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Abstract

We consider the propagation of TE-polarized electromagnetic waves in cylindrical
dielectric waveguides of circular cross section filled with lossless, nonmagnetic, and
isotropic medium exhibiting a local Kerr-type dielectric nonlinearity. We look for
axially-symmetric solutions and reduce the problem to the analysis of the associated
cubic-nonlinear equation. We show that the solution in the form of a TE-polarized
electromagnetic wave exists and can be obtained by iterating a cubic-nonlinear integral
equation. We derive the associated dispersion equation and prove that it has a root
that determines this solution.

1 Introduction

The propagation of electromagnetic waves in a cylindrical dielectric waveguide of circular
cross section filled with a linear medium is a relevant topic of classical electromagnetics
[1], [2]. Nonlinear cylindrical dielectric waveguides were investigated by several authors
[3]–[8]. However, from the mathematical viewpoint, the study is not complete because the
analysis of the dispersion equation is still missing (to the best of our knowledge). In this
paper, we study electromagnetic waves propagating in a cross-sectionally bounded dielec-
tric, nonmagnetic waveguide filled with a medium exhibiting a local Kerr-type dielectric
nonlinearity. The problem is reduced to a cubic-nonlinear ordinary differential equation
of the second order and then to a nonlinear integral equation with the kernel in the form
of Green’s function for the Bessel equation. The existence of the propagating TE-waves
is proved using the method of contraction mapping.
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In Section 2 we specify the problem. In Section 3 we derive a nonlinear integral equation
and present an iterative solution including a sufficient condition for its existence. Section
4 is devoted to the analysis of dispersion equations. We give the sufficient conditions for
the existence of solutions for the exact and iterate dispersion equations and prove the
convergence of the iterate eigenvalues to the exact eigenvalues.

2 Statement of the problem

We consider the wave propagation in a cylindrical dielectric waveguide with the circular
cross section W = {(x, y) : ρ =

√
x2 + y2 < R}. The waveguide is homogenous in the

z-direction. The permittivity ε of the waveguide medium has a nonlinear dependence on
the electric field according to the Kerr law, so that

ε =
{

ε2 + a|E|2, 0 ≤ ρ ≤ R,
ε1, ρ > R,

(2.1)

where E denotes the electric field in the waveguide and a, ε1 > 0, ε2 > 0 are real con-
stants. The medium is nonmagnetic with µ = µ0 being the free-space permeability. The
electromagnetic fields E and H satisfy Maxwell’s equations

rotH = −iωεE, (2.2)

rotE = iωµ0H, (2.3)

the continuity of the tangential components on the interface, and the radiation condition,
according to which the amplitudes of the field components decay exponentially at infinity.

In the cylindrical coordinates (ρ, ϕ, z) Maxwell’s equations have the form

1
ρ

∂Ez

∂ϕ
− ∂Eϕ

∂z
= iωµ0Hρ, (2.4)

∂Eρ

∂z
− ∂Ez

∂ρ
= iωµ0Hϕ, (2.5)

1
ρ

∂

∂ρ
(ρEϕ)− 1

ρ

∂Eρ

∂ϕ
= iωµ0Hz, (2.6)

1
ρ

∂Hz

∂ϕ
− ∂Hϕ

∂z
= −iωεEρ, (2.7)

∂Hρ

∂z
− ∂Hz

∂ρ
= −iωεEϕ, (2.8)

1
ρ

∂

∂ρ
(ρHϕ)− 1

ρ

∂Hρ

∂ϕ
= −iωεEz. (2.9)

We consider the case of TE-polarization and assume [9] thatE={0;Eϕ; 0}, H={Hρ; 0;Hz}.
As a result, equations (2.4)–(2.9) are reduced to

−∂Eϕ

∂z
= iωµ0Hρ, (2.10)
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1
ρ

∂

∂ρ
(ρEϕ) = iωµ0Hz, (2.11)

1
ρ

∂Hz

∂ϕ
= 0, (2.12)

∂Hρ

∂z
− ∂Hz

∂ρ
= −iωεEϕ, (2.13)

−1
ρ

∂Hρ

∂ϕ
= 0. (2.14)

It follows from (2.12) and (2.14) that Hz = Hz(ρ, z) and Hρ = Hρ(ρ, z) do not depend on
ϕ. Equations (2.10) and (2.11) yield

Hρ = − 1
iωµ0

∂Eϕ

∂z
, Hz =

1
iωµ0

1
ρ

∂

∂ρ
(ρEϕ). (2.15)

Insertion of Hρ and Hz into (2.13) leads to

∂

∂ρ

(
1
ρ

∂

∂ρ
(ρEϕ)

)
+

∂2Eϕ

∂z2
+ ω2εµ0Eϕ = 0. (2.16)

We look for solutions to this equation in the form of axially-symmetric waves Eϕ(ρ, z, γ) =
u(ρ, γ)eiγz, where γ is a real spectral parameter. Thus, (2.16) can be written as

(
1
ρ
(ρu)′)′ + (ω2εµ0 − γ2)u = 0, (2.17)

where the prime denotes the differentiation with respect to ρ. Taking into account that
ε = ε1 outside the waveguide, we obtain the Bessel equation

u′′ +
1
ρ
u′ − 1

ρ2
u− k2

1u = 0, ρ > R, (2.18)

where k2
1 = γ2 − ω2ε1µ0.

Inside the waveguide, where ε = ε2 + a|E|2, we obtain a cubic-nonlinear second-order
differential equation

u′′ +
1
ρ
u′ − 1

ρ2
u+ k2

2u+ αu3 = 0, 0 ≤ ρ ≤ R, (2.19)

where α = ω2aµ0, k2
2 = ω2ε2µ0 − γ2, and u(ρ, γ) is a real function. The continuity

conditions on the interface are [Eϕ]ρ=R = 0 and [Hz]ρ=R = 0, which lead to the conditions

[u]ρ=R = 0, [u′]ρ=R = 0, (2.20)

where [u]ρ=R = u(R− 0)− u(R+ 0). The spectral parameter is γ.
Let us formulate problem P: to find nontrivial bounded functions u(ρ, γ) continuously

differentiable on a semi-infinite interval ρ > 0 and the corresponding values of γ such
that u(ρ, γ) satisfies equations (2.18), (2.19) and the continuity (transmission) conditions
(2.20).
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Taking into account the radiation conditions, we choose the solution of the Bessel
equation (2.18) in the form

u = C1K1(k1ρ), ρ > R,

where K1 is the Macdonald function and C1 denotes an arbitrary real nonzero constant.
The radiation conditions hold because K1(k1ρ) → 0 exponentially as ρ → ∞ for positive
k1.

We introduce the dimensionless variables and parameters ρ̃ = k0ρ, z̃ = k0z, R̃ = k0R,
ε̃ = ε/ε0, k̃2 =

√
ε̃2 − (γ̃)2, k̃1 =

√
(γ̃)2 − ε̃1 (ε̃2 > ε̃1), γ̃ = γ/k0, α̃ = aC2

1/ε0, ũ = u/C1,
and k2

0 = ω2ε0µ0. Below, we omit the tildes and consider the problem in the normalized
form. In particular,

u = K1(k1ρ), ρ > R (2.21)

in the normalized form.

3 Nonlinear integral equation and its solutions

Equation (2.19) can be written in the form (with k = k2)

(ρu′)′ + (k2ρ− 1
ρ
)u+ αρu3 = 0; (3.1)

the (linear) Bessel equation is written as

ρu′′ + u′ + (k2ρ− 1
ρ
)u = 0. (3.2)

Represent the latter in the operator form

Lu = 0, L = ρ
d2

dρ2
+

d

dρ
+ (k2ρ− 1

ρ
). (3.3)

Using standard methods [10] one can construct Green’s function G for the boundary value
problem

LG = −δ(ρ− s),
G|ρ=0 = G′|ρ=R = 0 (0 ≤ s ≤ R)

in the form

G(ρ, s) =
π

2

[
J1(kρ)J1(ks)

J ′
1(kR)

N ′
1(kR)− J1(kρ<)N1(kρ>)

]
, 0 ≤ ρ, s ≤ R, (3.4)

where

ρ< = min{ρ, s}, ρ> = max{ρ, s}. (3.5)

In the operator form equation (2.19) reads

Lu+ αB(u) = 0, B(u) = ρu3. (3.6)
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Using the second Green’s formula

R∫
0

(vLu− uLv)dρ =

R∫
0

(v(ρu′)′ − u(ρv′)′)dρ = R(u′(R)v(R)− v′(R)u(R)) (3.7)

and setting v = G, we have

R∫
0

(GLu−uLG)dρ = R(u′(R−0)G(R, s)−G′(R, s)u(R−0)) = Ru′(R−0)G(R, s). (3.8)

Expressing the left-hand side by using (3.6)

R∫
0

(GLu− uLG)dρ = −α

R∫
0

GB(u)dρ+ u(s), (3.9)

we obtain an integral representation of the solution u(s) to (2.19) in the interval [0, R]

u(s) = α

R∫
0

G(ρ, s)ρu3(ρ)dρ+Ru′(R− 0)G(R, s), 0 ≤ s ≤ R. (3.10)

Taking into account the transmission condition u′(R− 0) = u′(R+0) and formula (2.21),
we transform equation (3.10) to obtain

u(s) = α

R∫
0

G(ρ, s)ρu3(ρ)dρ+ f(s), 0 ≤ s ≤ R, (3.11)

where

f(s) = Rk1K
′
1(k1R)G(R, s) (3.12)

and

G(R, s) =
1

k2R

J1(k2s)
J ′

1(k2R)
. (3.13)

Note that f(s) does not depend on u. The dispersion relation

u(R+ 0) = α

R∫
0

G(ρ,R)ρu3(ρ)dρ+Rk1K
′
1(k1R)G(R,R) (3.14)

follows from the transmission conditions u(R− 0) = u(R+ 0) applied to (3.11).
We abbreviate N(ρ, s) = αG(ρ, s)ρ and consider an integral equation in C[0, R]

u(s) =

R∫
0

N(ρ, s)u3(ρ) dρ+ f(s) (3.15)
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assuming that f ∈ C[0, R] (J ′
1(kR) 
= 0). The kernel N(ρ, s) is continuous in the square

0 ≤ ρ, s ≤ R.
The linear integral operator acting in C[0, R]

Nw =

R∫
0

N(ρ, s)w(ρ) dρ (3.16)

is bounded with respect to the norm

‖N‖ = max
s∈[0,R]

R∫
0

|N(ρ, s)| dρ. (3.17)

The nonlinear operator B0(u) = u3(ρ) is bounded and continuous in C[0, R]. Hence, the
nonlinear operator

F (u) =

R∫
0

N(ρ, s)u3(ρ) dρ+ f(s) (3.18)

is completely continuous on each bounded subset in C[0, R].
Below we need the solution of the equation

r − ‖N‖r3 = ‖f‖ (3.19)

with

‖f‖ = max
s∈[0,R]

|f(s)| . (3.20)

The function

y(r) = r − ‖N‖r3 (3.21)

has only one positive point of maximum rmax =
1√
3‖N‖ , where ymax = y(rmax) =

2
3
√
3‖N‖ .

Subject to the condition

‖f‖ <
2
3

1√
3‖N‖ (3.22)

equation (3.19) has two nonnegative solutions r− and r+, r− ≤ r+, which satisfy the
inequalities

‖f‖ ≤ r− ≤ 1√
3‖N‖ , (3.23)

1√
3‖N‖ ≤ r+ ≤ 1√‖N‖ . (3.24)
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Equation (3.19) has the roots

r− = −2
√

1
3‖N‖ cos

(
arccos(3

√
3

2 ‖f‖√‖N‖)
3

− 2π
3

)
, (3.25)

r+ = −2
√

1
3‖N‖ cos

(
arccos(3

√
3

2 ‖f‖√‖N‖)
3

+
2π
3

)
. (3.26)

If ‖f‖ = 0, then r− = 0 and r+ = 1√
‖N‖ . If condition (3.22) holds then

r− <
1√
3‖N‖ . (3.27)

If ‖f‖ = 2
3

1√
3‖N‖ , then r− = r+ =

1√
3‖N‖ .

We have proved the following statement.

Lemma 1. If the condition (3.22) holds then equation (3.19) has two nonnegative solutions
r− and r+ such that r− < r+.

Using Schauder’s principle [12], one can prove that for each f ∈ Sρ̂(0) ⊂ C[0, R], where
ρ̂ = 2

3
1√

3‖N‖ , there exists a solution u(ρ, γ) for (3.15) inside the ball S+ = Sr+(0).

Lemma 2. If ‖f‖ ≤ 2
3

1√
3‖N‖ , then equation (3.15) has at least one solution and ‖u‖ ≤ r+.

Proof. Since F (u) is completely continuous, it is necessary to verify that F maps the ball
S+ into itself. Assume that u ∈ S+. Using (3.18), (3.16), and (3.17) we obtain

‖F (u)‖ ≤ ‖N‖‖u‖3 + ‖f‖ ≤ ‖N‖(r+)3 + ‖f‖ = r+.

It means that FS+ ⊂ S+. �

Next we prove that if (3.22) holds then (3.15) has a unique solution inside the ball
S− = Sr− . We introduce the kernel N0(ρ, s) = ρG(ρ, s) such that N(ρ, s) = αN0(ρ, s) and
‖N‖ = |α|‖N0‖. Note that N0(ρ, s) does not depend on α.

Theorem 1. If |α| < A2, where

A =
2
3

1
‖f‖√3‖N0‖

(3.28)

and

‖N0‖ = max
s∈[0,R]

R∫
0

|ρG(ρ, s)| dρ

(A > 0 does not depend on α), then (3.6) has a unique solution u and this solution is a
continuous function: u ∈ C[0, R], ‖u‖ ≤ r−.
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Proof. If u ∈ S−, then

‖F (u)‖ ≤ ‖N‖‖u3‖+ ‖f‖ ≤ ‖N‖r3
− + ‖f‖ = r−.

According to Schauder’s theorem, (3.15) has at least one solution if f ∈ Sρ̂(0). If u1, u2 ∈
S−, then

‖F (u1)− F (u2)‖ = ‖
R∫

0

N(ρ, s)(u3
1(ρ)− u3

2(ρ))dρ‖ ≤ 3‖N‖r2
−‖u1 − u2‖.

It follows from (3.28) that condition |α| < A2 is equivalent to (3.22). If f(s) satisfies (3.22)
then (3.27) holds and we have 3‖N‖r2− < 1.

Therefore, under the condition (3.22), F maps S− into itself. Also F is a contraction
on S−. Thus (3.15) has the unique solution in S−. �

Below we need a statement about the dependence of solutions of equation (3.15) on
parameters.

Theorem 2. Let N and f in (3.15) be continuous functions of parameter λ ∈ Λ0,
N(λ, ρ, s) ⊂ C(Λ0 × [0, R] × [0, R]), and f(λ, s) ⊂ C(Λ0 × [0, R]) on a real segment Λ0.
Assume also that the inequality

‖f(λ)‖ <
2
3

1√
3‖N(λ)‖ , λ ∈ Λ0, (3.29)

is valid. Then equation (3.15) has one and only one solution u(ρ, λ) for each λ ∈ Λ0 which
is a continuous function of parameter λ, u(ρ, λ) ⊂ C(Λ0 × [0, R]).

Proof. Consider the equation

u(s, λ) =

R∫
0

N(λ, ρ, s)u3(ρ, λ)dρ+ f(s, λ). (3.30)

Existence and uniqueness of solutions u(λ) follow from Theorem 1. We will prove the
continuous dependence of the solutions on parameter λ.

From (3.25), it follows that r−(λ) is a continuous function of λ on segment Λ0. Set
r0 = maxλ∈Λ0 r−(λ); this function has a maximum at the point λ0 with r−(λ0) = r0.

Next, set Q = max
λ∈Λ0

(3r2−(λ)‖N(λ)‖); this function has a maximum at the point λ̂ ∈ Λ0

with Q = 3r2−(λ̂)‖N(λ̂)‖, and Q < 1 under the condition (3.29). Assume first that
‖u(λ)‖ ≥ ‖u(λ+∆λ)‖. Then we have

|u(s, λ+∆λ)− u(s, λ)| = |
R∫

0

N(λ+∆λ, ρ, s)u3(ρ, λ+∆λ)dρ

−
R∫

0

N(λ, ρ, s)u3(ρ, λ)dρ+ (f(s, λ+∆λ)− f(s, λ))|
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≤
R∫

0

|N(λ+∆λ, ρ, s)−N(λ, ρ, s)| |u(ρ, λ+∆λ)|3dρ+
R∫

0

|N(λ, ρ, s)| |u3(ρ, λ+∆λ)−u3(ρ, λ)|dρ

+|f(s, λ+∆λ)− f(s, λ)| ≤ ‖u(λ+∆λ)‖3

R∫
0

|N(λ+∆λ, ρ, s)−N(λ, ρ, s)|dρ

+‖u(λ+∆λ)− u(λ)‖(‖u(λ+∆λ)‖2 + ‖u(λ+∆λ)‖‖u(λ)‖+ ‖u(λ)‖2)×

×
R∫

0

|N(λ, ρ, s)|dρ+ ‖f(λ+∆λ)− f(λ)‖

≤ r3
0‖N(λ+∆λ)−N(λ)‖

+‖u(λ+∆λ)− u(λ)‖3r2
−(λ)‖N(λ)‖+ ‖f(λ+∆λ)− f(λ)‖.

Hence,
‖u(λ+∆λ)− u(λ)‖ ≤ r3

0‖N(λ+∆λ)−N(λ)‖+
+‖u(λ+∆λ)− u(λ)‖3r2

−(λ)‖N(λ)‖+ ‖f(λ+∆λ− f(λ)‖,
and we obtain

‖u(λ+∆λ)− u(λ)‖ ≤ 1
1− 3r2−(λ)‖N(λ)‖(r

3
0‖N(λ+∆λ)−N(λ)‖+ ‖f(λ+∆λ− f(λ)‖)

and

‖u(λ+∆λ)− u(λ)‖ ≤ 1
1−Q

(r3
0‖N(λ+∆λ)−N(λ)‖+ ‖f(λ+∆λ)− f(λ)‖), (3.31)

where Q and r0 do not depend on λ.
Let ‖u(λ)‖ < ‖u(λ+∆λ)‖. Then all estimates are valid if we replace λ by λ+∆λ and

λ+∆λ by λ respectively. Thus estimate (3.31) is also valid. �

Approximate solutions un to the integral equation (3.15) represented in the form u =
F (u) can be determined using the iteration procedure

un+1 = F (un) = α

R∫
0

G(ρ, s)ρu3
ndρ+ f, n = 0, 1, . . . . (3.32)

Remark: It is useful to choose u0 = f , i.e. equal to the solution of the linear problem
(with α = 0 in Eq. (2.19)), where the eigenvalue γ2 has to be determined by the nonlinear
dispersion relation (cf. Section 4).

The sequence un converges uniformly to the solution u of (3.15) because F (u) is a
contraction [11]. The rate of convergence of the algorithm can also be estimated.

Proposition 1. The sequence of approximations un of equation (3.15) defined by (3.32)
exists and converges uniformly with respect to the C[0, R]-norm to the (unique) exact
solution u of this equation. The estimate

‖un − u‖ ≤ qn

1− q
‖f‖, n → ∞, (3.33)
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holds, where q = 3‖N‖r2− < 1 is the coefficient of contraction of F .
It follows from (3.32) that un = un(λ) is a continuous function with respect to λ.

4 Existence of solution to the dispersion equation

It follows from (3.13) and the properties of cylindrical functions that

G(R,R) =
1

k2R

J1(k2R)
J ′

1(k2R)
.

Substituting this formula into (3.14), and taking into account (2.21) we can write the
dispersion relation (3.14) in the form

Φ(λ,R;u) = g(λ,R)− αF1(λ,R;u) = 0, (4.1)

where

g(λ,R) = k2RK1(k1R)J0(k2R) + k1RK0(k1R)J1(k2R), (4.2)

F1(λ,R;u) =

R∫
0

J1(k2ρ)ρu3(ρ)dρ. (4.3)

Zeros of the function Φ(λ,R;u) are the eigenvalues γ2 = λ associated to nontrivial solutions
of the problem P . The following statement gives sufficient conditions for the existence of
these eigenvalues.

Let j0m, j1m and j′1m (m = 1, 2, . . . ) be (positive) zeros of Bessel functions J0, J1, and
J ′

1, respectively. List the values of the zeros

j′11 = 1.841 . . . , j01 = 2.405 . . . , j11 = 3.832 . . . ,

j′12 = 5.331 . . . , j02 = 5.520 . . . , j12 = 7.016 . . . ,

j′13 = 8.536 . . . , j03 = 8.654 . . . , j13 = 10.173 . . . ,
...

...
...

Denote

λ1m = ε2 − j2
1m/R2, λ2m = ε2 − j2

0m/R2,

Λi = [λ1i, λ2i], Λ =
m⋃

i=1

Λi, m = 1, 2, . . . ,

and prove the following

Theorem 3. Let ε1, ε2 and α satisfy the conditions ε2 > ε1 > 0 and 0 < |α| < α0, where

α0 = min{A2
1, A2},
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A1 = min
λ∈Λ

A(λ), A2 =
min

l=1,2, 1≤i≤m
|g(λli)|

0.3R2[max
λ∈Λ

r−(λ)]3
, (4.4)

and the inequality

λ1m > ε1 (4.5)

for a certain m ≥ 1. Then there exist at least m values λi, i = 1, . . . ,m, λ1i < λi < λ2i

such that problem P has a nontrivial solution.

Proof. Let i ≥ 1 be a fixed index. It is well known that j0i < j1i < j0,i+1 and j′1i < j1i <
j′1,i+1. Hence, we have j0i < j1i < j′1,i+1. There exists only one zero j′1i ∈ (j1,i−1, j1i),
where j10 = 0. Futhermore, from the alternation of zeros of functions J0(x) and J2(x) we
obtain signJ0(j2i) = (−1)i and signJ2(j0i) = (−1)i+1, where j2i are positive zeros of Bessel
function J2(x). It follows from 2J ′

1(x) = J0(x) − J2(x) that j′1i ∈ (j2,i−1, j0i) (j20 = 0).
Since j′1i < j0i < j1i < j1,i+1 (i ≥ 1), Green’s function (3.4) exists for λ ∈ Λ. It follows
from (3.28) and properties of Green’s function that A = A(λ) is a continuous function
with respect to λ ∈ Λ. Set A1 = min

λ∈Λ
A(λ) and take |α| < A2

1. According to Theorem 1,

there exists the unique solution u = u(λ) of equation (3.6) for each λ ∈ Λ. This solution
is a continuous function and ‖u‖ ≤ r− = r−(λ). Set r0 = max

λ∈Λ
r−(λ). Using the inequality

|J1(x)| ≤ 0.6, which is valid for nonnegative x, and estimating the integral in (4.3) we
obtain |F1(λ,R;u)| ≤ 0.3R2r0

3.
The Macdonald functions K0(x) and K1(x) are positive for positive x, g(λ) is contin-

uous, and g(λ1i)g(λ2i) < 0, i = 1, . . . ,m. Therefore, the equation g(λ) = 0 has a root λ0i

on interval Λi, λ1i < λ0i < λ2i.
Denote M1 = min

1≤i≤m
|g(λ1i)|, M2 = min

1≤i≤m
|g(λ2i)|, and M = min{M1,M2}; M > 0 and

does not depend on α.
If |α| ≤ M

0.3R2r0
3 then (g(λ1i) − αF1(λ1i))(g(λ2i) − αF1(λ2i)) < 0. Since g(λ) −

αF1(λ,R;u) is also a continuous function, the equation g(λ) − αF1(λ,R;u) = 0 has a
root λi on interval Λi, λ1i < λi < λ2i. We can choose α0 = min{A2

1,
M

0.3R2r0
3 }. �

Remarks: ‖f‖ and A1 implicitly depend on α via the nonlinear dispersion relation. In
this sense A2 depends on α both explicitly and implicitly. Note that limα→0 r− = ‖f‖ > 0.

The condition (4.5) implies R2 > j2
11/(ε2−ε1). Thus, the radius R cannot be arbitrarily

small (this is similar to the existence of a ’cut-off’ radius in the linear case). In view of this
fact, the sufficient conditions for the existence of a nontrivial solution of problem P require
the smallness of the nonlinearity parameter α, radius R, and the material parameter ε2 of
the waveguide.

Theorem 4. Assume that ε1, ε2, and α satisfy the conditions ε2 > ε1 > 0 and 0 < |α| <
α0, where α0 is given by (4.4), and the condition (4.5) for a certain m ≥ 1. Then for each
n ≥ 0 there exist at least m values λ

(n)
i , i = 1, . . . ,m, satisfying λ1i < λ

(n)
i < λ2i that are

roots of the equation

k
(n)
2 RK1(k

(n)
1 R)J0(k

(n)
2 R)+k

(n)
1 RK0(k

(n)
1 R)J1(k

(n)
2 R) = α

R∫
0

J1(k
(n)
2 ρ)ρu3

n(ρ)dρ, (4.6)
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where k
(n)
1 =

√
λ(n) − ε1, k

(n)
2 =

√
ε2 − λ(n) and un is determined according to (3.32).

Proof. For each n ≥ 0, functions un are continuous according to (3.32). Therefore it is
sufficient to repeat the proof of Theorem 3, in which u should be replaced by un and to
check the condition ‖un‖ ≤ r− = r−(λ). This inequality is valid because all iterations
belong to the ball S∗. �

Theorem 5. Let λi and λ
(n)
i be, respectively, an exact and an approximate eigenvalue of

problem P on the interval [λ1i, λ2i] (λi and λ
(n)
i are roots of the dispersion equations (4.1)

and (4.6), respectively, i ≥ 1). Then |λ(n)
i − λi| → 0 as n → ∞.

Proof. Consider the functions

Φ(λ,R;u) = g(λ,R)− αF1(λ,R;u),Φn(λ,R;un) = g(λ,R)− αF1(λ,R;un). (4.7)

Then

|Φ(λ,R;u)− Φn(λ,R;un)| = |α||F1(λ,R;u)− F1(λ,R;un)|

= |α|
∣∣∣∣∫ R

0
J1(k2R)ρ(u3 − u3

n)dρ
∣∣∣∣

≤ |α|‖u− un‖(‖u‖2 + ‖u‖‖un‖+ ‖un‖2)
∫ R

0
|J1(k2R)| ρdρ

≤ |α| qn

1− q
‖f‖3r2

−T, (4.8)

where T =
∫ R
0 |J1(k2R)| ρdρ and all other quantities were defined above.

If Λ0 is an intervall that does not contain point j′1i, then we have

max
λ∈Λ0

|Φ(λ,R;u)− Φn(λ,R;un)| ≤ |α| Qn

1−Q
T0, (4.9)

where T0 = maxλ∈Λ0{‖f(λ)‖3r2−(λ)T (λ)} and Q < 1.
Subject to the conditions of Theorems 3 and 4, there exist solutions λi and λ

(n)
i of the

exact and approximate dispersion equations Φ(λ,R;u) = 0 and Φn(λ,R;un) = 0 (n ≥ 0).
Also, in the proof of Theorems 3 and 4, it was established that continuous functions
Φ(λ,R;u) and Φn(λ,R;un) change signs at the endpoints of the interval [λ1i, λ2i]. The
proof follows now from estimate (4.9). �

5 Concluding remarks

(i) The above analysis can be applied straightforwardly to the polarization case E =
{0; 0;Ez}, H = {Hρ;Hϕ; 0}.
(ii) It would be worthwhile to perform a stability analysis of the various modes result-
ing from the discussion of the dispersion relation. It is well known [13] that the power

flow integral P =
∞∫
0

dρρSz(ρ, γ), where Sz denotes the time-averaged z-component of the

Poynting vector, can serve for a stability analysis in special cases. Sz can be calculated
by means of the iterate solutions un(ρ, γ).
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(iii) Since the approach is rather general, nonlinearities that model physics more realisti-
cally than equation (2.1) (e.g. saturating and higher order nonlinearities) can be investi-
gated.
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