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Abstract

The Singular Manifold Method (SMM) is applied to an equation in 2 + 1 dimensions
[13] that can be considered as a generalization of the sine-Gordon equation. SMM
is useful to prove that the equation has two Painlevé branches and, therefore, it can
be considered as the modified version of an equation with just one branch, that is
the AKNS equation in 2 + 1 dimensions. The solutions of the former split as linear
superposition of two solutions of the second, related by a Bäcklund-gauge transforma-
tion. Solutions of both equations are obtained by means of an algorithmic procedure
derived from these transformations.

1 Introduction

In recent papers, one of us (PGE) [7], [8], [9] has used the singular manifold method
(SMM) [18], based on the Painlevé test [19], in order to obtain an unified point of view of
the properties of nonlinear partial differential equations (PDE’s). Our aim is to prove that
practically all features of a PDE can be obtained from the singular manifold equations
derived from the application of the SMM. Of particular interest is the case in which the
equation has two Painlevé branches. In this case, the SMM needs to be improved to
incorporate two singular manifolds [5], [7], [9]. Miura transformations arise in a very
natural way that connects the equation under scrutiny with another equation (that can
be considered as its modified version) with just one Painlevé branch.

Let us apply this procedure to the following non-linear system in (2 + 1) dimensions:

0 = ηx + u2

0 = uxy + 2uηy + 4ω (1.1)
0 = ut − ωx
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where u = u(x, y, t), η = η(x, y, t), ω = ω(x, y, t). This system can also be trivially written
as the following equation for u.

0 = 4ut + uxxy − 4u2uy − 4ux

∫
uuydx (1.2)

that appears in [2] as the modified version of a “breaking soliton” equation

4mxt + mxxxy + 8mxmxy + 4mymxx = 0 (1.3)

introduced by Calogero [3]. In the paper of Bogoyavlenskii [2], the Lax pair and a non-
isospectral condition for the spectral parameter is presented as well as the Miura trans-
formations between (1.2) and (1.3).

Equation (1.2) was derived by Kudryashov and Pickering [13] as a member of a (2 + 1)
Schwarzian breaking soliton hierarchy. Rational solutions of it were obtained by these
authors. The equation appears also in reference [4] as one of the equations associated to
non-isospectral scattering problems.

Toda and Yu presented in 2000 [17] the equation

0 = 4Wt + Wxxy − 2
WxWxy

W
− WyWxx

W
+ 2

W 2
xWy

W 2
− Wx

2

∫ (
W 2

x

W 2

)
y

dx (1.4)

that is trivially related to (1.4) through the change

W = e2
∫

udx

In this paper [17], equation (1.4) was named (2 + 1)-dimensional Schwarz-Korteweg-de
Vries equation. Solutions of this equation have been obtained in [11] by means of the
classical Lie method.

Let us notice that Eq (1.1) can be considered as a generalization to 2 + 1 dimensions
of the sine-Gordon equation. Actually if we set w = 0 in Eq (1.1), the system reduces to

0 = qxy − sin q (1.5)

where q = q(x, y) is related with u and η through the changes:

u = − iqx

2

ηy = −1
2

cos q (1.6)

uy = − i

2
sin q

Furthermore, (1.2) can be considered as a generalization to 2 + 1 dimensions of the well
known AKNS (Ablowitz-Kaup-Newell-Segur) equation [1], [4], [16]. In [8], one of us studied
the relationship between sine-Gordon and AKNS by means of the SMM. Our aim in the
present work is to apply to (1.2) and (1.3) the method developed in [8]. Let us summarize
the plan of the paper:
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• In section 2, we notice that the Painlevé expansion for (1.1) has two different Painlevé
branches which allows us to split the solutions of (1.1) as linear superposition of two solu-
tions, related by an auto-Bäcklund transformation, of an equation with just one Painlevé
branch that turns out to be (1.3).

• The singular manifold method (SMM) is used in section 3 to study 2+1-AKNS equa-
tion (1.3). We present the SMM as an unified tool that allow us to identify many of the
properties of the equation. In particular, we recover the Lax pair and the nonisospectral
condition [4] for the spectral parameter.

A crucial point of this paper is that the SMM can be applied to the Lax pair itself
providing us transformations that map the Lax pair into a new one and giving us a
simple and iterative method to construct solutions. These transformations have been
called Bäcklund-gauge transformations by same authors [12] and sometimes [6] have been
considered as Darboux transformations in the sense that they are transformations of the
fields and eigenfunctions of the Lax pair. Nevertheless, they are not the usual binary
Darboux transformations of the Schrödinger operator that appears, for instance, in [14]
or [10].

• Section 4 deals again with the fact that equation (1.1) has two Painlevé branches. It
means that we need to introduce two different singular manifolds (one for each branch) that
are not independent because each one is related with one of the two different solutions
of (1.3) that have been used to split the solutions of (1.1). This splitting allow us to
reconstruct the Lax pair for (1.1) in terms of two eigenfunctions connected with the two
singular manifolds. Bäcklund-gauge transformations and iterated solutions of (1.1) can be
obtained through the same connection.

• Section (5) is devoted to use the above described method to get some particular
solutions for (1.1) and (1.3).

• Conclusions are listed in the pertinent section.

2 Painlevé branches for (1.1)

It is not difficult to prove that (1.1) passes the Painlevé test for PDEs [13], [4], [16].
To check it, it is necessary to expand the fields u, η and ω as a local expansion in the
neighborhood of a movable singular manifold φ(x, y, t). It means

u =
∞∑

j=0

uj(x, y, t)[φ(x, y, t)]j−1

ω =
∞∑

j=0

ωj(x, y, t)[φ(x, y, t)]j−1

η =
∞∑

j=0

ηj(x, y, t)[φ(x, y, t)]j−1 (2.1)

The substitution of (2.1) in (1.1) provides easily that

η0 = φx, u0 = ±φx, w0 = ±φx
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and there are resonances at j = 2, 3, 4 which means that the coefficients u2(x, y, t),
u3(x, y, t) and u4(x, y, t) are arbitrary functions. It is a trivial exercise to check that
the conditions at the resonances are satisfied. Therefore, (1.1) passes the Painlevé test.
Nevertheless the ± sign of u0 indicates that the system has two Painlevé branches. As one
of us (PGE) has shown for several cases ([5], [7], [9]), when an equation has two branches,
it means that the solution can be considered as the linear superposition of two different
solutions (related by a Bäcklund transformation) of an equation with just one branch. In
our case, it means that we need to consider two new functions m and m̂ such that:

u = m − m̂

η = m + m̂

w =
∫

(mt − m̂t)dx (2.2)

The system (1.1) is now:

0 = mx + m̂x + (m − m̂)2

0 = mxy − m̂xy + 2(m − m̂)(my + m̂y) + 4
∫

(mt − m̂t)dx (2.3)

The inverse of Eq (2.2) is:

m =
u + η

2

m̂ =
−u + η

2

By using ηx = −u2, we can write:

mx =
ux − u2

2

m̂x =
−ux − u2

2
(2.4)

that allows us to write differential equations for m and m̂. Direct calculation yields to:

4mxt + mxxxy + 8mxmxy + 4mymxx = 0 (2.5)

4m̂xt + m̂xxxy + 8m̂xm̂xy + 4m̂ym̂xx = 0 (2.6)

that is the AKNS equation in 2 + 1 dimensions [2], [3].
In consequence, the simple ansatz (2.2) has provided us the following results:

a) we can split the solutions of Eq (1.1) as a linear superposition (2.2) of two different
solutions m and m̂ that satisfy the same equation (2.5), (2.6).

b) This two solutions are related by the auto-Bäcklund transformation (2.3).

c) The inverse transformation associated to this splitting is (2.4). This is nothing but
a Miura transformation between (1.1) and (2.5)-(2.6)[2].
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3 Singular manifold method for Eq (1.3)

It is rather easy to apply the singular manifold method [18] for Eq (1.3). It suffices to
check that the leading index is 1 and therefore a truncated Painlevé expansion for Eq (1.3)
takes the form of an auto-Bäcklund transformation (2.3).

m′ = m +
φx

φ
(3.1)

where m and m′ are two solutions of (1.3) and φ(x, y, t) is the singular manifold. Substi-
tution of (3.1) in (1.3) yields to a polynomial in φ whose coefficients provide the expression
of the derivatives of m in terms of the singular manifold in the following way (see Appendix
A):

mx = −vx

4
− v2

8
+

λ(y, t)
2

(3.2)

my = −vy

2
− λ(y, t)q − r (3.3)

where

v(x, y, t) =
φxx

φx

r(x, y, t) =
φt

φx

q(x, y, t) =
φy

φx
(3.4)

and λ(y, t) satisfies:

λt + λλy = 0 (3.5)

Singular manifold equations

Furthermore, the singular manifold φ should satisfy the equations:

0 = rx +
vxy − vvy

4
+ λqx +

λy

2
(3.6)

vt = (rx + rv)x (3.7)
vy = (qx + qv)x (3.8)

(3.7) and (3.8) are a direct consequence of the compatibility between the definitions (3.4).
Eq(3.6) is the specific singular manifold equation. It is interesting to point out
that λ appears as the consequence of an integration in x. We thank A. Pickering for his
observation that λ is not necessarily a constant but a function of y and t that satisfies
(3.5), [4].
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Lax pair

The Lax pair for (1.3) is easily obtained from (3.2)-(3.3). Eq (3.2) can be considered as a
Riccati equation for v. Therefore it can be linearized by introducing a function ψ(x, y, t)
such that

v = 2
ψx

ψ
(3.9)

that combined with (3.4) means that

φx = ψ2 (3.10)

With this definition of ψ, (3.2) can be written as:

0 = ψxx + (2mx − λ)ψ (3.11)

The same substitution can be used in the singular manifold equation Eq(3.6) that combined
with Eq(3.3), Eq(3.7) and Eq(3.8) yields to

0 = ψt + λψy + myψx +
1
2
(λy − mxy)ψ (3.12)

Compatibility condition of Eq(3.11)-(3.12) is the AKNS-(2+1) equation (1.3) together
with the nonisospectral condition (3.5). It means that (3.11) and (3.12) are the Lax pair
for (1.3).

Bäcklund-gauge transformations

According to the results of previous papers, [5], [7], [8], [9], [12], the singular manifold
method can be used to derive transformations [12], for the solutions and eigenfunctions of
(3.11)-(3.12). It requires to consider the iterated solution m′

m′ = m +
φ1,x

φ1
(3.13)

where the subindex 1 refers to the fact that φ1 is the singular manifold attached to an
eigenfunction ψ1 corresponding to an eigenvalue λ1. It means that:

φ1,x = ψ2
1

0 = ψ1,xx + (2mx − λ1)ψ1

0 = ψ1,t + λ1ψ1,y + myψ1,x +
1
2
(λ1,y − mxy)ψ1 (3.14)

Next step requires to consider m′ as a new seed solution that allows us to perform a new
iteration

m′′ = m′ +
φ′

2,x

φ′
2

(3.15)

where φ′
2 is a singular manifold related through

φ′
2,x = (ψ′

2)
2 (3.16)
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with an eigenfunction ψ′
2 of m′ with eigenvalue λ2.

0 = ψ′
2,xx + (2m′

x − λ′
2)ψ

′
2

0 = ψ′
2,t + λ′

2ψ
′
2,y + m′

yψ
′
2,x +

1
2
(λ′

2,y − m′
xy)ψ

′
2 (3.17)

The crucial point is to consider (3.16) and (3.17) as a nonlinear system of PDE’s for the
fields m′, ψ′

2 and φ′
2 [12], [7]. It means that the truncated Painlevé expansion (3.13) should

be accompanied with the corresponding expansions for ψ′
2 and φ′

2. This is:

ψ′
2 = ψ2 +

Θ
φ1

φ′
2 = φ2 +

∆
φ1

(3.18)

where ψ2 is an eigenfunction for m with eigenvalue λ2.

φ2,x = ψ2
2

0 = ψ2,xx + (2mx − λ2)ψ2

0 = ψ2,t + λ2ψ2,y + myψ2,x +
1
2
(λ2,y − mxy)ψ2 (3.19)

Substitution of (3.13) and (3.18) in (3.17) provides (see Appendix B):

φ1,x = ψ2
1 (3.20)

Θ = −ψ1Ω
∆ = = −Ω2

Ω =
ψ1ψ2,x − ψ2ψ1,x

λ2 − λ1
(3.21)

In consequence, two eigenfunctions ψ1 and ψ2 of the seed field m with eigenvalues λ1 and
λ2 allow us to construct the following transformations of the Lax pair

m′ = m +
ψ2

1∫
ψ2

1dx
(3.22)

ψ′
2 = ψ2 − ψ1

ψ1ψ2,x − ψ2ψ1,x

(λ2 − λ1)
∫

ψ2
1dx

(3.23)

in which the new field m′ and its eigenfunction ψ′
2 are constructed by using ψ1 and ψ2

only. It constitutes an iterative method to obtain new solutions m′ arising from a previous
known solution m.

Notice that the iteration (3.22) is constructed not with the eigenfuction ψ1 as in the
binary Darboux transformations [14], [10], but with the singular manifold φ1 that is related
to the eigenfuction through φ1,x = ψ2

1 [12].

τ-function

Eq (3.22) can be iterated by using (3.15), that combined with (3.18) and (3.21) yields to:

m′′ = m +
τx

τ
(3.24)

where

τ = φ1φ2 − Ω2 (3.25)
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4 Singular manifold method for Eq (1.1)

According with the above results, the solutions m and m̂ of (2.5) and (2.6) have the
following singular manifolds expansions

m′ = m +
φx

φ

m̂′ = m̂ +
φ̂x

φ̂
(4.1)

It means, using (2.2), that the expansions for u, η and ω are:

u′ = u +
φx

φ
− φ̂x

φ̂

η′ = η +
φx

φ
+

φ̂x

φ̂

ω′ = ω +
φt

φ
− φ̂t

φ̂
(4.2)

Coupling of the singular manifolds

Nevertheless, m and m̂ are not independent because there are related by the Bäcklund
transformation (2.3).

By substituting (4.1) in (2.4), we get:

φx

φ

φ̂x

φ̂
= A

φx

φ
+ B

φ̂x

φ̂
(4.3)

where

A = u +
1
2

φxx

φx

B = −u +
1
2

φ̂xx

φ̂x

(4.4)

Two component Lax pair

We can introduce eigenfunctions ψ and ψ̂ for m and m̂ that, according to (3.10), should
be:

φx = ψ2, φ̂x = ψ̂2 (4.5)

With these eigenfunctions the Lax pair for m and m̂ will be:

0 = ψxx + (2mx − λ)ψ

0 = ψt + λψy + myψx +
1
2
(λy − mxy)ψ (4.6)
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0 = ψ̂xx + (2m̂x − λ̂)ψ̂

0 = ψ̂t + λ̂ψ̂y + m̂yψ̂x +
1
2
(λ̂y − m̂xy)ψ̂ (4.7)

where λ and λ̂ are spectral parameters that satisfy (3.5). With the aid of (4.5), (4.4) can
be written as:

A = u +
ψx

ψ
(4.8)

B = −u +
ψ̂x

ψ̂
(4.9)

Substitution of (4.1) and (4.2) in the Miura transformations (2.4) provides, with the aid
of (4.3)-(4.9), the following result:

λ = λ̂

AB = λ (4.10)

Furthermore, if we combine (4.6) with (4.8) and (2.4), we get:

Ax − A2 + 2A
ψx

ψ
− λ = 0 (4.11)

A similar combination between (4.7) with (4.9) and (2.4) provides:

Bx − B2 + 2B
ψ̂x

ψ̂
− λ = 0 (4.12)

By using (4.10) in (4.11) and (4.12), the result is:

A =
√

λ
ψ̂

ψ
(4.13)

B =
√

λ
ψ

ψ̂
(4.14)

By combining (4.8-4.9) and (4.13-4.14), we get:

ψx = −uψ +
√

λψ̂

ψ̂x = uψ̂ +
√

λψ (4.15)

Substitution of (4.15) in the temporal part of the Lax pairs (4.6)-(4.7) can be written as:

0 = ψt + λψy +

√
λ

2
(uy + ηy)ψ̂ +

λy

2
ψ + ωψ

0 = ψ̂t + λψ̂y +

√
λ

2
(−uy + ηy)ψ +

λy

2
ψ̂ − ωψ̂ (4.16)

(4.15) and 4.16) are a two component Lax pair for (1.1).
Notice that the coupling condition (4.4) can be written, with the aid of (4.5) and

(4.13)-(4.14) as:

ψψ̂ =
√

λ(φ + φ̂) (4.17)
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Bäcklund-gauge transformations and τ functions

The induced Bäcklund-gauge transformations for (4.15) and 4.16) are rather easy to con-
struct. Let (ψ1, ψ̂1), (ψ2, ψ̂2) be eigenfunctions of (4.15) and 4.16) with spectral parameters
λ1 and λ2 respectively. The corresponding singular manifolds are obviously:

φ1,x = ψ2
1, ψ̂1,x = ψ̂2

1

φ2,x = ψ2
2, ψ̂2,x = ψ̂2

2

If we use ψ1 and ψ̂1 to perform a truncated expansion like (4.2)

u′ = u +
φ1,x

φ1
− φ̂1,x

φ̂1

η′ = η +
φ1,x

φ1
+

φ̂1,x

φ̂1

ω′ = ω +
φ1,t

φ1
− φ̂1,t

φ̂1

(4.18)

the truncated expansion for the eigenfunctions of the iterated fields would be:

ψ′
2 = ψ2 − ψ1

Ω
φ1

ψ̂′
2 = ψ̂2 − ψ̂1

Ω̂

φ̂1

(4.19)

where

Ω =
ψ1ψ2,x − ψ2ψ1,x

λ2 − λ1

Ω̂ =
ψ̂1ψ̂2,x − ψ̂2ψ̂1,x

λ2 − λ1
(4.20)

Functions τ and τ̂ can be trivially defined as:

τ = φ1φ2 − Ω2

τ̂ = φ̂1φ̂2 − Ω̂2 (4.21)

The second iteration of (4.17) provides:

u′′ = u +
τx

τ
− τ̂x

τ̂

η′′ = η +
τx

τ
+

τ̂x

τ̂

ω′′ = ω +
τt

τ
− τ̂t

τ̂
(4.22)

5 Particular Solutions

The above described method can be easily used to obtain solutions for m, m̂ as well as for
u. We will show some simple cases.
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5.1 u = U(y, t) =⇒ m = U(y,t)−(U(y,t))2x
2

, m̂ = −U(y,t)−(U(y,t))2x
2

Now (1.2) implies that U(y, t) satisfies:

Ut − U2Uy = 0

• If we call ψi and ψ̂i the solutions of (4.15)-(4.16) attached to an spectral parameter λi

(i = 1, 2) we have:

ψi =
√

(Ki(y, t) − U(y, t)eKi(y,t)x+
Hi(y,t)

2

ψ̂i =
√

(Ki(y, t) + U(y, t)eKi(y,t)x+
Hi(y,t)

2

where

Ki(y, t) =
√

λi(y, t) + (U(y, t))2

and Hi(y, t) is a function that satisfies:

Hi,t + λiHi,y + λi,y + UUy = 0

• Integration of (4.5) together with (4.17) and (3.6) yields to

φi =
1

2Ki(y, t)

(
Ri(y, t) + [(Ki(y, t) − U(y, t)]e2Ki(y,t)x+Hi(y,t)

)

φ̂i =
1

2Ki(y, t)

(
−Ri(y, t) + [(Ki(y, t) + U(y, t)]e2Ki(y,t)x+Hi(y,t)

)

where Ri(y, t) are functions that satisfy:

Ri,t + λRi,y − RiUUy = 0

and the iterated solutions are:

m′ =
U(y, t) − (U(y, t))2x

2
+

(φi)x

φi

m̂′ =
−U(y, t) − (U(y, t))2x

2
+

(φ̂i)x

φ̂i

u′ = U(y, t) +
(φi)x

φi
− (φ̂i)x

φ̂i

• For the second iteration, we need to use (4.20)-(4.21). The result is:

4K1K2

R1R2
τ = 1 +

K1 − U

R1
e2K1x+H1 +

K2 − U

R2
e2K2x+H2 +

+
(

K2 − K1

K2 + K1

)2 (K1 − U)(K2 − U)
R1R2

e2K1x+H1e2K2x+H2
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4K1K2

R1R2
τ̂ = 1 − K1 − U

R1
e2K1x+H1 − K2 − U

R2
e2K2x+H2 +

+
(

K2 − K1

K2 + K1

)2 (K1 − U)(K2 − U)
R1R2

e2K1x+H1e2K2x+H2

We have solutions for the second iteration through the expressions:

m′′ =
U(y, t) − (U(y, t))2x

2
+

τx

τ

m̂′′ =
−U(y, t) − (U(y, t))2x

2
+

τ̂x

τ̂

u′′ = U(y, t) +
τx

τ
− τ̂x

τ̂

5.2 u = 0, λi=constant

This case is contained in the previous one. Now, we have:

λi = k2
i , Ki = ki

Hi,t + k2
i Hi,y = Ri,t + k2

i Ri,y = 0

In particular, if we choose

Ri = 1 + ec0(y−k2
i t)

eHi = 1 + a0e
c0(y−k2

i t)

where a0 and c0 are arbitrary constants, we get dromionic behavior.

5.3 u = U(y, t), λ = 0

• The solutions of (4.15)-(4.16) can be chosen now as:

ψ = 0

ψ̂ = eU(y,t)x+
H(y)

2

where H(y) is an arbitrary function of y and U(y, t) obviously satisfies:

Ut − U2Uy = 0

• Expressions for φ and φ̂ can be easily obtained through (4.5), together with (4.17) and
(3.6). The result is:

φ = R(y)

φ̂ = R̂(y) +
e2U(y,t)x+H(y)

2U(y, t)

being R(y) and R̂(y) arbitrary functions of y.
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• Iterated solutions can be now constructed as:

m′ =
U(y, t) − (U(y, t))2x

2

m̂′ =
−U(y, t) − (U(y, t))2x

2
+

2U(y, t)e2U(y,t)x+H(y)

2R̂(y)U(y, t) + e2U(y,t)x+H(y)

u′ = U(y, t) − 2U(y, t)e2U(y,t)x+H(y)

2R̂(y)U(y, t) + e2U(y,t)x+H(y)

6 Conclusions

• The Painlevé test of (1.1) implies that the system has two Painlevé branches. It suggests
that the solutions can be written as linear superposition of solutions of an equation with
just one branch. We have proved that this equation is precisely AKNS in (2+1) dimensions.
This above splitting allows us to get two Miura transformations between (1.1) and (1.3).
• The singular manifold method is applied to (1.3) to derive its Lax pair. When SMM
is applied to the Lax pair itself we get Bäcklund-gauge transformations that allow us to
derive an iterative method to construct solutions.
• SMM is applied to (1.1) with the aid of the above results for (1.3). The induced Bäcklund-
gauge transformations for (1.1), as well as the iterated solutions are obtained through
them.
• We close the paper in the last section with a rich collection of exact solutions.
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Appendix A

Let us substitute (3.1) into (1.9) (We have used MAPLE to handle the calculation). We
obtain a polynomial in φ and, by imposing that all the coefficients are zero, we have:

• Coefficient in φ−3

0 = 4my + 8qmx + 2vy + 2qvx + qv2 + 4r (A1)

• Coefficient in φ−2

0 = −8mxy − 4qmxx − 12vmy − 24vqmx − 16qxmx − 8rx − 7vqvx−

−12rv − 2v2qx − 3qv3 − 4vxy − 6vvy − qvxx − 4qxvx (A2)

• Coefficient in φ−1

0 = 4rxx + 8mxvqx + 3vxv2q + 3vxvqx + 8rxv + 4rv2 + v3qx+
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+v4q + 8myxv + 4mxxqx + 4myv
2 + 8mxv2q + 4mxxqv + vxxy+

+vxxqx + 3vvxy + 3vxvy + 3vyv
2 + 4rvx + 4myvx + 8mxvy + vxxqv (A3)

• Coefficient in φ0

0 = 4mxxmy + 8mxymx + 4mxt + mxxxy (A4)

where, according to (3.4), we have used the following substitutions:

φxx = vφx

φt = rφx

φy = qφx

Let us do now the following combinations:

1) From (A1), we have:

my = −r − qv2

4
− 2qmx − vy

2
− q

2
vx (A5)

2) By substituting (A5) in (A2), we have:

q(3vvx + 12mxx + 3vxx) = 0 (A6)

that can be integrated with respect to x providing:

mx = −vx

4
− v2

8
+

λ

2
(A7)

where we have introduced λ = λ(y, t) as a constant with respect to the integration in x.

3) Substitution of (A7) in (A5) yields to:

my = −vy

2
− r − λq (A8)

4) Compatibility between (A7) and (A8) implies that:

rx +
vxy

4
− v

4
vy +

λy

2
+ λqx = 0 (A9)

5) If we substitute (A7) and (A8) in (A3), it is trivially satisfied with the aid of (A9).

6) The same substitution, when applied to (A4), yields to:

2λλy + 2λt = 0 (A10)



178 P G Estévez and J Prada

Appendix B

1)If we substitute (3.18) in (3.16), we get:

0 = φ2,x − ψ2
2 +

1
φ1

(∆x − 2ψ2Θ) +
1
φ2

1

(−∆φ1,x − Θ2
)

(B1)

and by using the fact that φi,x = ψ2
i , i = 1, 2, we obtain:

0 =
1
φ1

(∆x − 2ψ2Θ) +
1
φ2

1

(−∆ψ2
1 − Θ2

)
(B2)

The coefficient in φ−2
1 provides:

∆ = −Θ2

ψ2
1

(B3)

and by substituting (B3) in (B2) we get:

Θx = Θ
ψ1,x

ψ1
− ψ2

1ψ2 (B4)

2) The substitution of (3.13) and (3.18) in the spatial part of the Lax pair (3.17) gives us:

0 = ψ2,xx + (2mx − λ2)ψ2 +
1
φ1

(Θxx + 2mxΘ + 2ψ2φ1,xx − λ2Θ)

+
1
φ2

1

(−2Θxφ1,x + Θφ1,xx − 2ψ2φ
2
1,x

)
(B5)

The coefficient in φ0
1 means that ψ2 is an eigenfuction for m with eigenvalue λ2.

0 = ψ2,xx + (2mx − λ2)ψ2 (B6)

If we substitute φ1,x = ψ2
1 and (B4) in (B5), we have:

0 =
1
φ1

(
ψ1ψ2ψ1,x − ψ2

1ψ2,x + λ1Θ − λ2Θ
)

(B7)

By solving (B7) with respect to Θ, the result is:

Θ = −ψ1

(
ψ1ψ2,x − ψ2ψ1,x

λ2 − λ1

)
(B8)

if we define:

Ω =
ψ1ψ2,x − ψ2ψ1,x

λ2 − λ1
(B9)

we have from (B8)
Θ = −ψ1Ω (B10)

and
∆ = −Ω2 (B11)

from (B3).
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[9] Estévez P G and Hernáez G A, J. Phys. A 33 (2000), 2131–2143.

[10] Levi D and Ragnisco O, Nuovo Cimento 83 (1984), 34–41.

[11] Ramirez J, Bruzón, M S, Muriel C, Gandarias M L, J. Phys A: Math. Gen. 36 (2003),
1467–1484.

[12] Konopelchenko B G and Stramp W, J. Math. Phys. 24 (1991) 40–49.

[13] Kudryashov N and Pickering A, J. Phys A: Math. Gen. 31 (1998), 9505–9518.

[14] Matveev V B and Salle M A, ”Darboux transformations and solitons”, Springer Series in
Nonlinear Dynamics, Springer-Verlag, 1991.
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