
Research on Vulnerability Detection for Software Based on Taint Analysis

Beihai Liang 1,2, Binbin Qu 1,2, Sheng Jiang1,2,Chutian Ye1,2
1School. of Compute Science, Huazhong University of Science & Technology, Wuhan, 430074,China

2 Shenzhen Key Laboratory of High Performance Data Mining, Shenzhen, 518055, China
{beihai, bbqu, jwt, yevswang}@hust.edu.cn

Abstract—At present, Cross Site Scripting (XSS) vulnerability
exists in most web sites. The main reason is the lack of
effective validation and filtering mechanisms for user input
data from web request. This paper explores vulnerability
detection method which based on taint dependence analysis
and implements a prototype system for Java Web program.
We treat all user input as tainted data, and track the flow of
Web applications, then we judge whether it will trigger an
attack or not. The taint dependent analysis algorithm
mentioned in this paper is used to construct the taint
dependency graph. Next the value representation method of
the string tainted object based on finite state automata is
discussed. Finally, we propose the vulnerability detection
method for the program. The experiment result shows that the
prototype system can detect reflection cross-site scripting
vulnerability well in those programs which don’t have effective
treatment for the user input data.

Keywords-XSS vulnerability; taint dependency graph; web
security

I. INTRODUCTION

With the development of computer and Internet
technology, Web applications in various fields are becoming
increasingly popular, diversified and sophisticated. At the
same time, the complexity of the program brings out more
security problems. According to the Open Web Application
Security Project (OWASP) application security vulnerability
report, in 2010 and 2011, the top two security vulnerabilities
were Injection Flaws and Cross Site Scripting (XSS).

At present, due to lack of effective verification and
filtering mechanism for the Web request which contains the
user input data, most Web sites exist XSS loophole. The
attacker can launch an attack by constructing special input
data.

Therefore, using static string analysis to excavate the
vulnerability become an active research area. The critical of
static string analysis is to identify all the possible values of
the string expression at specified point of the testing
program.

So far, many researchers have done lots of work about
cross-site scripting vulnerability detection.

Paros Proxy tool[1] uses web crawler technology through
a proxy to scratch the webpage and analysis them. It can be
used to detect SQL Injection,XSS,CRLF and other common
Web vulnerabilities. Because its inner test data can not be
changed and the number of test data packet is limited, its
false positives rate is high.

XSS-Me tool [2]is designed for XSS vulnerability,
however, it can be only used for form test and single page
analysis but not for the safety test with parameters in the
URL link.

Xie Long [3] proposed a static detection method based on
control flow analysis and data flow analysis. He analyzed
the formation process for XSS vulnerability and designed a
set of judgment conditions for the existence of XSS
vulnerability, and got the control flow and data flow
information by doing static analysis for the JSP source code.

Gary Wassermann [4] proposed a static detection method
which based on string expression for tainted data flow. This
method uses a regular language to describe the string at a
specified program point to track tainted data.

Fang Yu [5] proposed an authentication method for string
manipulation based on finite state machine in PHP program.
He used finite state automata to represent the value set of a
string variable and used an automatic operation to represent
each string manipulation function.

This paper presents a vulnerability detection technique
based on taint dependence analysis for Java Web program.
We treat all user input as tainted data, and track the flow of
Web applications, then we judge whether it will trigger an
attack or not. Firstly we do static analysis for the program
source code to generate the data dependency graph.
Secondly we do the taint dependency analysis on the basis
of the data dependency graph. Finally, we calculate all the
possible values of the taint and validate them with the attack
mode to detect vulnerability.

The remainder of this paper is organized as follows:
Section 2 gives the related definitions; section 3 gives

the taint dependency analysis algorithm and construct the
taint dependency graph; section 4 discusses value
representation method for string tainted object based on
finite state automata and gives the program vulnerability
detection process; section 5 describes the design of
vulnerability detection system for JAVA program; section 6
verifies the effectiveness of the detection method through
experiment ; the end is the conclusion and prospect.

II. RELATE DEFINITIONS

A. Data Dependency Analysis

Def 2.1 Control Flow Graph (CFG). CFG = (N, E, n0,
q)is a quadruple, in which N is a set of nodes in control flow
graph, the node information is a statement for method M in
program P ; E ⊆ N×N refers to the set of edges and reflects
the control flow relationship between two statements in the
program; n0∈ N is the beginning statement of method M,

Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0434

which is the entry node of the control flow graph; q∈ N is
the end statement of method M, which is the exit node of
the control flow graph.

Def 2.2 Defined-Clear Path(DCP).For the node

sequence p: jiii nnnn ,...,,, 21 ++ in CFG, if there is an edge

for any ordered adjacent nodes <ni,ni+1>, we call P is a
reachable path from ni to nj. If there is no statement
redefinition in path P for variable in node nj, i.e.

j,DEF(n) USE(n)n P ϕ∀ ∈ ∩ = .We call path p is a DCP path

from ni to nj in CFG.
Def 2.3 Data Dependent (DD).For two statements in

CFG si and sj which represented by two nodes ni and nj in
Program P, only if the following two conditions are met: 1)
the existence of a Defined-Clear path from ni to nj in CFG ;
2) variable collection i jV DEF(n) USE(n)= ∩ , V ϕ≠ ,

statement sj data depends on statement si by set of variables
V (denoted by V

j is s⎯⎯→).

The data dependency graph (DDG) is the graphical
concept representation of the program data dependencies.

B. Taint Dependency Analysis

A finite statement sequence 1 2 3,: , , ... , ns s s sπ < > which is

obtained by a topological in the CFG is a possible execution
sequence. Each statement in the execution sequence π
performs an action (such as: get user input, execute
judgment, perform calculations, access data, and display the
results). The cross-site scripting vulnerability usually
happens in jumping from one page to another. In this paper
we focus on the above critical operation statements’ security.
The statement executed to perform critical operations is
defined as the fragile sensitive point, which needs for
vulnerability verification.

Def 2.4 Vulnerability Sensitive Point (VSP) .If a
special statement S in the execution sequence of the
program P performs critical operations (for example: page
jump, executes scripts, etc.), the statement S may be
exploited by attackers, then we call the statement S a fragile
sensitive point in program P.

The taint dependency is a special kind of data
dependency which reflects the way tainted data passes from
the input to the fragile sensitive points, i.e.… a reflection of
how the tainted data flow from the input to the fragile
sensitive points under the program control.

Def 2.5 Taint. The user input data X in program P flows
from the input interface to fragile sensitive point in the
execution sequence, the variable flowed by the data X in the
data flow path is called as taint.

Def 2.6 Taint Dependence Graph (TDG).TDG is a
directed graph G = <N,E>. N is a finite set of nodes, E ⊆
N×N is a set of directed edges. For each edge ,i jn n E< > ∈ ,

the value of ni is dependent on the value of nj.

III. TAINT DEPENDENCY ANALYSIS

Taint dependency analysis analyzes the data
dependencies among each statement in data dependency
graph reversely from fragile sensitive point for the purpose

of constructing a taint dependency graph. The main steps are
as follows:

1) get the data dependency graph according to the fragile
sensitive points;

2) set tainted objects in fragile sensitive point as the
initial taint;

3) generate the corresponding node depending on the
type of taint;

4) treat the current taint as the data-dependent edge
information and get the pollution sources;

5) parse the tainted object in the pollution sources;
6) analyze each taint.
In summary, the taint dependency analysis algorithm is

shown in Algorithm 1.
Algorithm 1 :taint dependency analysis algorithm
Input1: fragile sensitive point (VSP)
Input2:data dependency graph (DDG)for the fragile

sensitive point
Output: taint dependency graph (TDG)
1：initialize taint analysis queue called taintQueue, and

the pollution sources collection which called
taintSourceSet is empty
2：taintQueue.add(tainted objects in VSP)
3：while(taintQueue φ≠)
4： taint = taintQueue.getnext()
5： switch(type of the tainted object)
6： case：constant
7： generate new ordinary nodes (constant)
8： case：references
9： generate new ordinary nodes

10： if(parameter references)
11： generate parameters reference node, add the

dependency information
12： else
13： stmts：= treat the taint as the edge

information ,take dependent statement from
DDG

14： taintSourceSet.addAll(each statement in the
expression in stmts)

15： end if
16： case：expression
17： generate temporary ordinary node
18： taintSourceSet.add(taint)
19： end switch
20： for each taintSource ∈ taintSourceSet
21： if(taintSource is a method call expression)
22： if(taintSource is a input interface method

calls)
23： Generate uninitialized node, and add the

dependency information
24： else
25： generates an operation node and add the

dependency information
26： taints：=taint parsed from taintSource
27： taintQueue.addAll(taints)
28： end if
29: else
30： taints：= taint parsed from taintSource
31： taintQueue.addAll(taints)
32： end if
33： end for
34：end while

Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0435

Algorithm 1 starts from the fragile sensitive point. It
analyzes the taint spread source in data dependency graph
reversely. A constant ordinary node which no longer
belongs to any pollution source is generated at Line 7;
parameter reference node is generated at Line 11, the node's
data dependency relies on the input parameter values , and
we don’t analyze the pollution source any more in the
algorithm ; The uninitialized nodes generated by the Line 23
due to the method call from the input interface denotes that
the node data is a non-trusted user input, which can be any
value and no longer depend on other pollution sources .
Algorithm 1 contains two nested while and for loops and
generates a node in every cycle at least. Each node
corresponds to a data object or a method call. If the total
number of data objects in the data dependency graph from
fragile and sensitive point is n. The time complexity of the
algorithm 1 is O (n).

IV. TAINTED STRING EVALUATION AND VULNERABILITY

DETECTION METHOD

In order to describe the value of taint at the fragile
sensitive point, this section focuses on the representation of
the tainted string value and vulnerability detection method.

A. Tainted String Value Representation

Static analysis method can not determine the specific
value during the runtime of the program. But in the context
of the program control flow and data flow graph, the
possible value of the string is a determined finite set. That
means the possible value of the string is determined during
the runtime. So we can calculate the string variable value set
due to the context of the program in static analysis. The
context mentioned in this paper means taint dependencies.

According to the formal language theory, a string value
set can be abstracted into a finite automaton. A finite
automaton represents a language which contains a set of
strings. During static analysis process, the value set of the
tainted string can be represented by a finite automaton..

In this paper we descript the taint value in the taint
dependency graph by using the automata operation library
developed by Anders Møller etc[6] .

B. Vulnerability Detection Method

The essence of vulnerability detection is to verify
whether the value set of tainted string at the fragile sensitive
points can match some special attack modes. Assume that a
fragile and sensitive point exists in the execution
sequence 1 2 3,: , , ... , ns s s sπ < > of program P and this point

could match a attack mode, this reflects that the malicious
user data in the execution sequence has not been effectively
cleaned-up and the program can be attacked at this point.
Therefore, the key of vulnerability detection is how to get
string value of fragile sensitive point tainted object.

This paper presents a vulnerability detection method
based on taint dependency analysis. We construct the taint
dependency graph from the tainted string at the fragile
sensitive point to the taint input source on the basis of static
analysis . We calculate the value set of the root node (the
taint at the fragile sensitive point) in the taint dependency

graph by using the automata operation provided by the
automata operation library mentioned above. Next we take
the intersection of the value set of the root node and the
attack mode. If the intersection is not empty, it shows that
the fragile sensitive point could match the attack mode
successfully, and then we say the vulnerability exists. The
process is shown in Fig 1.

V. PROTOTYPE SYSTEM

In this paper, we propose the prototype design of
vulnerability detection system for Java (JVDS).Relying on
the dependency analysis for program source code, we
construct the taint dependency graph and represent the value
set of the tainted string by using finite state automata, then
match the automaton for string value with the automaton for
attack mode to verify whether the program has the safe
handling against user input data. The exact design of JVDS
is shown in Fig2.

The JDVS mainly includes the following functional
blocks:

1) Static analysis. First abstract syntax tree of the input
Java source code file will be generated by the preprocessor,
lexical and grammar parser. Then we traverse the abstract
syntax tree to transform the code information into
equivalent code intermediate representation (IR).

2) Dependency analysis. we traverse the IR for the
control flow as well as data flow analysis to collect data
dependency information and generate the data dependency
graph for the program.

3)Taint analysis. We analyze the tainted data pollution
source at the fragile sensitive point for each vulnerability
sensitive point according to the data dependency graph.
Generate the taint dependency graph from fragile sensitive
point to pollution source.

4)Vulnerability detection engine. We collect fragile sensitive

Figure1 program vulnerability detection process

Figure 2 Detailed designs of the JVDS

Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0436

points by traversing the IR and matching the sensitive API
calls. Then we use automata operation library to evaluate the
taint dependency graph at the fragile sensitive point. By
matching with the attack mode, we implement the
verification process for each fragile sensitive point’s
vulnerability and generate the vulnerability report.

5)Attack mode library, which is designed for the
management and configuration of the attack mode.

VI. EXPERIMENT ANALYSIS

The experiment is designed to analyze the correctness
and validity of the prototype system.

The main code of test case is shown in Fig3. The case
code is excerpted from CWE182_getParameter_Servlet_01
in CWE80_XSS vulnerability public set of test case which
belongs to CWE. Function bad() with loopholes and
function good() with no loopholes. The functionality of the
case code is getting the echo after processing the user's input
data. Function bad() gets the user's input in line 25 and
echoes back after calling the replaceAll function to filter the
input data in line 29. The 29th line of the function bad()
calls the function "java.io.PrintWriter.println" to response to
the user's browser by the object for responding to user
requests. The browser displays information to the user after
parsing the data returned by the response object, if the
response data returned embedded malicious script, the
browser will execute the malicious script. So the function
bad() may include a reflective cross-site scripting
vulnerability, line 29 is a fragile sensitive point statement.
The taint dependency graph is shown in Fig4.

The system found two XSS cross-site scripting
vulnerability fragile sensitive points, one of which is
vulnerable. The weak point is the statement in line 29 in the
class named CWE80_XSS__CWE182_getParameter_Servlet_01
within the package called testcases. The matching attack
mode is " .*\\<[Ss][Cc][Rr][Ii][Pp][Tt] .*\\>.* ", <script> is
the tag of embedded script in HTML language. The function
bad() does not have effective filtration treatment for the
data ,so the malicious user can launch an attack by
embedding a script which contains <script> tags. The
experiment result shows that the system can detect reflective
cross-site scripting vulnerability effectively in the program
which doesn’t have the effective treatment for the user input
data.

VII. CONCLUSIONS

Cross Site Scripting vulnerability exists in most Web
sites. The main reason for its appearance is the lack of
effective validation and filtering mechanism for user input
data in Web request.

In this paper, we proposed the concept of taint
dependency graph and the taint dependency analysis
algorithm for Java program. Besides, we discussed the
representation for the value set of the tainted string object
based on the finite state automata and combined taint
analysis and attack pattern matching rules to achieve the
program vulnerability detection method. The experiment
result shows that the prototype system can detect reflection

Figure 3 Cross Site Scripting vulnerability case code

Figure 4 TDG of function bad()

cross-site scripting vulnerability well in those programs
which don’t have effective treatment for the user input data.

The following work is as follows: 1) Do the further
study for reverse taint analysis techniques based on the
method call dependence, improve taint dependency graph 2)
Expand the prototype system which supports for the
vulnerability detection for various programming languages .

ACKNOWLEDGMENT

This research is supported by Shenzhen Key Laboratory for High
Performance Data Mining with Shenzhen New Industry Development
Fund under grant No.CXB201005250021A

REFERENCES
[1] Paros，http://www.parosproxy.org/index.shtml. 2009

[2] XSS-Me，http://www.securitycompass.com/exploite.tml. 2009

[3] Xie Long. Research and Implementation of JSP cross-site scripting
vulnerabilities static detection technology: [MS].Guangzhou:
Zhongshan University Librarian, 2011

[4] G.Wassermann, Zhendong Su. Static detection of cross-site scripting
vulnerabilities. In: Proc. 2008 ACM/IEEE 30th International
Conference on Software Engineering. Leipzig , 2008: 171-180

[5] Fang Yu, T.Butan et al. Symbolic String Verification: An Automata-
based Approach. In: Proc. of the 15th International SPIN Workshop
on Model Checking of Software. Los Angeles, 2008: 306-324

[6] A.S.Christensen, A. Møller, M.Schwartzbach. Precise Analysis of
String Expressi- ons. In: Proc.of 10th International Symposium, SAS
San Diego.2003:1-18

Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0437

