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Abstract—This paper presents a novel Dempster-Shafer 
evidence construction approach for aircraft aim recognition. 
The prior-probability of the properties of aircraft was used for 
establishing a probabilistic argumentation system. Dempster-
Shafer evidence was constructed by assumption- based 
reasoning. Therefore, additional information could be 
provided to the classification of the data fusion system. 
Experiments on artificial and real data demonstrated that the 
proposed method could improve the classification results. 

Keywords; Dempster-Shafer theory, probabilistic argumenta-
tion system (PAS), target classification 

I.  INTRODUCTION 

Data fusion is a very important approach for aircraft 
target recognition because of the imprecision of single sensor. 
The radar sensor can track multiple targets at one time, but 
with large intersection between two measurements and low 
recognition ability. The IR image sensor can recognize the 
aim property, but with short sphere of action and sensitivity 
with weather and other environmental factors. A system with 
multi-sensors can make use of the complementary and 
redundancy of different sensors to improve the effects of the 
recognition and tracking. Fusion of the different data 
improves the recognition precision and achieves more 
credible results. 

Dempster-Shafer theory[1] is one of the most important 
data fusion theories[2-4]. It can adapt most situations in real 
application, and can be integrated with imprecision reasoning 
theories. It improves the expression of void belief 
assignment. In the use of Dempster-Shafer theory, the 
construction of the evidence from different sensors is an 
important step. In traditional data fusion systems, image 
properties are usually used for target classification. The 
numerical properties such as velocity and acceleration are 
ignored. In fact, the distributions of the numerical properties 
are also important information for target classification.  

The PAS theory[5-7,13] is a reasoning system that 
combines both qualitative approach and quantitative 
approach. In this method, we used PAS with numerical 
properties for target classification. By estimating the priority 

probabilities of the properties, the knowledge base for 
reasoning was established. According to the special form of 
knowledge base in this method, the approach for calculating 
the support degree of a hypothesis was presented. Because 
the result measurement is in the form of belief function, our 
method can be integrated in a data fusion system by using 
Dempster-Shafer theory, or directly do the classification in 
the use of radar or other measure sensors. 

The rest of the paper is organized as follows. Section 2 
describes the fundamental theories that used in our method. 
Section 3 presents our method for knowledge base 
construction and evidence reasoning. Section 4 presents the 
experiments on artificial and real data. Section 5 concludes 
the paper. 

II. FUNDAMENTAL THEORIES 

A. Evidence Theory 

The Dempster-Shafer theory of evidence, also referred to 
as evidence theory, is a theoretical for reasoning with 
uncertain and imprecision information and data. 

Let ߗ ൌ ሼ߸ଵ,… ,߸்ሽ  be a finite set of exclusive and 
exhaustive classes called the frame of discernment. A basic 
belief assignment (BBA) or mass function is a function ݉:2ఆ → ሾ0,1ሿ. It satisfies the two following conditions: 

 ݉ሺ∅ሻ ൌ 0 (1) 

 ∑ ݉ሺܣሻ஺⊆ஐ ൌ 1 (2) 

where ∅  means empty set. Such a BBA that satisfies ݉ሺ߶ሻ ൌ 0 is called normal[8-10].  
Let ݉ଵ  and ݉ଶ  induced by two independent items of 

evidence. Then the Dempster’s rule of combination is 

 ݉ሺܥሻ ൌ ∑ ௠భ	ሺ஺ሻ∙௠మ	ሺ஻ሻಲ∩ಳస಴ଵି∑ ௠భ	ሺ஺ሻ∙௠మ	ሺ஻ሻಲ∩ಳస∅  (3) 

After combining all pieces of evidence, a decision has to 
be made using the final belief function. A method called 
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Pignistic Transformation[11,12] is used for decision-making. 
from the BBA, a pignistic probability distribution is defined 
as 

ሺ߱ሻܲݐ݁ܤ  ൌ ∑ ଵ|஺| ∙ ௠ሺ஺ሻଵି௠ሺ∅ሻ஺⊆ఆ,ఠ∈஺  (4) 

B. Probabilistic Argumentation System 

The Probabilistic Argumentation System is an alternative 
approach for non-monotonic reasoning under uncertainty. It 
allows to judge open questions (hypothesis) about the 
unknown in the use of the given knowledge.  

A probabilistic argumentation system usually to be 
defined as a quadruple ܲܵܣ௉ ൌ ሺߦ, ܲ, ,ܣ ሻߎ [6], where ߦ 
denote the knowledge base, ܲ denote the question variables, ܣ  denote the assumptions and ߎ  denote the probability 
distribution of assumptions.  

An assignment of truth values to the elements of set A is 
called interpretation. Towards set variables to corresponding 
truth values according to an interpretation, a sentence’s value 
can be evaluated. An interpretation x is called a model of a 
sentence γ, if γ evaluates to 1 according to proportional logic.  

At last, a scenario s is called a quasi-support scenario for 
h relative to ߦ, if h is a logical consequence of ߦ when the 
scenario s happened[7]. The sets of all quasi-support 
scenarios for h relative to ߦ is denoted by ܳܵ஺ሺ݄,   .ሻߦ

Let ݏ ൌ ሺݔଵ, … , ௠ሻݔ  be a scenario, and then the prior 
probability of s is determined by 

ሻݏሺ݌  ൌ ∏ ௜ሻ௠௜ୀଵݔሺ݌  (5) 

Therefore, if S is an arbitrary set of scenarios, then the 
probability of S is simply the sum of the probabilities of its 
elements 

ሺܵሻ݌  ൌ ∑ ሻ௦∈ௌݏሺ݌  (6) 

If ݄ ∈ ࣦ஺∪௉ is a hypothesis that we want to judge, then ݀ݏݍሺ݄, ሻߦ ൌ ,ሺܳܵ஺ሺ݄݌  ሻሻis called degree of quasi-supportߦ
of ݄ relative to ߦ. This measure corresponds to unnormalized 
belief in the Dempster-Shafer theory of evidence. 

III. EVIDENCE CONSTRUCTION 

In this section we present an approach to construct the 
evidences for target recognition.  

A. Knowledge Base Construction 

Suppose there are ܶ  different types of targets, and ܭ 
properties that can be measured. Let ܥ be the entire set of 
target types  

ܥ  ൌ ሼܥଵ, …,ଵܥ ,  ሽ (7)்ܥ

And let c denotes the correct unknown class of the target. 
Then obviously there must have ܿ ∈   .ܥ

For a given property f (such as velocity, acceleration, etc.) 
of aircraft aim, and its type ܿ ൌ ௝ܥ , then its probability 
density function (PDF) ௣݂ can be denoted as 

 ܲ൫݂ ൏ ܿ|ݔ ൌ ௝൯ܥ ൌ ׬ ௣݂ሺݐሻ݀௧௫ିஶ  (8) 

We can estimate the empirical distribution ௣݂෡  as the 
approximation of ௣݂ from the history data.  

Suppose that property ݂ belongs to a region ܴ and ܴ is 
divided into several intervals ܫ௜ሺ݅ ൌ 1,2,… , ݊ሻ which form a 
partition 

௜ܫ  ∩ ௝ܫ ൌ ∅	for	݅ ് ݆, ⋃ ௜௡௜ୀଵܫ ൌ ܴ (9) 

To make things easy, the event that ݂  belongs to an 
interval ܫ௜ is denoted as a random variable set to a certainty 
value, which is expressed as 

 ሺ݀௙ ൌ ௜ሻܫ 	⇔ ሺ݂ ∈  ௜ሻ (10)ܫ

For a certain interval ܫ௜, the probability that ݂ belongs to 
it can be calculated with  

 ܲ൫݀௙ ൌ ܿ|௜ܫ ൌ ௝൯ܥ ൌ ׬ ௣݂ሺݐሻ݀௧୍౟ ൎ ׬ ௣݂෡ ሺݐሻ݀௧୍౟  (11) 

That means if we know the target type ܿ, then we can get 
the probability that its value belongs to each interval. But 
this rule seems difficult to be used in PAS. 

To get a rule for classifier reasoning in the form of PAS, 
we can denote ܶ  multi-valued random variables ௝݂ሺ݆ ൌ1,2,… , ܶሻ , corresponding to ܶ  different types of targets. 
Each variable has the value range which is ܨ௝ ൌ൛ ௝݂ଵ, ௝݂ଶ, … , ௝݂௡ൟ. The distribution of each random variable is 
set to 

 ܲ൫ ௝݂ ൌ ௝݂௜൯ ൌ ܲ൫݀௙ ൌ ܿ|௜ܫ ൌ  ௝൯ (12)ܥ

which corresponds to the probability that the property f 
belongs to a segment. Then ௝݂  can be seen as the factors 
(such as environment, mission requirement, etc.) that 
influence on the target, to make the property f in such 
certainty value range. Therefore, a rule that used to form 
knowledge base can be derived as 

 ܿ ൌ ௝ܥ 	→ 	 ሺ	 ௝݂ ൌ ௝݂௜ 	→ ሺ݀௙ ൌ  ሻ (13)	௜ሻܫ

This rule is obvious, since that when the target type is 
confirmed, the PDF of property f is certainly confirmed. 
Then, the approximate probability that ݂ ∈  ௜ can be derivedܫ
by the empirical distribution ௣݂෡ , which means when some 
affections whose probability equal to the probability of ݂ ∈  .௜ happen, the value range of f can be determinedܫ

The rule (13) can also be written as: 

 ሺ	ܿ ് ሻ	௝ܥ ∨ ሺ	 ௝݂ ് ௝݂௜	ሻ ∨ ሺ݀௙ ൌ  ௜ሻ (14)ܫ

Let ܭ௙௝௜  denotes rule (14). This rule is for property ݂ , 
target type ܥ௝ and value interval ܫ௜. In general, for ܶ different 
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types of targets, ܭ properties and n intervals of each property, 
there will be total ܶ ∙ ܭ ∙ ݊ rules. Then knowledge base can 
be constructed by the conjunction of all such rules.  

B. PAS Reasoing 

In PAS, two sets of proportions must be distinguished, 
hypothesis and scenarios. In our case, Knowledge base is the 
conjunction of all the rules of ܭ௙௝௜ . The target type is the 
issue which wants be figured out. So the variable ܿ  is the 
hypothesis. The priority probabilities of the properties of the 
certain target type can be estimated with historical data, and 
the distributions of the target properties can be measured by 
the sensors such as radar. Thus, the variables ݀௙ and ௝݂ build 
up the scenarios. Then the inference principles of 
probabilistic assumption based reasoning can be applied to 
process the target classification. By definition in section 2, 
for a hypothesis ݄ to the target type, the quasi-support of ݄ is 
the set of assumption scenarios that allow us to prove ݄ or 
make knowledge base contradictory. Let ܳܵሺ݄ሻ denotes the 
quasi-support of ݄ and ܳܵሺ٣ሻ denotes the quasi-support of 
the contradiction, i.e. the set of scenarios that make the 
knowledge base contradictory. Then the degree of ܳܵሺ݄ሻ is 
denoted as 

ሺ݄ሻݏݍ  ൌ ܲሺܳܵሺ݄ሻሻ (15) 

and the degree of contradiction is denoted as 

ሺ٣ሻݏݍ  ൌ ܲሺܳܵሺ٣ሻሻ (16) 

where ܲ is the joint probability measure over the quasi-
support, i.e. the sum of probabilities of the scenarios in the 
quasi-support. Then the degree of the support of the 
hypothesis ݄ by the knowledge base can be derived as the 
quantity 

ሺ݄ሻ݌ݏ  ൌ ௤௦ሺ௛ሻି௤௦ሺୄሻଵି௤௦ሺୄሻ  (17) 

In other words, the probability of the hypothesis ݄  is 
estimated from the knowledge base and the probability 
density of the scenario variables. 

Since the rules in the knowledge base have a special form 
same to formula (14), then we can achieve ݌ݏሺ݄ሻ in a special 
way. In the enumeration of all the scenarios, we can firstly 
calculate the probability of the scenario, and then get its 
support hypothesis. In such way, the difficulty of searching 
the quasi-support is avoided. The calculation of the 
probability of the scenario is simple, because it is just the 
multiplication of every variable’s probability. To determine 
the support hypothesis, the proportion that knowledge base 
proves must be found.  

For a given scenario, every variable in it (such as ݀௙ and ௝݂) has the fixed value. Because the knowledge base has a 
conjunctive normal form, the result must be the conjunction 
of every clause. A clause is true when any literal in it is true. 
That means when ሺ	 ௝݂ ൌ ௝݂௜	ሻ and ሺ݀௙ ്  ௜ሻ, there will beܫ

 
ሺ	ܿ ് ሻ	௝ܥ ∨ ሺ	 ௝݂ ് ௝݂௜	ሻ ∨ ൫݀௙ ൌ ⇒௜൯ܫ ሺ	ܿ ് ሻ	௝ܥ → ܿ ∈ ௝ܥ/ܥ  (18) 

because the disjunction will remove the negative literals 
in a formula. 

Therefore, the knowledge base in such a scenario will 
prove a result from the clauses that satisfy ሺ	 ௝݂ ൌ ௝݂௜	ሻ and ሺ݀௙ ്  ௜ሻ. Get the intersection of such clauses in equationܫ
(14), then the set that contains the intersection will be 
supported by this scenario. In other words, the quasi-support 
to such hypothesis includes the scenario, then the probability 
of the scenario can be added to ݏݍሺ݄ሻ. After the enumeration 
of all scenarios, the function sp is determined. 

According to [1], the function sp is also a belief function 
in the sense of Dempster-Shafer theory. Therefore, such 
result can be used in data fusion, or directly used in target 
classification by pignistic decision. 

IV. EXPERIMENTS 

To prove the effects of our method, experiments on 
artificial and real data were carried out. 

A. Artificial Data 

In artificial data experiments, we set 3 types of aircraft 
with 2 main properties ݂ and ݃, which denote velocity and 
acceleration respectively. Each property was divided into 6 
intervals. The priority probabilities of the properties are 
shown in the tables below. 

TABLE I.  VELOCITY SETTING IN ARTIFICIAL DATA 

class ࡵ૚ ࡵ૛ ࡵ૜ ࡵ૝ ࡵ૞ ࡵ૟ ࡯૚ 0 0.2 0.4 0.2 0.1 0.1 ࡯૛ 0.2 0.4 0.1 0.1 0.1 0.1 ࡯૜ 0 0.1 0.2 0.4 0.2 0.1 

TABLE II.  ACCELERATION SETTING IN ARTIFICIAL DATA 

class ࡷ૚ ࡷ૛ ࡷ૜ ࡷ૝ ࡷ૞ ࡷ૟ ࡯૚ 0 0.1 0.7 0.1 0 0.1 ࡯૛ 0.1 0.2 0.3 0.2 0.1 0.1 ࡯૜ 0.2 0.0 0.3 0.0 0.4 0.1 

Then we randomly created 90 artificial targets of three 
classes (each class has 30 samples). For each target, we 
created ܭ random measure points according to the priority 
probabilities of the properties. Then the approximate 
property distributions were estimated. As a result, the 
recognition rate come from the pignistic transformation is 
given in the following table according to different values of 
K.  

TABLE III.  RECOGNITION RATE 90 30 10 ࡷ 

rate 85.56% 95.56% 97.78% 

The reason that recognition rate is low when K is small is 
that the data measured on each target is rarely little and the 
estimate of the target property distributions are imprecise. 
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The result at K=30 is acceptable, and can make contribution 
to the data fusion system. 

To analyze the performance of our method, the confusion 
matrix at K=30 is given by the following table. 

TABLE IV.  CONFUSION MATRIX (ܭ ൌ 30) 

 ૜ 1 0 29࡯ ૛ 3 27 0࡯ ૚ 30 0 0࡯ ૜࡯ ૛࡯ ૚࡯ 

It can be seen that all the mistakes are judged to belong to ܥଵ. It seems that the knowledge base prefers to ܥଵ. Similar 
situation happened when K was set to other values, such as 
10 or 90.  

An extreme result can be derived when set ܭ ൌ 1, which 
means there is only one measurement on the target. In such 
case the confusion matrix is shown as below. 

TABLE V.  CONFUSION MATRIX (ܭ ൌ 1) 

 ૜ 14 1 15࡯ ૛ 9 20 1࡯ ૚ 23 5 2࡯ ૜࡯ ૛࡯ ૚࡯ 

There are 46 times judged to ܥଵ in 90, and only 18 times 
judged to ܥଷ. This result shows that the knowledge base has 
its tendency.  

B. Real Data 

In the real data experiments, there are three types of 
target that is UAV, delta winged aircraft and airship which 
are denoted as ܥଵ, ܥଶ and ܥଷ respectively. For each aircraft, a 
tracking path of 2 hours long was observed by radar. Then 
we cut each path into 100 pieces which are called measure 
points and confuse the sequence. Half of the measure points 
were used to estimate the empirical distribution of the 
properties. By cutting each property’s value range into 6 
intervals, the knowledge base is constructed as below.  

TABLE VI.  VELOCITY DISTRIBUTION IN REAL DATA 

class ࡵ૚ ࡵ૛ ࡵ૜ ࡵ૝ ࡵ૞ ࡵ૟ 

range [0,10] [10,20] [20,25] [25,30] [30,35] [35,40] ࡯૚ 0 0.0007 0.1087 0.3739 0.4499 0.0668 ࡯૛ 0.0011 0.45 0.1529 0.1647 0.0987 0.1327 ࡯૜ 0.5481 0.4519 0 0 0 0 

TABLE VII.  ACCELERATION DISTRIBUTION IN REAL DATA 

class ࡷ૚ ࡷ૛ ࡷ૜ ࡷ૝ ࡷ૞ ࡷ૟ 

range [-10,-6] [-6,-3] [-3,0] [0,3] [3,6] [6,10] ࡯૚ 0.0007 0.0029 0.4806 0.5124 0.0026 0.0008 ࡯૛ 0 0.0133 0.4653 0.5118 0.0090 0.0005 ࡯૜ 0 0.0021 0.5043 0.4902 0.0030 0.0005 

The other 50 measure points were used to test our 
method, and the recognition rate achieves 98.67%, the 
confusion matrix is shown in table (VIII). 

TABLE VIII.  CONFUSION MATRIX IN REAL DATA ࡯૚ ࡯૛ ࡯૜ ࡯૚ 50 0 0 ࡯૛ 2 48 0 ࡯૜ 0 0 50 

V. CONCLUSION 

In this paper, a method for target classification in use of 
numerical properties was presented. By estimating the 
priority probability distributions of each class, knowledge 
base was built by our method, then the use of PAS to the 
results suit for Dempster-Shafer theory. Because of the 
special form of knowledge base in the problem of 
classification, an approach for reasoning is established and 
makes the processing simple. It also can be used for 
classification directly. Experiments on artificial and real data 
show the performance of our method.  
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