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Abstract

In this paper we use deep ideas in complex geometry that proved to be very powerful
in unveiling the Polyakov measure on the moduli space of Riemann surfaces and lead
to obtain the partition function of perturbative string theory for 2, 3, 4 loops. Indeed
a geometrical interpretation of the conformal Ward identity in two dimensional confor-
mal field theory is proposed: the conformal anomaly is interpreted as a deformation of
the complex structure of the basic Riemann surface. This point of view is in line with
the modern trend of geometric quantizations that are based on deformations of classi-
cal structures. Then, we solve the conformal Ward identity by using this geometrical
formalism.

1 Introduction

Two-dimensional conformal fields theories on Riemann surfaces without boundaries are
powerful tools to deal with string theory. In particular the dependence on the background
geometry has been used to develop effective actions for two-dimensional quantum gravity
[1]. This has led to exciting developments in non critical string theory [2] and may shed
some light on the quantization programme of higher dimensional gravity. Moreover the
quantum theory of the string can be expressed in two different versions. In the canonical
quantization it appears as the representation theory of Heisenberg, Virasoro and Kac-
Moody algebras. In the quantization formalism of Polyakov, which is geometric and
thus treats global objects, the integration over the matter field is Gaussian but the
integration over the zweibein (the field corresponding to the graviton and defining the
geometry of the two-dimensional gravity) [2] is non trivial and leads to two different
settings depending on the gauge. In the conformal gauge, obtained after transforming the
zweibein by diffeomorphism and Weyl rescalings into a flat reference gauge, the functional
integration analysis leads to the Liouville theory the action of which yields, out of critical
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dimension, a measure of the violation of the conformal symmetry at the quantum level. In
the light-cone gauge, which has a single non vanishing metric mode called the Wess-Zumino
field and is represented geometrically by the Beltrami differential, the theory takes a local
form. The resulting action is the Polyakov action which is a holomorphic functional of the
Beltrami differential and is reparametrization invariant. However its variation under the
Weyl rescaling produces the conformal anomaly the strength of which is measured by the
central charge of the model under consideration up to a conventional normalization. The
form of such an anomaly is universal.

2 The Beltrami differential

By definitin a collection ¢ of functions ¢, defined on each domain A, of a Riemann surface
> by

ba Ao — B, 00 = ¢ 0 24 (2.1)

is called a (p, q)-differential on the surface ¥ if it is invariant under holomorphic change
of coordinates:(Aq, 2a) — (A, 23). It is writen locally as

b = bpq (2,7) d2PdZ. (2.2)

As an example the Beltrami differential p is a (—1, 1)-differential; p = pZdz ® 0 which is
interpreted as a C> section of the fibre bundle k¥~ ® k, where k is the holomorphic cotan-
gent bundle on the surface >.. Geometrically the Beltrami differentials parametrize complex
structures on the bidimensional Riemann surface ¥ on which the model is constructed.
Due to this fact, the transition from a reference complex structure (z,%) parametrized by
v =0, to another one (f (z,%), f (z,%)) parametrized by p (z,%) # 0,where the conformal
invariance is maintained; 0f/0f = 0 is called a p-quasiconformal transformation. This
latter is defined by the Beltrami equation

(8- ud) f =0, (2.3)

with 0= % and 0 = %. Moreover let us consider for the sense-preserving diffeomorphism
f on a domain A of a Riemann surface 3 the derivative 0, f in the direction «:

Ouf = Of + e 299, (2.4)

Then we have

max |0, 1| = [0f] + 3] (2.5)

win|daf| = 0f] - [31] (2.6)

where || denotes the absolute value, and the dilatation quotient



Geometrical Formulation of the Conformal Ward Identity 143

0,
F= ke |Oaf| (2.7)
ming, |J, f|
is finite. Hence we can write
Dy <K (2.8)

for every z € A. On the other hand the Jacobian J; = |df|* — ‘5]”‘2 for this sense-
preserving diffeomorphism is positive. Then 0f # 0, and we can form the quotient

- 9f(z72)
_ 2.9
nem) =D (2.9
The function u, so defined, is called the analytic dilatation of the diffeomorphism f. Since
f is continuous p is Borel-measurable function and from (2.8) we see that |u(z,2z)| <

% =< 1. The definition of complex dilatation leads us to consider the Beltrami equation

(0 —pd) f =0, (2.10)

where p is measurable and ||u|| ., < 1. If f is conformal ;o vanishes identically and the
Beltrami equation becomes the Cauchy-Riemann equation 0f = 0.

3 Classical Ward identity

Ward identities are relations between Green’s functions resulting from initial classical in-
variance. They are the basic means providing insight into the quantum structure of gauge
theories. The use of Ward identities in Yang-Mills theory investigates gauge dependence
(this is the case of theories with composite fields). In quantum general gauge theories
(both renormalized and non renormalized ones) Ward identities underly the proof of the
existence of Noether charge operators with the algebraic properties required for the anal-
ysis of unitary conditions. For a two-dimensional quantum field theory the number of the
present exterior fields in the theory is the same as the number of Ward identities con-
straining the model. In particular for a two-dimensional conformal model constructed on
a bidimensional Riemann surface that is endowed with complex structures there are two
conformal Ward identities (one is the complex conjugate of the other). Moreover exterior
fields are interpreted as exterior sources of the energy-momentum tensors. This is the
basic statement of the Polyakov conjecture for a two-dimensional conformal model [3].
Moreover, in the Beltrami parametrization scheme, these exterior sources are identified as
Beltrami differentials p and @ (the complex conjugate of 1). Indeed the classical conformal
Ward identity is expressed as:

5 ) B
<55u@ + 5511%) Sc =0, (3.1)
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where Sc is the classical action of an effective 2d conformal model, & = £20 + £70 (€
Vect(X)) is a vector field on a tangent space of a bi-dimensional Riemann surface ¥ and
d¢ is the diffeomorphism symmetry generator. Then one can verify that the Ward identity
encodes the conformal invariance of the classical two-dimensional conformal model the
effective action of which is S¢. In a complex structure (z,Zz) of this Riemann surface ¥
the transform of a Beltrami differential x, under an infinitesimal diffeomorphism, is given
by

5§,u: W_lHZ, (32)

where W_1 = 0 — pd + pdp and H* = £ + pZ€7. One can verify that equation (3.2)
enables us to rewrite the classical conformal Ward identity as follows:
0S¢  —= 0S¢

Wy = 0 — pu0 — 20y is called the Ward operator. Taking into account the holomorphic
factorization of the action; S¢(u, 1) = S(u)+S() with S(@) = S(u), we get the following
relation

[ —

— — =0. A4

Wo (5,[1, + uWy (5ﬁ 0 (3 )

Then, as || < 1 [4], it is easy to show that this equation leads to the well-known classical
Ward identity:

5 (1)
op

Wa =0, (3.5)

where ©(z,%Z) = 65 (u) /dp]u = @ = 0 is the classical effective energy-momentum tensor
of the two- dimensional model under consideration. Geometrically speaking this latter
equation is interpreted as a particular case (j=2) of an exact p-holomorphy condition that
is satisfied by a j-differential f; (a (j, o)-differential ) [5]:

W;f; = 0. (3.6)

W, = 0 — pd — jOp is the generalized Ward operator the zero modes of which are j-
differentials.

4 Quantum Ward identity

At the quantum level the classical action is extended to the vertex functional I'(u, f)
which determines the Green functions of the model:

I =S¢+ hr®. (4.1)

'™ depends only on p and i and is generated by correlation functions of the classical
energy-momentum tensor. This latter is a non local distribution that diverges quadrati-
cally in the sense of the classical power- counting [6]. Then the classical Ward identity is
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extended to its quantum version which is satisfied by the functional I' modulo an inho-
mogeneous term of u and fi. Such an anomaly exists and is unique [7]. It is the reflection
of the Weyl-Lorentz anomaly of the metric scheme modulo a local counter-term [7]. An
integral form of this anomaly is given, on the complex plane, by the following:

/ A(C, ) = / dmCd>u (4.2)

where A(C, ut) is a differential three-form in the bigraded algebra of local cochains defined
on the connected diffeomorphism algebra [8]. C* = ¢* 4+ pZc¢? is a suitable combination
of the corresponding ghost fields to the diffecomorphisms parameters £2,£7 in the BRST
formalism and dm(z) = % is the two-dimensional measure expressed in the coordinates
(2,2).

Now the Legendre transform of the generating functional I' is the connected Green
functional which is expressed as:

ZC[J@/J? ﬂ] = /de¢¢F[¢a My ﬁ]a (43)
p

where ¢ is a collection of fields of the model and J, are the associated exterior sources.
Then the classical Ward identity (3.5) is translated, at the quantum level, to the following
anomalous Ward identity:

0Z;(p) _ Kk

W -
S 127

(0°1) (2). (4.4)

Zgn, 1) = Z°[Jy, 1, Tljg—o and k is the central charge of the model. As we can verify from
this latter equation the anomaly measures the non holomorphic character of the energy-
momentum tensor derived from the functional Z;. On the other hand the transition from
the classical level to the quantum one is expressed geometrically by a quasiconformal
transformation, the dilatation coefficient of which is the Beltrami differential p [4], from
the reference complex structure (z,%) defined by u = 0 to another one (Z, Z) determined
by the Beltrami equation:

(0 —pd)Z = 0. (4.5)
Then in this geometrical setup the classical level is characterized by an exact y-holomorphy

condition for the classical energy-momentum tensor (a 2-differential ). However the quan-
tum level is characterized by a deformed one for the quantum energy-momentum tensor.

5 Conformally covariant Ward identity
To preserve the conformal covariance of the diffeomorphism anomaly and then to get

manifest the conformal covariance of the modell a projective connection is required. This
latter parametrizes a projective structure that is associated to a complex structure [4].
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5.1 Conformally covariant anomaly

As a non trivial element of the 1-cohomological space of linear applications on the dif-
feomorphism algebra the above diffeomorphism anomaly can be expessed locally (up to a
sign) as [8]:

—k
A(C,p) = %(Ca% — ud*C). (5.1)

Its transformation law under a conformal change of coordinates

z— w(2) (5.2)
is given by
Ay = Az £ 26 () (COp — pdC)(2), (5.3)

where (;(w) = 9*Indw — £(0Indw)? is the Schwarzian derivative of the function w(z,z)
with respect to the variable z. In particular the Schwarzian derivative of a Moébius trans-
formation w; w € SL(2,p) is zero. Then the above expression of the anomaly becomes
conformally invariant in a projective atlas ( because, in this case, the second term in the
right hand side of equation (5.3) vanishes). On a general complex atlas we consider the
following form of the anomaly:

~ k

A(C, ) = g[Cai”u — ud*C + 2R(COu — udC)), (5.4)
T

where R(z,Z) is any complex function for the moment. However in order to get the

anomaly (5.4) conformally covariant and precisely a (—1, —1)-tensor with respect to the

conformal change of coordinates (5.2), that is
Ay = (0w) N (0w) 1A, (5.5)

and by taking into account the following transformation laws with respect to the same
conformal change of coordinates,

dm(w) = |0w|*dm(2), (5.6)
Co = 0wC,, (57)
thw = (0w) owp, (5.8)

one can verify that the function R(z,Z) should be a projective connection [4, 9]:
WaR = 3. (5.9)

It is a deformed p-holomorphic condition for the projective connection R by the diffeo-
morphism anomaly. Also it is easy to show that the transformation law, with respect to
the conformal change (5.2), of the projective connection R is given by:

R, = (0w) 4R, — &(w)). (5.10)
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Moreover one can verify that the particular case of this projective connection is the
Schwarzian derivative (. (w) which also satisfies the same equation

Wal.(w) = & p. (5.11)
Then one can verify that the conformally covariant form of the anomaly (5.4) can be
expressed as:

- k

ACp) = 5= (CLE() - nIR(0)). (5.12)

where LI = 0% + 2RO + OR ( the covariant form of the operator 9%). It is called the third
Bol’s operator. Moreover one can show (on any Riemann surface X) the relation:

/ dmpLR(C) = — / dm CLE() (5.13)
b b
and hence the integrated form of the diffeomorphism anomaly can be written as:
A(C, p) = o am CLE () (5.14)
y ) = 197 - 3 \H)- .

5.2 Conformally covariant Ward identity

The Polyakov conjecture for a two-dimensional conformal model states that, on the com-
plex plane, the formal series ZS(u) is resumed by the following Wess-Zumino-Polyakov
action [8]:

—k
Tywzp = %/dm;ﬁQ InoZz, (5.15)
p

where the local coordinate Z(z,%) satisfies the Beltrami equation (4.5). Then we have

k

Pwzp(i) = —-Z5(3). (5.16)

Moreover one can verify that the functional derivation of the action (5.15) with respect to
the Beltrami differential p is given by:

wzp . —k

511 ECZ(Z) (517)

Hence, by using the above equation, we get the conformally covariant form of the quantum
Ward identity:

5Tzz(z’z) = LsT(N)a (5'18)

where T, = 0Z5/dp is the quantum energy-momentum tensor of an effective two-dimensional
conformal model. This is the analogue of the deformed p-holomorphy equation that is sat-
isfied by the Schwarzian derivative given before. Then we get its solution as:

TZZ(Zaz) = gz(Z) + fzz(zvz)a (5‘19)
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where f,.(z,%) satisfies the exact p-holomorphy equation
Waf.. = 0. (5.20)

Moreover the transformation law of the function 7" under the holomorphic change of co-
ordinates z — w(z), which is
given by

Tow = (0w)*(Ts. — C(w)), (5.21)

shows that T is not a tensor with respect to two-dimensional conformal transforma-
tions. On the other hand, as the classical Ward identity implies that the classical energy-
momentum tensor ©,,(z,%) is a 2-differential ((2,0)-differential as defined in the intro-
duction), we can reexpress the quantum energy-momentum tensor in terms of ©,.(z,%)
as follows:

T..(2,7) = C(Z) + ©..(2,7). (5.22)

Then this conformal Ward identity’s solution tells us that the quantum corrections to
an effective classical two-dimensional conformal model are generated by the Schwarzian
derivative of a quasiconformal transformation on a Riemann surface on which the model
is considered. Moreover the transition from the classical level to the quantum one, ©,, —
T.., is geometrically interpreted as the passage from a reference atlas to its transform by
this quasiconformal transformation.

6 Iterative solution of the conformally covariant Ward iden-
tity
Now we rewrite the local form of the conformal Ward identity as follows:
— k R
OT = pdT + 2T0u + —— L5 (). (6.1)
127
To determine an iterative solution of such equation,on any two-dimensional Riemann sur-
face ¥ without boundary, as a Neumann series in powers of the Beltrami differential we

define a Cauchy-Riemann kernel N on this surface by the following: for any complex
valued function f we have

(5‘1 f) (2) = /E dm(w)N(w, 2) f (w). (6.2)
We rewrite equation (6.1) as:
0T = DAT + LE(p), (6.3)

where T= %T and D= (,u8+28,u)5_1. As the Beltrami differential satisfies the ellipticity
condition: p € C°(X), |u| < 1 the Cauchy integral (6.2) enables us to get, in the complex
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structure (z,%), a conformally covariant iterative solution of the conformal Ward (6.1)
identity in powers of the Beltrami differential u:

To—/dmleL?}?(l)—/dm1M1Vo1T1, (6-4)
» %

where we have used the notations:

T, = T(z) (6.6)
Niw = NG-1,i) (6.7)
Victi = 20;N;—1; + Ni—1i0; (6.8)

Zi N\ dz;
dm; = AT (6.9)

21

Then, at any order of the perturbative series say (n — 1) in any local coordinates system
(zn—1) of the same atlas on the surface ¥, we get

Tnfl = / dmn,un(aganln + anlan) - / dmnvnflnTna (610)
¥ ¥

where R, is the iterative solution of the u-holomorphy equation that is satisfied by the
projective connection R on any Riemann surface . On the complex plane this solution
was given in [4] as:

+o0

Rp=) (-1 / A (dmyentten) Oisn AR 115 (6.11)
k=1 p

where Af = N[ is the Cauchy kernel on the complex plane and A} = (20,_1A}_| +
AP OK)NY, 41+ Finally we express the quantum energy-momentum tensor as the sum of
the perturbative series

To = koSS
0_1271'

n=1

(—1)n/ Py (dmipi Vi 1) (05 Vo oin + Ra). (6.12)
>

7 Conclusion

We have expressed geometrically the two-dimensional conformal Ward identity as a u-
holomorphy equation on a complex Riemann surface 3 on which the model is considered.
This geometrical setup enables us to get the exact solution of this conformal Ward identity
as a p-holomorphic function up to the classical solution. Moreover we have exhibited
the conformal covariance character of this identity by expressing this latter in terms of
conformally covariant operators like the third Bol’s operator. Finally we have developed
the iterative solution of this identity as a Neumann series in powers of the the function
@ on any complex Riemann surface without boundary by supposing the existence of a
Cauchy kernel the explicit expression of which on this surface was not given.
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