16, 17, 18] on one hand and
generalized Hamiltonian dynamics [19, 20] on other hand.

R. Chatterjee [21] had shown that several Hamiltonian systems possessing dynamical
or hidden symmetries can be realized within the framework of Nambu mechanics. Among
the notable examples are the SU(n) isotropic harmonic oscillator and the SO(4) Kepler
problem. Most recently Gonera and Nutku [22] showed that the Nambu structure can be
extracted also from the rational Calogero-Moser system [23].

Our project is to explore different applications of Nambu mechanics to various hydrody-
namical systems. In our earlier paper [24] we showed that the reduced Dubrovin-Novikov
[25] hydrodynamic type models are integrable Nambu mechanical systems admitting Lax
triples. In this paper we study the celebrated 3D Euler equation and the ideal incompress-
ible magnetohydrodynamic equation.

2 Preliminaries

A generalization of classical Hamiltonian mechanics was proposed by Y. Nambu [4]; he
replaced a pair of variables in the Hamiltonian formulation by an n-tuple of variables,
where n > 3, and the Poisson bracket by an n-ary operation, the Nambu bracket. For
n = 3, Nambu apparently introduced his bracket in order to develop a toy model for
quarks considered as triples.

The modern concept of a Nambu-Poisson structure was proposed by Takhtajan in 1994
[8] in order to find an axiomatic formulation for the n-bracket operation. Let M denote
a smooth n-dimensional manifold and C*° (M) the algebra of infinitely differentiable real
valued functions on M.

Definition 2.1. A manifold M is called a Nambu-Poisson manifold if there exists a R-
multi-linear map

(L} (O — 0™ (M). (2.1)

This is called a Nambu-Poisson bracket of order n Vfi, fa,..., fon—1 € C°°(M). This
bracket satisfies

L {fh- . afn} = (_1>€(0){f0(1)7 .- ~7fa(n)}a
2. {f1f27f3)"'7fn+1}:fl{f27f3)'"7fn+1}+{f17f3>"'7fn+1}f27

3. It satisfies the fundamental identity

{{fla .. ~afn71afn}7fn+1v o ')f2nfl} + {fnv{flv .. ‘7fn717fn+1}7fn+27° . 'af?’nfl}(2'2)
+eoeet {fnv s 7f2n—2){fla .- '7f7I—17f2n—1}} = {f17 .. -)fn—l){frw cee 7f2n—1}}7
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where o € S,,—the symmetric group of n elements—and €(o) is its parity.

This fundamental identity is called the Takhtajan identity.
Let {o,0,--- 0} : C°(M) x C®(M)--- x C®°(M) — C>®°(M) be a multi derivation
satisfies Takhtajan identity iff

1. {e, 0, --- o} satisfies the Takhtajan identity for generators.

2. {e,e .- e} satisfies quadratic identities
Z{¢7 f17 Tty fn—27 fn+k*1}{¢/7 fnu e 7fn+k717 Tt 7f27l—1} (23)
k=1

& Fr s Faos Fark 1 2 Farts s Farkoty- s fono1} = O,

Definition 2.2. Let M be a smooth finite n-dimensional manifold with algebra of func-
tions C°°(M). The Lie algebra of vector fields x (M)

X000 — x(M)
\v/fla f27 ceey fnfl S COO(M)7

(fi,-, fn—l) — Xf17~--7fn—1'

such that the bracket defined by

{f> flv cee 7fn*1} = Xfl---fn—lf

is skew symmetric in all arguments and is invariant under any Hamiltonian vector fields
X = Xfl---fn717 i.e.

X{fru . '1f2n—1} = {an7 v 7f2n—1} 4+ {fn7 e 7Xf2n—1}- (24)

It is known that the Nambu dynamics on a Nambu-Poisson phase space involves n — 1
so-called Nambu-Hamiltonians Hy, ..., H,—1 € C°°(M) and is governed by the following
equations of motion

% ={f,Hy,...,H, 1}, Vf € C®(M). (2.5)

A solution to the Nambu-Hamilton equations of motion produces an evolution operator,
Uy, which by virtue of the fundamental identity preserves the Nambu bracket structure on

C(M).

Definition 2.3. f € C*°(M) is a first integral of Xpg, ..q,_, if and only if

-1

{f7H17H27”' 7Hn—1} = 0.

It is known that the Nambu-Poisson what includes all the subordinate Poisson struc-
tures. Thus the Poisson structure on R? can be written as

{xi,azj}F = {z,z;, F} Ti=1x,Y, 2. (2.6)
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Lemma 2.4. The bracket {f, g} = {f, g, H} satisfies Jacobi identity.

Proof: The Jacobi identity of f, g and h is given by
{£. a3 m ™+ o, ™ A+ (b S gy

={{f,9. 2}, h, H} +{{g,h, H}, f, H} +{{h, f, H}, g, H}
=0 follows from Takhtajan’s identity (3) .

2.1 Névir-Blender formulation of hydrodynamics

The first attempt to make a connection between Nambu mechanics and the Euler equation
of incompressible fluid was proposed by Névir and Blender [26]. They showed that the
Nambu mechanics can be incorporated into an incompressible ideal hydrodynamical fields
using energy and helicity in three dimensional. The result is a generalization of the non-
canonical Hamiltonian formultaion proposed by Olver [27], in which the Poisson bracket
is replaced by multilinear antisymmetric bracket.

The noncanonical Hamiltonian theory of perfect fluid dynamics for the Eulerian vari-
ables is characterized by the existence of Casimir functions like helicity and enstrophy in
three and two-dimensional spaces respectively. Motivated by Nambu’s approach, Névir
and Blender proposed an extension of his theory to hydrodynamical fields in which these
Casimirs act as Hamiltonians for Nambu mechanics.

Incompressible inviscid fluid dynamics in 3D is governed by the vorticity equation

O+ (u-V)Q— (- V)u =0, (2.7)

where u = (u1,u2,u3) is the velocity, Q = (21,9, Q3) is the vorticity, V = (095, 0y, 0-),
QA=Vxu,and V-u=0.
The total energy and

1 1
H:§/d3mu2:—§/d3mQ-A (2.8)

and the total helicity
1 3
h= 3 d’r Q-u (2.9)

are conserved (it is assumed that u vanishes at infinity) and A is a vector potential such
that u= -V x Aand V- A =0.

The identity u- Vu = $V|u[? — u x (V x u) can be used to bring the Euler equation
(1) into the form

1 1
% —ux (Vxu)= —V(;P—l— §u2)
Thus in terms of vorticity the Euler equation is
o0
E—Vx(ux@)zo, (2.10)

where P denotes pressure.
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The noncanonical form of the vorticity equation is

00 _ o 0H

Fri Ay (2.11)
with the antisymmetric operator
J() ==V x (2 xVx(.)). (2.12)

The derivative of the energy with respect to the vorticity is given by ‘;—g = —A.
Let F' = F(Q) be an arbitrary functional. Névir and Blender proposed an evolution
equation for F(Q2) according to

oF _ [ or oh o,
== /dx(va)x(va) (V x 55) = —{F.h. H}. (2.13)

Proposition 2.5. The Lax triple of the Névir-Blender equation

OF _ _ O(F,h,H)
E—F{F,h,H}fO, where {F,h, H} = Aoy 2)

is given by
L {F,¢1, 92} = Ao,
2. 0¢1 = {h, H,¢1},
3. 0¢y = {h, H, ¢s}.

Sketch of the Proof: We differentiate the first equation with respect to time t. We
obtain

{Ft7 ¢17 ¢2} + {F’ ¢1t7 QSZ} + {F7 ¢17 ¢2t} - {h7 Hv {Fa ¢la ¢2}}
{Ft7¢17¢2} + {F7 {hvﬂa ¢1}7¢2} + {F7 ¢17 {h7 H7 ¢2}} = {h7 H7 {F7 ¢17 ¢2}}
By using the Takhtajan identity

{{flanaf3}af47f5} + {f37{f17f2>f4}7f5} + {f37f47{f17f27f5}} (214)
= {flana {fSaf4af5}}-

we obtain our desired result.

O

Similarly Névir and Blender showed that the vorticity equation of incompressible fluid
flow in two dimensions can be recasted to

o0 66 OH

= (5_97 5_9)’ (2.15)

where £ = % Ik d*x Q% is known as enstrophy and J is the Jacobi operator, J(p,q) =
0zp0yq — Oypdaq.

REMARK: The Lax pair of the 2D Euler equation was first given by Friedlander and
Vishik [28, 29], in terms of Lagrangian coordinates, and most recently by Li [30] in terms of
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Eulerian coordinates. If we go to the two-dimensional case our Lax representation exactly
coincides with the Lax pair of the 2D Euler equation

Lo =Xp, 0+ Adp=0, (2.16)
where Lo = {Q, ¢}, Ap+ {x, ¢} = 0, and the compatibility condition yields
0L+ [A L] = 0,2+ {Q,x} =0.
It was shown [26] that time evolution of an arbitrary functional F' = F[Q] in 2D is

given by
OF _ [ o, OF € oH,

It is clear from lemma (2.4) that {F ,E, H}op satisfies Jacobi’s identity.

3 Reformulation of 3D Euler equation

We consider the vorticity equation of the Euler equation of incompressible fluid. We
introduce the first pair of Clebsch variables, o and 3, such that it satisfies

u=aVg+Vy. (3.1)
Hence =V x u as
Q=VaxVg. (3.2)

It is easy to show that o and § satisfy the continuity or transport equations, that is
Jda

o tuVa=0 (3.3)
op
e +u-Vg=0. (3.4)

At this stage we introduce another set of variables, x1 and xs, such that

u= Vy; x Vxa.
The newly introduced pair, (x1, x2), is not totally independent of («, 3). Since

V x (Vx1 x Vx2) = (Va x Vf).
We rewrite the the vorticity equation as
Q- Vo+u-V(Q-Vo)—Q-V(u-Ve) =0, (3.5)

Lemma 3.1. The following system of equations is two equivalent expressions of the 3D

Euler equation:
Q-Vo+u-V(Q-Vo)—Q-V(u-Vo)=0

and

(Var xVB) -V + (Vax VB)-Vé+{x1, x2 {, B}, 6} — {a, B, {x1, x2}, ¢} = 0 (3.6)

or

{ahﬂ; ¢} + {au ﬁtv ¢} + {XI)X27 {05,,8}, ¢} - {O[,ﬁ, {le X2}7 ¢} = 0. (37)
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Sketch of Proof: We have used the identity (VA x VB) - VC = {A, B,C}sp.
OJ
By these new transformations the continuity equations become

0
S+ Dasxaal =0, (35)
0
D 5 aann By =0, (39)

Lemma 3.2. The Lax representation of the 3D Euler equation is given by

{0, 8,0) = 3. (3.10)
%0 ¢ 1.0} =0 (.11)

Proof: It is easy to show that the compatibility condition

{O‘t)ﬂv ¢} + {aa Bta QZ)} + {O"ﬁa {Xla X2 ¢}} = {Xl,X2{avﬂ’ ¢}}

exactly coincides with equation (28).
To prove the above identity one requires transport equations and the Takhtajan identity

{HUf1, fos f3)s fas f5} + {f3. {f1s fo, fu}s 5} + A f3, fa { 1o fo, 51} (3.12)
= {f1, f2, {f3, fa, f5}}

Thus we obtain our desired result.

OJ

REMARK: The above Lax formulation is equivalent to some other Lax pair of the 3D
FEuler equation of incompressible fluid flow

(Q-V)$=Xb  dho+(u-V)e=0. (3.13)
It is easy to show that the compatibility condition yields ; 4+ (u-V)Q — (2-V)u = 0.

Proposition 3.3. The 3D Euler equation is described by the Lax triple

0
8_f+{X17X2)¢} :0

da
ot

9B
ot

+ {XluXQ)a} - 0

+ {X17X27ﬂ} =0

and {a, 3,9} = A¢.
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4 Applications to Ideal incompressible MHD

The purpose of this section is to show that the equation of ideal incompressible magnetohy-
drodynamics (MHD) has a similar Nambu structure. The equations of ideal incompressible
MHD coupled with an inviscid fluid to a magnetic field B are

ou

E—i—(u-V)u:B-VB—Vp (4.1)
0B
9% _p.v (4.2)

together with
divu=0 and div B = 0.

These equations can be reformulated using Elsasser variables [31]

vi=u+B
and the “vorticity” vector QF = curl u
D*QF
= (QF)v* 4.3
S = (07, (43)
where
D¥ o
otttV Y
and the magnetic field B satisfies
D*B
= (B- + 4.4
= (B V) (44)

together with div v* = 0.

It is clear from our discussions that the all these equations (33-34) satisfy the same
type Nambu equations as the 3D-Euler equations. The Lax representation of all of these
equation can be given easily by mimicing the previous section.

5 Conclusion and Outlook

In this paper we have studied 3D Euler equation of incompressible fluid using Nambu
mechanics. We have extended the results of Névir and Blender who had extended Nambu
mechanics to incompressible hydrodynamics.

We have proposed a Lax representation of this equation. We also outlined the Lax
representation of ideal incompressible MHD equation. The Lax formalism can be easily
extended to noncommutative framework. Noncommutative geometry has recently been
involved in a noncommutaive gauge theory related to strings and has been stimulated by
different works on field theories defined over noncommutative spaces. Noncommutative
gauge theories are naively realized from ordinary commutative theories just by replacing
Nambu bracket of the fields with Moyal-star bracket. Since the x product respects the
skew symmetry condition, the Lax representation (x product version ) given in this paper
will also work for noncommutative case.

Another possible direction one can extend this work is to generalize the present con-
struction to super-3D Euler flow. It involves super Nambu bracket. This is an interesting
topic.
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