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Abstract

A solution of the KP-hierarchy can be given by the τ -function or the Baker function
associated to an element of the Grassmannian Gr(L2(S1)) consisting of some subspaces
of the space L2(S1) of square-integrable functions on the unit circle S1. The Krichever
map associates an element W ∈ Gr(L2(S1)) to a line bundle over a Riemann surface
equipped with some additional data. We consider a line bundle over a modular curve
associated to an automorphy factor J and prove that the elements of the image W
of this bundle under the Krichever map can be characterized by a set of criteria
involving J .

1 Introduction

Many well-known equations in mathematical physics such as the Korteweg-de Vries (KdV),
Kadomtsev-Petviashvili (KP), Boussinesq, Sine-Gordon, and nonlinear Schrödinger equa-
tions belong to the class of integrable nonlinear partial differential equations called soliton
equations because they possess solitary waves, or solitons, as solutions. Soliton equations
have been studied in numerous papers during the past few decades in connection with
various topics in pure and applied mathematics. One way of systematically generating a
large number of soliton equations is by using Lax equations, which are certain operator
equations involving pseudodifferential operators (see e.g. [3, 5]). Thus, solutions of Lax
equations determine solutions of the associated soliton equations. One of the important
contributions of the Japanese school was the interpretation of solutions of Lax equations
in terms of τ -functions (see e.g. [2]). Such solutions can also be expressed in terms of
Baker functions, which can be written as quotients of values of τ -functions. A τ -function
or a Baker function can be determined by using a certain infinite Grassmannian associated
to a line bundle over a Riemann surface.
Let A be the algebra over C consisting of polynomials in formal symbols {u(j)

i } on
which the differentiation operator ∂ = d/dx acts by

∂(fg) = (∂f)g + f(∂g), ∂u
(j)
i = u

(j+1)
i (1.1)
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for all f, g ∈ A and integers i, j ≥ 0. Then a pseudodifferential operator associated to A
is a formal sum of the form

D =
m∑

i=−∞
Di∂

i (1.2)

for some integer m with Di ∈ A for all i ≤ m. We denote by ΨDOA the set of all
pseudodifferential operators associated to A. Then ΨDOA has the structure of an algebra
over C whose multiplication operation is defined by using (1.1). If D ∈ ΨDOA is the
pseudodifferential operator in (1.2), then we denote by

D+ =
m∑

i=0

Di∂
i

the differential part of D. In order to describe the KP-hierarchy, we consider a pseudod-
ifferential operator L ∈ ΨDOA of the form

L = ∂ + u0∂
−1 + u1∂

−2 + · · · ,

where u0, u1, . . . are the generators of a differential algebra A and are regarded as functions
of the indeterminates x1, x2, . . . with x1 = x. If we set Bm = (Lm)+ for each positive
integer m, then the KP-hierarchy is the set of partial differential equations produced by
an operator equation of the form

∂L

∂xm
= [Bm, L]

for m ≥ 1. The equations of this type also imply the zero curvature equations

∂Bn

∂xm
− ∂Bm

∂xn
= [Bm, Bn]

for positive integers m and n. Then the KP-equation, for example, is obtained by special-
izing these equations to the case of n = 3 and m = 2. Note that the KdV and Boussinesq
equations can be obtained from the KP-equation by simple reductions.
Let H = L2(S1) be the space of square-integrable complex-valued functions on the unit

circle S1. In [9] Segal and Wilson considered the Grassmannian Gr(H) consisting of the
subspaces of H satisfying certain conditions and discussed connections between elements
of Gr(H) and solutions of soliton equations. Let W be an element of Gr(H), and let h(z)
be a holomorphic function on the closed disk {z ∈ C | |z| ≤ 1} defined by

h(z) = exp
( ∞∑

i=1

tiz
i

)

with tk ∈ R for each k. Then the associated Baker function wW (h, z) is a function of the
form

wW (h, z) = h(z)
(
1 +

−1∑
i=−∞

aiz
i

)
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with ai ∈ A for each i such that the map z �→ wW (h, z) is an element of W . If φ =
1 +

∑−1
i=−∞ aiz

i, then L = φ∂φ−1 is a solution of the KP-hierarchy. A solution of the
KP-hierarchy can also be expressed in terms of the τ -function τW associated to such an
element W of Gr(H) (see [3] and [9] for details).
One way of obtaining elements of Gr(H) is by the Krichever map, introduced by

Krichever [4] (see also [9]) which associates an element W ∈ Gr(H) to a line bundle
over a Riemann surface equipped with some additional data. In this paper, we consider a
line bundle over the quotient Γ\H of the Poincaré upper half plane by a discrete subgroup
Γ of SL(2,R) determined by an automorphy factor J for Γ and prove that the elements
of the image W of this bundle under the Krichever map can be characterized by a set of
criteria involving J .

2 Automorphic line bundles

In this section we construct a line bundle over the quotient of the Poincaré upper half
plane by a discrete subgroup Γ of SL(2,R) associated to an automorphy factor for Γ and
discuss some of its properties.
Let H = {z ∈ C | Im z > 0} be the Poincaré upper half plane, and let SL(2,R) be

the group of real 2 × 2 matrices of determinant one. Then SL(2,R) acts on H by linear
fractional transformations, that is,

gz =
az + b

cz + d

for all z ∈ H and g =
(

a b
c d

) ∈ SL(2,R). Let Γ be a discrete subgroup of SL(2,R), and let
J : Γ ×H → C× with C× = C − {0} be an automorphy factor of Γ. Thus J satisfies the
cocycle condition

J(γγ′, z) = J(γ, γ′z)J(γ′, z) (2.1)

for all z ∈ H and γ, γ′ ∈ Γ. Throughout the rest of this paper we assume that the
discrete subgroup Γ ⊂ SL(2,R) is cocompact, which means that the associated Riemann
surface X = Γ\H is a compact. Such a Riemann surface X can be regarded as a complex
projective algebraic curve and is known as a modular curve.
Given an automorphy factor J of Γ, we set

γ · (z, λ) = (γz, J(γ, z)λ) (2.2)

for γ ∈ Γ and (z, λ) ∈ H × C.

Example. Given a nonnegative integer m, we define the map jm : Γ×H → C× by

jm(γ, z) = (cz + d)m (2.3)

for all z ∈ H and γ =
(

a b
c d

) ∈ SL(2,R). Then it can be shown that jm is an automorphy
factor of Γ. Such an automorphy factor determines modular forms, which play an impor-
tant role in number theory. Indeed, a holomorphic function f : H → C is called a modular
form for Γ of weight m if

f(γz) = jm(γ, z)f(z) (2.4)
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for all z ∈ H and γ ∈ Γ (see e.g. [7]). Note that the usual definition of modular forms also
includes a cusp condition, which is not needed in our case because Γ is cocompact.

Lemma 1. The formula (2.2) defines an action of Γ on H× C.

Proof. Given elements γ, γ′ ∈ Γ, z ∈ H, and λ ∈ C, using (2.1) and (2.2), we have

(γγ′) · (z, λ) = (γγ′z, J(γγ′, z)λ)
= (γγ′z, J(γ, γ′z)J(γ′, z)λ)
= γ · (γ′z, J(γ′, z)λ) = γ · (γ′ · (z, λ));

hence the lemma follows. �

We denote the quotient of the space H×C by the discrete group Γ with respect to the
action in Lemma 1 by

LΓ,J = Γ\H × C. (2.5)

Then the natural projection map H × C → H induces a surjective holomorphic map
π : LΓ,J → X = Γ\H such that the inverse image of each element of X is isomorphic
to C. Thus LΓ,J has the structure of a line bundle over the Riemann surface X. We
denote by Γ(X,LΓ,J) the space of holomorphic sections of the bundle LΓ,J over X, that
is, holomorphic maps s : X → LΓ,J such that π ◦ s = 1X with 1X being the identity map
on X. We denote by % : H → X = Γ\H the natural projection map, and set

HY = %−1(Y )

if Y is a subset of X.

Proposition 1. Given a subset of V ⊂ X, the space Γ(V,LΓ,J) of holomorphic sections
of LΓ,J over V is isomorphic to the space of holomorphic functions f : HV → C on
HV = %−1(V ) satisfying

f(γz) = J(γ, z)f(z) (2.6)

for all γ ∈ Γ and z ∈ HV .

Proof. Let s : V → π−1(V ) ⊂ LΓ,J be an element of Γ(V,LΓ,J). Then for each z ∈ HV =
%−1(V ) we have

s(%z) = [(z, λz)] ∈ π−1(V ) = Γ\HV × C

for some λz ∈ C, where [(z, λz)] ∈ LΓ,J denotes the Γ-orbit corresponding to the element
(z, λz) ∈ H×C. We define the function fs : HV → C by fs(z) = λz for all z ∈ HV . Using
(2.2), we have

s(%z) = s(%(γz)) = [(γz, λγz)] = [γ−1 · (γz, λγz)]

= [(z, J(γ−1, γz) · λγz)],
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for each γ ∈ Γ and z ∈ HV . Hence it follows that

fs(z) = J(γ−1, γz) · λγz = J(γ−1, γz) · fs(γz) (2.7)

for all z ∈ HV and γ ∈ Γ. If e denotes the identity element in SL(2,R), by (2.1) we have
J(e, z) = J(e2, z) = J(e, z)2; hence J(e, z) = 1 ∈ C. Thus we obtain

1 = J(γ−1γ, z) = J(γ−1, γz) · J(γ, z),

and therefore we have J(γ−1, γz) = J(γ, z)−1. From this and (2.7) we see that fs satisfies
(2.6). On the other hand, if f : HV → C is a holomorphic function satisfying (2.6), we
define the map sf : V → π−1(V ) ⊂ LΓ,J by

sf (%z) = [(z, f(z))]

for all z ∈ HV . This map is well-defined because, for each γ ∈ Γ and z ∈ H, we have

sf (%(γz)) = [(γz, f(γz))] = [(γz, J(γ, z)f(z))]
= [γ · (z, f(z))] = [(z, f(z))] = sf (%z).

Since the relation π ◦ sf = 1X obviously holds, sf is an element of Γ(V,LΓ,J); hence the
proof of the proposition is complete. �

Corollary 2. The space Γ(X,LΓ,J) of holomorphic sections of LΓ,J over X = Γ\H is
isomorphic to the space of modular forms of weight m for Γ.

Proof. This follows from Proposition 1 by letting V = X and HV = H. �

3 Grassmannians

In this section, we review the Krichever map which associates an infinite GrassmannianW
to a line bundle over a Riemann surface following the description in [9] (see also [3]). We
then prove our main theorem, which provides a condition for a function on a unit circle
to belong to such W determined by a line bundle of the type discussed in Section 2.
Let S1 = {z ∈ C | |z| = 1} be the unit circle centered at the origin in the complex

plane C, and let H = L2(S1) be the Hilbert space consisting of the square-integrable
complex-valued functions on S1. Then the functions z �→ zk on S1 for k ∈ Z form a basis
of H. We consider the subspaces H+ and H− of H defined by

H+ =
⊕
k≥0

Czk, H− =
⊕
k<0

Czk,

which determine the decomposition

H = H+ ⊕H−

of H. Let p+ and p− be the orthogonal projections of H onto H+ and H−, respectively.
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Definition 1. The Grassmannian ofH is the set Gr(H) of all subspacesW ofH satisfying
the following two conditions:
(i) Both the kernel and the cokernel of the restriction p+|W : W → H+ of the map p+

to W are finite-dimensional.
(ii) The restriction p−|W :W → H− of the map p− to W is a compact operator.

Let X = Γ\H be the compact Riemann surface considered in Section 2, and fix a point
x∞ ∈ X. Let ζ−1 be a local parameter in a neighborhood U∞ of this point. Thus there is
a neighborhood Ũ∞ of 0 in the complex plane C and an isomorphism α : U∞ → Ũ∞ such
that α(x∞) = ζ(x∞)−1 = 0 (or ζ(x∞) =∞) and α(x) = ζ(x)−1 for all x ∈ U∞. We set

X∞ = {x ∈ X | |ζ(x)−1| ≤ 1} = {x ∈ X | |ζ(x)| ≥ 1}. (3.1)

By rescaling the parameter ζ if necessary we may assume that X∞ is contained in U∞.
We denote by X0 = X −X∞ the closure of X −X∞.
We now consider a holomorphic line bundle L = LΓ,J over the Riemann surface X =

Γ\H given by (2.5) associated to a cocompact discrete subgroup Γ ⊂ SL(2,R) and an
automorphy factor J of Γ. Let ϕ : π−1(U)→ U × C be a trivialization of L over an open
set U ⊂ X containing X∞. Then a holomorphic section s : U → π−1(U) of L over U can
be regarded as a holomorphic function fs : U → C on U such that

(ϕ ◦ s)(x) = (x, fs(x)) ∈ U × C (3.2)

for all x ∈ U . Let W 0 be the set of analytic functions on S1 which extend to holomorphic
sections of L over X0. Thus an analytic function h : S1 → C belongs to W 0 if and only if
there is a section s : X0 → π−1(X0) of L over X0 such that

fs(x) = h(ζ−1(x)) = h(ζ(x)−1) (3.3)

for all x ∈ X0 ∩ X∞, where fs is the function on X0 corresponding to s by the relation
(3.2). Then the L2-closure W of W 0 is an element of Gr(H) (see [9] for details), and it is
the element associated to the 5-tuple (X,L, x∞, ζ, ϕ) under the Krichever map.

Theorem 3. Let W be the element of Gr(H) determined by applying the Krichever map
to 5-tuple (X,L, x∞, ζ, ϕ) with L = LΓ,J described above. A function f : S1 → C belongs
to W if and only if there are sequences {fn}∞n=1 and {hn}∞n=1 of holomorphic functions
fn : S1 → C and hn : HX0 → C satisfying the following conditions:

(i) The sequence {fn}∞n=1 converges to f with respect to the L2-norm.
(ii) For each positive integer n the function hn satisfies

hn(γz) = J(γ, z)hn(z) (3.4)

for all γ ∈ Γ and z ∈ HX0 = %−1(X0).
(iii) For each positive integer n the function fn can be written in the form

fn(ζ(%(z))−1) = (Pr2 ◦ ϕ)([z, hn(z)])

for all z ∈ %−1(X0 ∩X∞), where Pr2 : U × C → C is the natural projection map.
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Proof. By the definition of W a function f : S1 → C is an element of W if and only if
there is a sequence {fn}∞n=1 of elements fn of W 0 which converges to f with respect to the
L2-norm. Thus it suffices to show that the functions fn satisfying the conditions stated
above are elements of W 0. Given a positive integer n, by (3.3) the function fn belongs
to W 0 if and only if there exists a holomorphic section sn : X0 → π−1(X0) of L over X0

such that

fsn(x) = fn(ζ−1(x))

for all x ∈ S1 = X0 ∩X∞, where fsn is the function on X0 determined from sn by using
(3.2). Thus we have

(ϕ ◦ sn)(x) = (x, fsn(x)) = (x, fn(ζ−1(x))

for all x ∈ X0 ∩X∞, which can be written as

ϕ(sn(%z)) = (%z, fn(ζ(%z)−1)) ∈ (X0 ∩X∞)× C (3.5)

for all z ∈ %−1(X0 ∩X∞). By Proposition 1 the existence of the section sn is equivalent
to the existence of a holomorphic function hn : HX0 → C satisfying the condition (3.4).
Furthermore, the functions fn and sn are related by

sn(%z) = [z, hn(z)]

for all z ∈ HX0 as described in the proof of Proposition 1. By combining this with (3.5)
we obtain

ϕ([z, hn(z)]) = (%(z), fn(ζ(%(z))−1) ∈ (X0 ∩X∞)× C

for all z ∈ %−1(X0 ∩X∞). Hence we have

fn(ζ(%(z))−1) = (Pr2 ◦ ϕ)([z, hn(z)]),

and therefore the proof of the theorem is complete. �

Example. Let M(2,R) be the algebra of 2× 2 matrices over R, and let O be an order in
M(2,R), i.e., a subring containing the identity element of M(2,R). Then the set

A = Q · O = {rx | r ∈ Q, x ∈ O}
becomes an indefinite quaternion algebra over Q, and we have

A ⊗Q R =M(2,R).

We fix a positive integer q, and set

Γ(O, q) = {x ∈ M(2,R) | xO = O, detx = 1, x− 1 ∈ qO}.
Then Γ(O, q) is a discrete subgroup of SL(2,R). We assume that O is chosen in such a
way that A = Q ·O is a division algebra. Then it is known that the corresponding quotient
space Γ(O, q)\H is compact (cf. [7, Theorem 5.2.13]). We set

Γ = Γ(O, q), X = Γ\H,
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so that X is a compact Riemann surface. Given a nonnegative integer m, let jm be the
automorphy factor given by (2.3). We denote by L the associated line bundle constructed
in Example 2. We consider a sequence {hn}∞n=1 of modular forms hn : H → C for Γ of
weight m which converges to a function h : H → C with respect to the L2-norm, and
define the functions f, fn : S1 → C by

f(ζ(%(z))−1) = (Pr2 ◦ ϕ)([z, h(z)]), (3.6)

fn(ζ(%(z))−1) = (Pr2 ◦ ϕ)([z, hn(z)])

for all z ∈ %−1(X0 ∩X∞) and n ≥ 1. Then we have

f(ζ(%(z))−1) = (Pr2 ◦ ϕ)([z, lim
n→∞hn(z)])

= lim
n→∞(Pr2 ◦ ϕ)([z, hn(z)]) = lim

n→∞ fn(ζ(%(z))−1);

hence the sequence {fn}∞n=1 converges to f in the L
2-norm. On the other hand, since each

hn is a modular form for Γ of weight m, by (2.4) the function hn satisfies (3.4) for J = jm.
Thus by Theorem 3 the function f : S1 → C given by (3.6) is an element of W .

4 Concluding remarks

As is well-known, pseudodifferential operators play an important role in the theory of
soliton equations. On the other hand, pseudodifferential operators are also linked to the
theory of modular forms, which is a major part of number theory (see e.g. [1, 6]). These
observations suggest that there is at least an indirect relation between soliton equations
and modular forms. Indeed, such relations have been explored in a number of papers (see
e.g. [8, 10, 11]). In Example 3 we provided another, rather weak, connection between
modular forms and solutions of soliton equations. It would be interesting to investigate a
more direct link between those two areas.
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