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Abstract

This paper investigates the nature of particle collisions for three-soliton solutions of
the Korteweg-de Vries (KdV) equation by describing mathematically the interaction
of soliton particles and generation of ghost particle radiation. In particular, it is
proven that a collision between any two soliton particles results in an exchange of
particle identities and an emission of a ghost particle pair. Moreover, collisions between
any two ghost particles results in their fusion and is accompanied by fission of the
corresponding anti-ghost particle. Mass and momentum are conserved for both soliton
particle decay and ghost particle interaction at all times.

1 Introduction

The subject of solitons as a nonlinear phenomenon is well established in the literature and
much has been written about its asymptotic and particle-like properties (cf. [2], [5], [18]).
Yet the physical process of how solitons actually behave during collision has remained
mysterious for the most part. Very little work has addressed the identity of Korteweg-de
Vries (KdV) solitons as particles before and after collision. Historically, it was Zabusky
and Kruskal [24] who originally proposed that solitons pass through each other cleanly
with only a change in ”phase shift”, a viewpoint that was supported mathematically by
P.D. Lax [14]. Two decades later, Bowtell and Stuart [4] countered with a more consistent
particle-like interpretation by proposing that solitons actually bounce off each other and
exchange identities. Since KdV solitons must have distinct masses, the exchange of mass
that occurs during collision was then explained as a continuous siphoning process, whereby
the smaller soliton siphons mass from the larger soliton through the underlying baseline.
This explanation is rather unnatural based on our physical understanding of particles.
Others investigations have been made to understand collisions involving KdV solitons,
but such works have failed to shed new light in resolving the debate (cf. [9], [15], [17]).

In [19], the author has presented what seems to be the correct argument for explaining
two-soliton collisions. This was achieved by mathematically demonstrating that each soli-
ton particle decays into two sub-particles upon collision. This break-up allows solitons to
exchange identities and to emit a ‘ghost’ particle pair necessary to maintain conservation of
mass and momentum. Such a solution was found by considering a particle-decomposition
of each two-soliton solution of the Korteweg-de Vries equation in terms of eigenvalues.

Copyright c© 2004 by H D Nguyen



Soliton Collisions and Ghost Particle Radiation 181

Figure 1. Two-Soliton Particle Collision

Figure 2. Two-Ghost Particle Collision

These eigenvalues are obtained from the corresponding soliton matrix defining the solu-
tion and isolate the decay of individual solitons. In particular, given two colliding solitons,
e.g. those labeled as particles 1 and 2 in Figure 1, it was proven that each soliton splits
into two upon collison. As a result there is an exchange of particle identities and an
emission of a ghost particle pair as observed by particles 3 and 4 in Figure 1. Asymptot-
ically, these ghost particles have the same sech-shaped profiles as solitons. Moreover, it
was proven that conservation of mass and momentum holds in the decay of each soliton
particle for all times. This demonstrates that our theory is consistent with the laws of
classical mechanics.

In this paper, we mathematically investigate particle decay for three-soliton solutions
of the Korteweg-de Vries equation and describe the resulting interaction between ghost
particles that are created in the process. Again, we find that each soliton collision results
in the exchange of particle identities and the emission of a dual ‘ghost’ particle pair
(cf. Theorem 3.1). As a novel feature, we discover that it is possible for ghost particles
themselves to collide in which case they fuse to form a third ghost particle (cf. Theorem
4.2). Figure 2 illustrates two ghost particles, labeled as 1 and 2, that collide and fuse
to become particle 3. Moreover, this fusion process is always complemented by fission
of the corresponding anti-particle, i.e. the particle dual to particle 3, and obeys Richard
Feynman’s interpretation of anti-particles as particles moving backwards in time.
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A duality therefore seems to exist between soliton interaction and ghost particle inter-
action. Our goal is to expose this duality by demonstrating that both interactions satisfy
the same conservation laws and are equivalent in the sense that knowledge of one uniquely
determines the other. Such an understanding of ghost particle radiation is important to-
wards our broader understanding of solitons as nonlinear particles. Moreover, our theory
of ghost particles is not far-fetched since it is now widely accepted that solitons can ex-
perience inelastic collisions and interact in a highly nontrivial manner. Indeed, certain
kinds of optical vector solitons are known to split, fuse, and exchange energies during
collision (cf. [3], [11], [13])). Moreover, this type of behavior seems to be generic rather
than exceptional for solitons. Since solitons have already found important applications in
many areas of physics and engineering (cf. [1], [7], [21], [22]), we expect these collision
interactions to provide new applications in the future (cf. [10]).

Our paper is organized as follows. We begin by reviewing the eigenvalue-decomposition
that is used to isolate the decay of solitons during collision. We then analysis the asymp-
totic behavior of these eigenvalues for three-solitons to establish mass exchange, ghost
particle radiation, and various conservation laws. Lastly, we describe the fusion and fis-
sion of ghost particles for three-soliton collisions.

2 Preliminaries

2.1 N-Solitons

Let N be a positive integer and assume u(x, t) to be an N -soliton solution of the KdV
equation:

ut − 6uux + uxxx = 0. (2.1)

The Miura transformation makes u become the potential function for the time-independent
Schrodinger equation,

ψxx − [λ− u(x, 0)]ψ = 0. (2.2)

Since u is assumed to be reflectionless, the initial scattering data for u(x, 0) contains only
a discrete energy spectrum. This means that λ takes on a discrete set of N negative energy
eigenvalues {λ1, λ2, ..., λN} with corresponding eigenfunctions {ψ1, ψ2, ..., ψN}. As stan-
dard we normalize these eigenfunctions and compute their normalized factors cn commonly
referred to as ‘phase shifts’:∫ ∞

−∞
ψ2

ndx = 1, cn = lim
x→−∞ e

knxψn. (2.3)

The initial scattering data is then used to produce the N -soliton formula for u (cf. [6],
[8], [23]):

u(x, t) = −2 ∂
2

∂x2
log det(I +A). (2.4)

Here, the N ×N soliton matrix A has entries defined by

A = (amn); amn =
cm(t)cn(t)
km + kn

e(km+kn)x; cn(t) = cne
−4k3

nt, (2.5)

where the spectral parameter kn > 0 is defined via the relation λn = −k2
n.
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2.2 Soliton Particles

We now turn to developing our working definition of a soliton particle. It is well known
that A is symmetric and positive definite (cf. [12],[6],[23]). This allows us to diagonalize
it so that

U−1AU = D (2.6)

where D = diag(µ1, ..., µN ) is a diagonal matrix, {µ1 > ... > µN} consists of the (ordered)
set of real positive eigenvalues of A, and U = (u1, ...,uN ) is the orthogonal matrix con-
sisting of an orthonormal basis of eigenvectors {un} of A. It follows that we can write
u(x, t) in terms of {µn} which we shall refer to as decay eigenvalues of u:

u(x, t) = −2 ∂
2

∂x2
log det(I +A)

= −2 ∂
2

∂x2
log det[U−1(I +A)U ]

= −2 ∂
2

∂x2
log det(I +D)

= −2 ∂
2

∂x2
log

N∏
n=1

[1 + µn(x, t)]

=
N∑

n=1

−2 ∂
2

∂x2
log[1 + µn(x, t)]. (2.7)

Definition 2.3. We define

sn(νn) ≡ −2k2
nsech

2(knνn), n = 1, ..., N, (2.8)

to be the n-th soliton particle of u where νn = x− 4k2
nt. Moreover, we shall refer to

un(x, t) ≡ −2 ∂
2

∂x2
log[1 + µn(x, t)] (2.9)

as the decay function of sn and to the sum u =
∑N

n=1 un as derived in (2.7) as the decay
decomposition of u.

Next, we introduce our notion of a ‘ghost’ particle which is needed to explain our theory
of soliton interaction.

Definition 2.4. Assume m and n are positive integers with m < n. We define

Gmn =

(
c2m
2km

e2kmνmn cmcn
km+kn

e(km+kn)νmn

cmcn
km+kn

e(km+kn)νmn c2n
2kn
e2knνmn

)
(2.10)

to be the 2×2 ghost submatrix of A corresponding to the pair {m,n}, where νmn = νnm =
x − 4k2

mnt and kmn = k2
m + kmkn + k2

n. In addition, denote by γmn and γnm to be the
eigenvalues of Gmn and order them so that γnm > γmn.
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Next, define δmn = δnm via the relation e2(km−kn)δmn = c2mkn

c2nkm
. Then we shall refer to

gnm(νnm + δnm) = −2 ∂2

∂ν2
nm

log γnm (2.11)

as the ghost particle corresponding to the pair {m,n} and

gmn(νmn + δmn) = −2 ∂2

∂ν2
mn

log γmn (2.12)

as its anti-ghost particle.

Theorem 2.5. ([19], Theorem 3.6) The particles gnm and gmn enjoy the following prop-
erties:

(i) gnm(νnm) = 8k1k2
cosh [(k1 − k2)νnm][

(k1+k2)2

(k1−k2)2
cosh2[(k1 − k2)νnm]− 1

]3/2
.

(ii) gmn(νmn + δmn) = −gnm(νnm + δnm).

(iii)
∫ ∞

−∞
gmn(νmn)dνmn = 4(km − kn).

(iv) gmn(νmn + δmn) ∼ O(sech2[(km − kn)(νmn + δmn)]) as νmn → ±∞.

(v) |gmn| ≤ (km − kn)2(km + kn)√
kmkn

with equality holding precisely when νmn = −δmn.

Remark 2.6. We remark that Theorem 2.5 shows the ghost particle gnm can be viewed
as a nonlinear difference between the soliton particles sm and sn as defined by (2.8).

2.7 Asymptotic Matrices

Since we shall be investigating the asymptotic behavior of the eigenvalues of soliton ma-
trices, the following notion of asmptotic matrices will be useful to us.

Definition 2.8. Let A(x, t) and B(x, t) be N ×N matrices in the variables x and t and
C(x) an N × N matrix depending on x only. We shall say that A converges uniformly
in x on arbitrary compact subsets of R, or simply converges, to C as t → ±∞, and write
A

u−→ C, to mean

lim
t→±∞A(x, t) = C(x) (2.13)

uniformly in x on arbitrary compact subsets of R with respect to the Euclidean norm, i.e.
‖ A(x, t)− C(x) ‖→ 0, where ‖ · ‖ is defined by

‖ A ‖2 =
N∑

m,n

|amn|2. (2.14)

Moreover, we shall say that A is asymptotic to B as t→ ±∞, and write A ∼ B, to mean
A(x, t)−B(x, t) u−→ 0 (the zero matrix) as t→ ±∞.
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The following standard result will be useful to us.

Lemma 2.9. ([16], III.3.5.10, p. 163) Let A(x, t), B(x, t) and C(x) be N×N normal ma-
trices with corresponding sets of eigenvalues {α1(x, t), ..., αN (x, t)}, {β1(x, t), ..., βN (x, t)}
and {γ1(x), ..., γN (x)}, respectively.
(i) If A u−→ C as t→ ±∞, then there exists a permutation σ ∈ SN of {1, ..., N} such that
αn

u−→ γσ(n) as t→ ±∞ for every n = 1, ..., N .

(ii) If A ∼ B as t→ ±∞, then there exists a permutation σ ∈ SN of {1, ..., N} such that
αn − βσn

u−→ 0 as t→ ±∞ for every n = 1, ..., N .

3 Particle Decay of Three-Solitons

In this section we assume N = 3 and investigate the asymptotic behavior of the decay
functions u1, u2 and u3 as a means of understanding soliton interaction. We are now ready
to present our theorem describing particle decay of three-solitons.

Theorem 3.1. (N = 3) The following asymptotic relations hold for u1, u2, and u3:

(i) u1 : s−1 → s+3 + g+
32 + g

+
21,

(ii) u2 : s−2 → s+2 + g+
23 + g

+
31 + g

+
12,

(iii) u3 : s−3 → s+1 + g+
13,

where in the notation above s±n = sn(νn +∆±
n ), g

±
mn = gmn(νmn +∆±

mn), and each asymp-
totic equation indicates behavior for t → −∞ and for t → ∞. For u1 say, this would
mean

lim
ν1 fixed

t→−∞
u1 = s−1 , lim

ν2 fixed

t→∞
u1 = s+3 , (3.1a)

lim
ν12 fixed

t→∞
u1 = g+

12, lim
ν23 fixed

t→∞
u1 = g+

23. (3.1b)

Moreover, the relative phase shifts ∆−
n , ∆+

n , and ∆+
mn = ∆+

nm are defined by (assuming
m < n)

e2kn∆−
n =

c2n
2kn

n−1∏
i=1

(ki − kn)2

(ki + kn)2
, (3.2a)

e2kn∆+
n =

c2n
2kn

N∏
i=n+1

(kn − ki)2

(kn + ki)2
, (3.2b)

e2(km−kn)∆+
mn =

c2m
2km

n−1∏
i=m+1

(km − ki)2

(km + ki)2

c2n
2kn

n−1∏
i=m+1

(ki − kn)2

(ki + kn)2

. (3.2c)
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s−1
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✇

s+3

✁
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✟✟✯
g+
23

(a) Diagram of u1
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✇

s+2
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✘✘✾ ✘✘ ḡ+

12
✏✏ ✏✏✶

g+
13✟✟✙

✟✟
ḡ+
23

(b) Diagram of u2

s−3
✁
✁✕

✇

s+1
✟✟✯
✏✏✮ ✏✏ ḡ+

13

(c) Diagram of u3

Figure 3. Space-time plots of three-soliton decay: u = u1 + u2 + u3

Space-time plots corresponding to the asymptotic behavior described in Theorem 3.1
are drawn in Figure 3. We note that this asymptotic behavior is independent of the order
of soliton collisions, i.e. independent of whether s1 collides with s2 first or s2 collides with
s3 first.

Proof of Theorem 3.1. Our approach to proving (i), (ii), and (iii) basically involves
analyzing each decay function from the perspective of its relevant moving frames:

Proof of (i): We divide the argument into cases by treating each of the four moving frames
{ν1, ν2, ν21, ν32} as a separate case:

CASE I: Assume ν1 is fixed. Then it follows from (A.3) that

A(ν1, t)
u−→ D ≡ c21

2k1
e2k1ν1E11 (3.3)

as t → −∞ where E11 is the 3 × 3 elementary matrix with 1 in its (1, 1)-entry and 0’s
everywhere else. This is because the entries of A − D consist of decaying exponential
terms. Since A and D are Hermitian, we can apply Lemma 2.9 to obtain an ordering
σ ∈ S3 of the eigenvalues {d1 = c21

2k1
e2k1ν1 , d2 = 0, d3 = 0} of D so that µn

u−→ dσ(n) as
t→ −∞. In fact, σ will always be the identity element by our ordering of the eigenvalues.
In particular, this implies that µ1

u−→ d1 as t→ −∞ and hence

lim
ν1 fixed

t→−∞
u1 = lim

ν1 fixed

t→−∞
−2 ∂

2

∂x2
log(1 + µ1)

= −2 ∂
2

∂x2
log(1 +

c21
2k1

e2k1ν1)

= s1(ν1 +∆−
1 ), (3.4)

where we have used uniform convergence in x to pass the limit through the differentiation.

CASE II: Assume ν3 is fixed. Applying an argument similar to that used in CASE I, we
find that

lim
ν3 fixed

t→∞
u1 = s3(ν3 +∆+

3 ). (3.5)

CASE III: Assume ν21 is fixed. In this case, it is more appropriate to determine the
asymptotic behavior of u1 as t→ ∞ by working with the matrix A12 as defined by (A.6)
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and its eigenvalue µ12
1 because of (A.6). It follows from part (ii) of Lemma A.1 that

A12(ν12, t)
u−→

(
G12 0
0 0

)
(3.6)

as t→ ∞. Here, G12 is the 2× 2 ghost principal submatrix of A defined by (A.6). Since
G12 has eigenvalues γ12 and γ21 with γ21 > γ12, Lemma 2.9 says that µ21

1
u−→ γ21 as t→ ∞.

We then conclude from (A.10) that

lim
ν21 fixed

t→∞
u1 = lim

ν21 fixed

t→∞
−2 ∂

2

∂x2
log(1 + µ1)

= lim
ν21 fixed

t→∞
−2 ∂

2

∂x2
log

(
e−8(k2

pkq+kpk2
q)t + µ21

1

)

= −2 ∂
2

∂x2
log γ21

= g21(ν21 +∆+
21), (3.7)

as desired.

CASE IV: Assume ν32 is fixed. We shall let the reader check that an argument analogous
to CASE III (with ν21 fixed) can be applied to prove that

lim
ν32 fixed

t→∞
u1 = g32(ν32 +∆+

32). (3.8)

This completes the proof of part (i).

Proof of (ii): We follow (i) by applying a similar analysis to u2 and consider four separate
cases corresponding to the four relevant moving frames ν2, ν23, ν31, and ν12:

CASE I: Assume ν2 is fixed. We first consider the situation where t → −∞. Now,
depending on whether s1 and s2 collide first or s2 and s3 collide first, we have that either

k1(k2
2 − k2

1) + k3(k2
2 − k2

3) > 0 or k1(k2
2 − k2

1) + k3(k2
2 − k2

3) ≤ 0. (3.9)

If k1(k2
2 − k2

1) + k3(k2
2 − k2

3) > 0, then it follows from (A.3) that A is asymptotic to

Ã =




c21
2k1
e2k1ν2+8k1(k2

2−k2
1)t c1c2

k1+k2
e(k1+k2)ν2+4k1(k2

2−k2
1)t 0

c1c2
k1+k2

e(k1+k2)ν2+4k1(k2
2−k2

1)t c22
2k2
e2k2ν2 0

0 0 0


 (3.10)

as t → −∞. Since Ã diverges as t → −∞, we shall work with its inverse instead. Using
the fact that Ã contains the 2× 2 ghost principal submatrix G12, we find that

Ã−1 u−→ (k1 + k2)2

(k1 − k2)2
2k2

c22
e−2k2ν2E22 (3.11)

as t→ −∞. As µ2 is defined to be the second largest eigenvalue of A, this implies

µ−1
2 (ν2, t)

u−→ (k1 + k2)2

(k1 − k2)2
2k2

c22
e−2k2ν2 (3.12)
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or equivalently,

µ2(ν2, t)
u−→ (k1 − k2)2

(k1 + k2)2
c22
2k2

e2k2ν2 (3.13)

as t → −∞. On the other hand, if k1(k2
2 − k2

1) + k3(k2
2 − k2

3) ≤ 0, then it follows again
from (A.3) that A is asymptotic to

Ã =




c21
2k1
e2k1ν2+8k1(k2

2−k2
1)t c1c2

k1+k2
e(k1+k2)ν2+4k1(k2

2−k2
1)t ã13

c1c2
k1+k2

e(k1+k2)ν2+4k1(k2
2−k2

1)t c22
2k2
e2k2ν2 0

ã13 0 0


 (3.14)

where ã13 = c1c3
k1+k3

e(k1+k3)ν2+4k1(k2
2−k2

1)t+4k3(k2
2−k2

3)t as t→ −∞. By computing the inverse
of Ã, we find that (3.11) again holds and therefore (3.13) holds. Hence,

lim
ν1 fixed

t→−∞
u2 = lim

ν1 fixed

t→−∞
−2 ∂

2

∂x2
log(1 + µ2)

= −2 ∂
2

∂x2
log

(
1 +

(k1 − k2)2

(k1 + k2)2
c22
2k2

e2k2ν2

)
= s2(ν2 +∆−

2 ). (3.15)

Let us now consider the situation where t → ∞. By copying the argument used for
t→ −∞, we find that

µ2(ν2, t)
u−→ (k2 − k3)2

(k2 + k3)2
c22
2k2

e2k2ν2 (3.16)

as t→ ∞. Hence,

lim
ν1 fixed

t→∞
u2 = lim

ν1 fixed

t→∞
−2 ∂

2

∂x2
log(1 + µ2)

= −2 ∂
2

∂x2
log

(
1 +

(k2 − k3)2

(k2 + k3)2
c22
2k2

e2k2ν2

)
= s2(ν2 +∆+

2 ). (3.17)

CASE II: Assume ν12 is fixed. It follows from the results of (i), CASE III, that µ12
2

u−→ γ12

as t→ ∞. Hence,

lim
ν12 fixed

t→∞
u2 = lim

ν12 fixed

t→∞
2
∂2

∂x2
log(1 + µ2)

= lim
ν12 fixed

t→∞
−2 ∂

2

∂x2
log

(
e−8(k2

1k2+k1k2
2)t + µ12

2

)

= −2 ∂
2

∂x2
log γ12

= g12(ν12 +∆+
12). (3.18)
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CASE III: Assume ν31 is fixed. Again, it will be more appropriate to work with the
matrix A13 as defined by (A.6) and its eigenvalue µ13

2 because of (A.10). However, since
A13 diverges in this case, we shall work with its inverse instead. It then follows from (iv)
of Lemma B.1 that

A−1
13 (ν13, t)

u−→ Ã−1
13 =




a11 2k1

c21
e2k1ν13 0 a13 k1+k3

c1c3
e(k1+k3)ν13

0 0 0
a13 k1+k3

c1c3
e(k1+k3)ν13 0 a33 2k3

c23
e2k3ν13


 (3.19)

as t→ ∞ where

Ã13 =




(k1−k2)2

(k1+k2)2
c21
2k1
e2k1ν13 0 (k1−k2)(k2−k3)

(k1+k2)(k2+k3)
c1c3

k1+k3
e(k1+k3)ν13

0 0 0
(k1−k2)(k2−k3)
(k1+k2)(k2+k3)

c1c3
k1+k3

e(k1+k3)ν13 0 (k2−k3)2

(k2+k3)2
c23
2k3
e2k3ν13


 . (3.20)

Now, denote by µ̃13 and µ̃31 to be the two positive eigenvalues of Ã13 with µ̃31 > µ̃13.
Then it follows that µ31

2 , being the second largest eigenvalue of A13, converges uniformly
to the largest eigenvalue of Ã13, i.e. µ31

2 (ν31, t)
u−→ µ̃31(ν31), as t→ ∞. Hence,

lim
ν31 fixed

t→∞
u2 = lim

ν31 fixed

t→∞
2
∂2

∂x2
log(1 + µ2)

= lim
ν31 fixed

t→∞
−2 ∂

2

∂x2
log

(
e−8(k2

1k3+k1k2
3)t + µ31

2

)

= −2 ∂
2

∂x2
log µ̃31

= g31(ν31 +∆+
31), (3.21)

where we have made use of the fact that Ã13 has a 2× 2 ghost principal submatrix of the
form

G13 =

(
c̃21
2k1
e2k1ν13 c̃1c̃3

k1+k3
e(k1+k3)ν13

c̃1c̃3
k1+k3

e(k1+k3)ν13
c̃23
2k3
e2k3ν13

)
(3.22)

with normalization constants

c̃1 = c1

(
k1 − k2

k1 + k2

)
, c̃3 = c3

(
k2 − k3

k2 + k3

)
, (3.23)

CASE IV: Assume ν23 is fixed. The argument here is similar to that of (i), CASE III, and
will be omitted. This completes the proof of (ii).

Proof of (iii): Since the proof here follows from the results of (i) and (ii) and uses the same
line of argument as employed above, we shall end the proof of our theorem here. �

Using equations (3.2a)-(3.2c), it is easy to verify that each decay functions in Theorem
3.1 conserve its total phase shift as described below:
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Corollary 3.2. Conservation of phase shift (N = 3):

(i) k1∆−
1 = k3∆+

3 − (k3 − k2)∆+
32 − (k2 − k1)∆+

21,

(ii) k2∆−
2 = k2∆+

2 − (k2 − k3)∆+
23 − (k3 − k1)∆+

31 − (k1 − k2)∆+
12,

(iii) k3∆−
3 = k1∆+

1 − (k1 − k3)∆+
13.

We next prove that each decay function conserves its mass and momentum.

Theorem 3.3. (i) Conservation of mass (N = 3):∫ ∞

−∞
un(x, t)dx = −4kn, n = 1, ..., N.

(ii) Conservation of momentum (N = 3):

d

dt

∫ ∞

−∞
xun(x, t)dx = −16k3

n, n = 1, ..., N.

Proof. (i) We directly calculate the integral
∫ ∞

−∞
un(x, t)dx =

∫ ∞

−∞

[
−2 ∂

2

∂x2
log(1 + µn)

]
dx

=
[
−2 ∂
∂x

log(1 + µn)
]∞
−∞

= −2
[

µ′n
1 + µn

]∞
−∞

= −4kn. (3.24)

Here, we have used the fact that µ′n, µn → 0 as x → −∞ and µn/e
2knx → e−8k3

nt+2kn∆+
n

and µn/e
2knx → 2kne

−8k3
nt+2kn∆+

n as x→ ∞ (cf. Appendix, Lemma C.1).

(ii) Integration by parts yields

∫ L

−∞
xun(x, t)dx =

[
−2x ∂

∂x
log(1 + µn)

]L

−∞
−

∫ L

−∞

[
−2 ∂
∂x

log(1 + µn)
]
dx

=
[
−2x ∂

∂x
log(1 + µn)

]L

−∞
+ 2 [log(1 + µn)]

L
−∞

= −2L µ′n(L, t)
(1 + µn(L, t))

+ 2 log(1 + µn(L, t))

∼ −4knL+ 4kn(L− 4k2
nt+∆+

n ) (3.25)

as L→ ∞. It follows that

d

dt

∫ ∞

−∞
xun(x, t)dx = −16k3

n, n = 1, 2, 3 (3.26)

as desired. �
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It follows immediately from Theorem 3.3 that

Corollary 3.4. If the center of mass of un is defined to be

xn(t) ≡
∫ ∞
−∞ xun(x, t)dx∫ ∞
−∞ un(x, t)dx

, (3.27)

then xn(t) moves with constant velocity 4k2
n, i.e.

dxn

dt
= 4k2

n, n = 1, ..., 3. (3.28)

4 Ghost Particle Interaction

In this section, we investigate the interaction of multiple ghost particles that may appear
in each decay function. Our approach is to decompose each decay function un into its
‘soliton’ and ‘ghost’ components:

un = −2 ∂
2

∂x2
log(1 + µn)

= −2
[
(1 + µn)µ′′n − (µ′n)2

(1 + µn)2

]

= −2
[

µ′′n
(1 + µn)2

]
− 2

[
µnµ

′′
n − (µ′n)2

µ2
n

] (
µn

1 + µn

)2

= −2
[

µ′′n
(1 + µn)2

]
− 2

(
∂

∂x2
logµn

) (
µn

1 + µn

)2

= us
n + ug

n

(
µn

1 + µn

)2

(4.1)

Definition 4.1. We shall refer to

us
n = −2

[
µ′′n

(1 + µn)2

]
(4.2)

as the soliton component of un,

ug
n = −2 ∂

∂x2
logµn (4.3)

as the ghost function of un, and

ug
n

(
µn

1 + µn

)2

(4.4)

as the ghost component of un.

The following theorem tells us that the ghost functions defined by (4.3) in essence
describe ghost particle interaction.
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Theorem 4.2. (N = 3) The decay of each ghost function ug
n is described as follows:

(i) ug
1 : g

−
31 → g+

32 + g
+
21,

(ii) ug
2 : g

−
21 + g

−
13 + g

−
32 → g+

23 + g
+
31 + g

+
12,

(iii) ug
3 : g

−
12 + g

−
23 → g+

13,

where in the notation above g±mn ≡ gmn(νmn +∆±
mn), ∆

+
mn = ∆+

nm is given by (3.2c), and
∆−

mn = ∆+
nm is given by (assuming m < n)

e2(km−kn)∆−
mn =

c2m
2km

m−1∏
i=1

(ki + km)2

(ki − km)2

N∏
i=n

(km + ki)2

(km − ki)2

c2n
2kn

m∏
i=1

(ki + kn)2

(ki − kn)2

N∏
i=n+1

(kn + ki)2

(kn − ki)2

. (4.5)

Proof. By (A.10), the asymptotic behavior of ug
n for n = 1, 2, 3 and t→ ∞ with respect to

a ghost moving frame νpq is exactly the same as the asymptotic behavior of un established
in the proof of Theorem 3.1, i.e.

lim
νpq fixed

t→∞
ug

n = lim
νpq fixed

t→∞
un. (4.6)

Therefore, it remains to verify their behavior for t→ −∞. This however is straightforward
and as the following lemma demonstrates the behavior of un for t → −∞ is reflected in
the behavior of −uN−n+1 for t → ∞ modulo phase shift, i.e. subject to a change in the
normalization constants of the soliton matrix A(x, t). This completes the proof. �

Remark 4.3. Theorem 4.2 reveals then that two colliding ghost particles, say g−12 and
g−23 appearing in ug

3, will fuse into a third ghost particle, g+
13. By duality, we have that

anti-particle g−13 appearing in ug
1 will split into g+

12 and g+
23. Both fusion and fission occurs

in ug
2.

Lemma 4.4. Let A(x, t) and Ã(x, t) be soliton matrices with normalization constants {cn}
and {c̃n}, respectively, that are related by

c̃n = cn

N∏
i<j

i=n or j=n

ki + kj

ki − kj
. (4.7)

Moreover, let A(x, t) and Ã(x, t) have eigenvalues {µn(x, t)} and {µ̃n(x, t)}, respectively.
Then

µn(−x,−t) = 1
µ̃N−n+1(x, t)

. (4.8)

Proof. Using Lemma B.1, part (iii) of the Appendix, we find that the relation

A(−x,−t) = Ã−1(x, t) (4.9)

is valid from which our result follows immediately. �
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As with soliton particle decay, we now demonstrate that ghost particle decay satisfies
the same conservation laws.

Corollary 4.5. Conservation of ghost phase shift (N = 3):

(i) (k3−k1)∆−
31 = (k3−k2)∆+

32+(k2−k1)∆+
21, (ii) (k2−k1)∆−

21+(k1−k3)∆−
13+(k3−

k2)∆−
32 = (k2 − k3)∆+

23 +(k3 − k1)∆+
31 +(k1 − k2)∆+

12, (iii) (k1 − k2)∆−
12 +(k2 − k3)∆−

23 =

(k1 − k3)∆+
13.

Theorem 4.6. (i) Conservation of ghost mass (N = 3):∫ ∞

−∞
ug

n(x, t)dx = −4(kn − kN−n+1), n = 1, 2, 3. (4.10)

(ii) Conservation of ghost momentum (N = 3):

d

dt

∫ ∞

−∞
xug

n(x, t)dx = −16(k3
n − k3

N−n+1), n = 1, 2, 3. (4.11)

Proof. (i) We directly integrate to obtain∫ ∞

−∞
ug

n(x, t)dx =
∫ ∞

−∞

[
−2 ∂

2

∂x2
log(µn)

]
dx

=
[
−2 ∂
∂x

log(µn)
]∞
−∞

= −2
[
µ′n
µn

]∞
−∞

= −4(kn − kN−n+1). (4.12)

Again, we have used the fact that µ′n/e2knx → c2n(t), µn/e
2knx → c2n(t)/(2kn) as x → ∞

(cf. Lemma C.1) and µn(−x,−t) = 1/µ̃n(x, t) as x→ ∞ (cf. Lemma 4.4).

(ii) It suffices to integrate by parts and use the asymptotic relations described in (i) to
obtain ∫ ∞

−∞ xug
n(x, t)dx =

[−2x ∂
∂x logµn

]∞
−∞ − ∫ ∞

−∞
[−2 ∂

∂x logµn

]
dx

= −2
[
xµ′

n(x,t)
µn(x,t) − log(µn(x, t))

]∞
−∞

= −16(k3
n − k3

N−n+1),

as desired. �

Corollary 4.7. If the center of mass of ug
n is defined to be

xg
n(t) ≡

∫ ∞
−∞ xug

n(x, t)dx∫ ∞
−∞ ug

n(x, t)dx
, (4.13)

then xg
n(t) moves with constant velocity 4(k2

n + 2knkN−n+1 + k2
N−n+1), i.e.

dxn

dt
= 4(k2

n + 2knkN−n+1 + k2
N−n+1), n = 1, ..., 3. (4.14)
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Theorem 4.2 now allows us to make sense of the decomposition (4.1). Since µn/(1 +
µn) → 0 as t→ −∞ and µn/(1+µn) → 1 as t→ ∞, it follows that the ghost component of
un defined by (4.4) controls the formation of ghost particles and that the soliton component
of un defined by (4.2) controls the exchange of soliton particle identities.

Theorem 4.8. (N = 3) The decay of each soliton component us
n is described as follows:

(i) us
1 : s

−
1 → s+3 ,

(ii) us
2 : s

−
2 → s+2 ,

(iii) us
3 : s

−
3 → s+1 .

Concluding Remarks 4.9. We have shown that for KdV three-solitons a duality exists
between soliton particle interaction (Theorem 3.1) and ghost particle interaction (Theo-
rem 4.2) and that both interactions satisfy the same conservation laws. Naturally, these
results should extend to an arbitrary number of solitons. In particular, our techniques for
analyzing the decay of the largest and smallest eigenvalues of the soliton matrix A(x, t)
should easily carry over. However, our analysis of the middle eigenvalue required us to
consider separately the two possible orderings of soliton collisions, which must also be
done for N -solitons.

Lastly, we mention that our theory of soliton decay also applies to other well known
partial differential equations that exhibit soliton behavior, e.g. nonlinear Schrodinger
(NLS) and Kadomtsev-Petviashvili (KP) equations. Our preliminary investigations indeed
show that such a phenomenon occurs. We shall take up this matter in an upcoming paper.

A Moving Frames

It will be useful to write our soliton matrix A given by (2.5) in several different forms.
One form involves writing A in terms of the natural moving frames {νn}:

A =
(

cmcn
km+kn

ekmνm+knνn
)
, m, n = 1, .., N. (A.1)

Then using the relation

νn = νl + 4kn(k2
l − k2

n)t, (A.2)

another form can be gotten for A by writing it purely in terms of fixed moving frame νl:

A =
(

cmcn
km+kn

e(km+kn)νl+4[km(k2
l −k2

m)+kn(k2
l −k2

n)]t
)
, m, n = 1, ..., N. (A.3)

Next, it will also be useful to write A in terms of an arbitrary ghost moving frame νpq

with p < q:

A =
(

cmcn
km+kn

e(km+kn)νpq+4[km(k2
pq−k2

m)+kn(k2
pq−k2

n)]t
)

(A.4)

= e8(k
2
pkq+kpk2

q)tApq. (A.5)

Here, the matrix Apq appearing in (A.5) is defined as

Apq =
(

cmcn
km+kn

e(km+kn)νpq+[Fpq(km)+Fpq(kn)]t
)

(A.6)
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where

Fpq(x) ≡ x(k2
pq − x2)− (k2

pkq + kpk
2
q ). (A.7)

Lemma A.1. Assume p < q. Then

(i) Fpq(kp) = Fpq(kq) = 0.

(ii) Fpq(kn) < 0 for kn < kp or kq < kn.

(iii) Fpq(kn) > 0 for kp < kn < kq.

Proof. Since (i) is trivial, we shall only prove (ii) and (iii). To prove (ii), we first let the
reader check that

F ′
pq(x) > 0 for 0 < x <

√
k2

pq/3 (A.8)

F ′
pq(x) < 0 for x >

√
k2

pq/3. (A.9)

Then assuming kn < kp <
√
k2

pq/3, it follows from (A.8) and part (i) of this lemma that

Fpq(kn) < 0. A similar argument can be used for the case of
√
k2

pq/3 < kq < kn to establish
Fpq(kn) < 0. Part (iii) can be handled in a similar fashion. �

Let {µpq
1 , ..., µ

pq
N } denote the eigenvalues of Apq. Then µn = e8(k

2
pkq+kpk2

q)tµpq
n and so

∂2

∂x2
log(1 + µn) =

∂2

∂x2
log[e8(k

2
pkq+kpk2

q)t(e−8(k2
pkq+kpk2

q)t + µpq
n )]

=
∂2

∂x2
log(e−8(k2

pkq+kpk2
q)t + µpq

n ). (A.10)

B Cauchy Matrices

We recall formulas involving determinants and inverses of soliton matrices which have the
form of Cauchy matrices. Let A and Apq given by (2.5) and (A.6). Denote by Cmn to be
the cofactor of amn in A and define

amn =
N∏

i<j
i=m or j=m

1
(ki − kj)

N∏
i<j

i=n or j=n

1
(ki − kj)

N∏
i,j

i=m or j=n

(ki + kj). (B.1)

Lemma B.1. (cf. [20], p. 92)

(i) det(A) =
N∏

i<j

(ki − kj)
N∏

i<j

(ki − kj)
N∏
i,j

1
(ki + kj)

N∏
i=1

c2i e
2kiνi .

(ii) Cmn = (−1)m+n
N∏

i<j

i,j �=m

(ki − kj)
N∏

i<j

i,j �=n

(ki − kj)
N∏
i,j

i�=m,j �=n

1
(ki + kj)

N∏
i=1
i�=m

cie
kiνi

N∏
j=1

j �=n

cje
kjνj .

(iii) A−1 =
(

amn

cmcn
e−(kmνm+knνn)

)
.

(iv) A−1
pq =

(
amn

cmcn
e−(km+kn)νpq−[Fpq(km)+Fpq(kn)]t

)
.
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C Eigenvalue Asymptotics

We next prove certain asymptotic properties regarding eigenvalues of soliton matrices for
N = 3. Let A be a soliton matrix with eigenvalues {µn} and eigenvectors {un} which
form an orthonormal basis since A is symmetric.

Lemma C.1. (i) µn → 0 as x→ −∞ for n = 1, 2, 3.

(ii) e−2knxµn → e−8k3
nt+2kn∆+

n as x→ ∞ for n = 1, 2, 3.

Proof. Part (i) is obvious since A converges to the zero matrix as t → ∞. We prove
(ii) by treating each eigenvalue separately. If µ1 is an eigenvalue of A, then e−2k1xµ1

is an eigenvalue of e−2k1xA which converges to the matrix e−8k3
1t+2k1∆

+
1 E11 as x → ∞.

It follows that e2k1xµ1 → e−8k3
1t+2k1∆+

1 . By a similar argument, the matrix e2k3xA−1

has e2k3x/µ3 as an eigenvalue and by Lemma B.1-(iii) converges to e−8k3
3t+2k3∆+

3 E33 as
x→ ∞. This proves that e−2k3xµ3 converges to e−8k3

3t+2k3∆
+
3 . Lastly, we use the product

formula µ1µ2µ3 = detA, Lemma B.1-(i), and results for µ1 and µ3 to easily establish that
e−2k2xµ2 → e−8k3

2t+2k2∆
+
2 . This completes the proof of (ii). �

Next, define {en} to be the standard unit vectors of length N , {Emn} the elementary
N ×N matrices, and introduce the vector

c = (c1(t)ek1x, ..., cN (t)ekNx)T . (C.1)

Lemma C.2. (i) µ′n = (cTun)2 where µ′n = ∂µn/∂x for n = 1, 2, 3.

(ii) µ′n → 0 as x→ −∞ for n = 1, 2, 3.

(iii) e−2knxµ′n → 2kne
−8k3

nt+2kn∆+
n as x→ ∞ for n = 1, 2, 3.

Proof. To prove (i) we begin with the diagonalization D = U−1AU . It follows from the
formulas A′ = ccT and U−1 = UT that

D′ = −U−1U ′U−1AU + U−1A′U + U−1AU ′

= −UTU ′D + UTccTU +DUTU ′. (C.2)

As D is diagonal the matrix −UTU ′D + DUTU ′ has zero entries on its main diagonal.
This implies that the diagonal entries of D′ and UTccTU must agree, i.e. µ′n = (cTun)2,
and proves (i). Part (ii) follows immediately from (i) since c converges to the zero vector
as x → −∞. To prove (iii) we will treat each eigenvalue separately. For µ1, we have
that u1 → e1 as x → ∞ since e−2k1A → E11. It follows from (i) that e−2k1xµ′1 =
e−2k1x(cTu1)2 → 2k1e

−8k3
1t+2kn∆1 . To handle µ3, we apply (i) to A−1 to obtain(

1
µ3

)′
= (c̃Tu3)2 (C.3)

where c̃ is prescribed by Lemma B.1, (iii):

c̃ = (
c̃1
c1
c−1
1 (t)e−k1x, ...,

c̃N
cN
c−1
N (t)e−kNx)T . (C.4)

It follows from (C.3) that e−2k3xµ′3 = e2k3xµ2
3(c̃

Tu3)2 → 2k3e
−8k2

3t+2k3∆+
3 as x → ∞.

Lastly, we differentiate the product formula µ1µ2µ3 = det(A) and use results for µ′1 and
µ′3 to establish that e−2k2xµ2 → e−8k3

2t+2k2∆
+
2 . This proves (iii). �



Soliton Collisions and Ghost Particle Radiation 197

References

[1] Akhmediev N N and Ankiewicz A, Solitons: Nonlinear Pulses and Beams, Chapman
and Hall, 1997.

[2] Ablowitz M J and Clarkson P A, Solitons, Nonlinear Evolution Equations and Inverse
Scattering, Cambridge Univ. Press, 1991.

[3] Anastassiou C, Segev M, Steiglitz K, Giordmaine J A, Mitchell M, Shih M, Lan S
and Martin J, Energy exchange interactions between colliding vector solitons, Phys.
Rev. Letters 83 (1999), No. 12, 2332–2335.

[4] Bowtell G and Stuart A E S, A particle representation for Korteweg-de Vries solitons,
J. Math. Phys. 24 (1983), No. 4, 969–981.

[5] Drazin P G and Johnson R S, Solitons: An Introduction, Cambridge Univ. Press,
1989.

[6] Gardner C S, Greene J M, Kruskal M D and Miura M R, Korteweg-deVries equation
and generalizations. VI. Methods for exact solution, Comm. Pure Appl. Math. 27
(1974), 97–133.

[7] Hasegawa A and Kodama Y, Solitons in Optical Communications, Oxford Univ.
Press, 1995.

[8] Hirota R, Exact solutions of the Korteweg-deVries equation for multiple collisions of
solitons, Physical Review Letters 27 (1971), No. 18, 1192–1194.

[9] Hodnett P F and Moloney T P, On the structure during interaction of the two-soliton
solution of the Korteweg-de Vries equation, SIAM J. Appl. Math 49 (1989), No. 4,
1174–1187.

[10] Jakubowski M H, Steiglitz K and Squier R, Computing with solitons: a review and
prospectus, in Collision-Based Computing, Editor: Adamatzky A, Springer, 2002.

[11] Kanna T and Lakshmanan M, Exact soliton solutions, shape changing collisions, and
partially coherent solitons in coupled nonlinear Schrodinger equations, Phys. Rev.
Letters 86 (2001), No. 22, 5043–5046.

[12] Kay I and Moses H E, Reflectionless transmission through dielectrics and scattering
potentials, J. Applied Physics 27 (1956), No. 12, 1503–1508.

[13] Krolikowski W and Holmstrom S A, Fusion and birth of spatial solitons, Optics Letters
22 (1997), No. 6, 369–371.

[14] Lax P D, Integrals of nonlinear equations of evolution and solitary waves, Comm.
Pure Appl. Math. 21 (1968), 467–490.

[15] LeVeque R J, On the interaction of nearly equal solitons in the KdV equation, SIAM
J. Appl. Math 47 (1987), No. 2, 254–262.



198 H D Nguyen

[16] Marcus M and Minc H, A Survey of Matrix Theory and Matrix Inequalities, Dover
Publications, 1964.

[17] Miller P D and Christiansen P L, A coupled Korteweg-de Vries system and mass
exchanges among solitons, Physica Scripta 61 (2000), 518–525.

[18] Miura R M, The Korteweg-deVries equation: a survey of results, SIAM Review 18
(1976), No. 3, 412–459.

[19] Nguyen H D, Decay of KdV solitons, SIAM J. Appl. Math, 63 (2003), No. 3, 874–888.

[20] Polya G and Szego G, Problems and Theorems in Analysis, Volume II, Grundlehren
Math. Wiss. No. 216, Springer-Verlag, Berlin, 1976.

[21] Rajaraman R, Solitons and Instantons: An Introduction to Solitons and Instantons
in Quantum Field Theory, Elsevier Science, 1987.

[22] Remoissenet M, Waves called solitons: Concepts and Experiments, Springer, 1999.

[23] Wadati M and Toda M, The exact N -soliton solution of the Korteweg-deVries equa-
tion, J. Physical Soc. Japan 32 (1972), No. 5, 1403–1411.

[24] Zabusky N J and Kruskal M D, Interaction of ‘solitons’ in a collisionless plasma and
the recurrence of initial states, Physical Review Letters 15 (1965), No. 6, 240–243.


