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Abstract—Delta compression techniques are commonly used in 
the context of version control systems and the World Wide Web. 
They are used to compactly encode the differences between two 
files or strings in order to reduce communication or storage costs. 
In this paper, we study the use of delta compression in 
compressing massive web pages according to the similarity of 
their templates. We propose a framework for template-based 
delta compression which uses template-based clustering 
techniques to find the web pages that have similar templates and 
then encode their differences with delta compression techniques 
to reduce the storage cost. We also propose a filter-based 
optimization of Diff algorithm to improve the efficiency of the 
delta compression approach. To demonstrate the efficiency of 
our approach, we present experimental results on massive web 
pages. Our experiments show that template-based delta 
compression achieves significant improvements in compression 
ratio as compared to individually compressing each web page. 
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I. INTRODUCTION 

Delta compression is a main field in data compression 
research which is concerned with compressing target data set 
in terms of reference data set by computing a delta which is 
viewed as an encoding of difference between them. It plays a 
more and more important role in information retrieval systems 
and other web applications because they have to crawl and 
store more and more data with the rapid growth of information 
on the World Wide Web. 

Delta compression is firstly used in revision control 
systems1. By storing deltas of different versions, instead of the 
actual data, these systems are able to reduce storage cost 
significantly. However, most delta compression methods need 
to be performed with respect to a previous version of the same 
file, or some others that are easy to be identified as the 
reference data set, or they will be quite inefficient. As a result 
they don’t perform well in large scale web pages where it is 
difficult to efficiently identify target and reference data set. 

A feasible way to compressing large scale web pages is to 
use clustering algorithms. By clustering methods, the large 
data set is first divided into subsets of similar web pages 
which have large compressible content, and then delta 
compression is performed to compress the web pages of each 
subset respectively. And how to cluster similar web pages 
which have large compressible content in a fast and accurate 
way is important to delta compression. Gibson et al.2 pointed 
that templates represent between 40% and 50% of data on the 
Web and this volume has been growing at a rate of 

approximately 6% per year, and the template proportion of 
portals is higher than that of other websites. That indicates 
using web pages’ structural information to find similar 
templates might be an efficient way to indentify similar pages 
that have large compressible content. 

In this paper, we propose a delta compression framework 
based on template for efficiently compressing large scale web 
pages. In the framework, we propose a random sampling 
clustering algorithm which can cluster the pages that have the 
same or similar templates together efficiently. We propose an 
optimization on Myers’ diff algorithm3 based on sliding 
window to improve its efficiency and use the optimized diff 
algorithm to compute the difference between web pages. We 
have evaluated our compression approach on the 19 million 
web pages extracted from a repository of 2.4 billion web 
pages collected by Web Infomall4. Compared to the results of 
Gzip5 on the same data set, our template-based approach 
performed much better in compression ratio. 

The rest of the paper is organized as follows: the related 
works of delta compression is introduced in Section 2. Our 
template-based delta compression approach is described in 
Section 3. The experiments results are reported in Section 4 
and finally we conclude our work in Section 5. 

II. RELATED WORK 

The main delta compression algorithms in use today are 
diff and vdelta6. Using diff to find difference between two 
files and then applying Gzip5 to compress the difference is a 
simple and widely used way to perform delta compression, 
but it does not provide good compression on files that are only 
slightly similar. Vdelta is a relatively new technique that 
integrates both data compression and data differencing. 

The problem statement of determining the differences 
between two sequences of symbols is to find the minimum 
“script” of symbol deletions and insertions that transform one 
sequence into the other. Among numerous algorithms for the 
problem, Myers’ difference algorithm3 performs best. Myers 
solved the problem by transforming it into an equivalent 
problem of finding a shortest path in an edit graph and 
developing a greedy algorithm to solve the single-source 
shortest path problem. 

The clustering techniques are studied extensively. 
K-means and its variants have a time complexity that is linear 
in the number of documents, but it suffers from the serious 
drawback that its performance heavily depends on the initial 
starting conditions. Unlike the previous method, hierarchical 
clustering methods do not require to fix the number of clusters 
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priori as a parameter. It starts with all instances each in its own 
cluster, and then repeatedly merges the two clusters that are 
most similar in each iteration. The single linkage approach7 is 
always merging those two clusters for which the distance 
between two of the documents from the two clusters is 
minimal over all inter-cluster distances. It is often portrayed 
as the better quality clustering approach, but is limited 
because of its quadratic time complexity. 

There are several algorithms8-10 that can identify structural 
similarity between templates in the template-based clustering 
process. Several authors proposed algorithms for detecting 
structural similarity based on tree-editing-distance11. Flesca et 
al.12 introduced the Fourier transform technique as a 
mechanism to compute similarity between documents. 
Buttler13 reduces paths in a document to hash values, which 
can be compared to those of other documents using set union 
and set intersection operators. 

III. Template-based Delta Compression 

The basic idea of our framework is to divide the set of 
massive pages into subsets of template-similar pages so that 
there is large space for compression within each subset. 
Clustering algorithm is first applied in the division of massive 
pages. The pages that have same or similar templates will be 
clustered together as they are considered to have large 
common content. Then we perform a delta computation for 
the pages of each cluster using Myers’ diff algorithm and then 
save the delta and reference data set. 

A. Clustering based on template-similarity 

The first step of our framework is to divide massive web 
pages into subsets of pages that have similar templates, in 
order to constrain the computation of delta occurring only 
between pages that have large common content in which 
Myers’ O(ND) difference algorithm3 works efficiently. The 
algorithm consists of two phases: computing a sketch for each 
pages and clustering the pages based on their sketches. 
 

( )Procedure Cluster D,  sim

Begin

1. compute a sketch s foreach document d in D,  D is the set of document d 

    S Compute_sketch(D), S is the set of sketch s

2. set T {}, T is the set of sketch of initial te

←
← mplate t

3. set C {}, C is the set of cluster C ,  C  is the set of  document d

4. choose k templates randomly in D, sim is threshold of the similarity 

    between templates

    T Select_Template(S,sim,k)

t t←

←

t

5.  for each sketch s in S do

6.      for each template t in T do

7.          if similarity of s and t is large than sim

8.              if C  exist in C

9.                  { }

10.            else

11

t tC C d← ∪

( )

.                { , } , { }

12.                -{ },

13.        end if

14.    end for

15.  end for  

16.  if D has no change, End

17.  else goto 4  

End

Procedure Select _ Template S,  sim,  k

1. ch

t tC d t C C C

S S d break

← ← ∪
←

oose d from D randomly

2. set T {}, T is the set of template t

3. if similarity of s and t is small than sim, t T

4.     T T {d}

5. if sizeof(T) k, goto 1

6. retuen T 

←
∀ ∈

← ∪
<

 

Fig. 1. The procedure of clustering algorithm. 

In the first phase, we use Broder’s min-wise independent 
hashing method14 to compute a sketch of M fingerprints for 
each page. For the goal of identifying the pages that have 
similar templates, we take html tags and the strings between 
html tags as tokens rather than lines, words, or letters which is 
different from the tokens in Broder’s algorithm15. The shingle 
in our algorithm is a contiguous sequence composed by tokens 
of html tags and tokens of strings between html tags. No 
matter how long a string between html tags is, it is seen as a 
token, which reduces the influence of the content blocks. So 
no matter the content blocks of the pages is the same or not, 
the same templates can be identified. 

In the second phase, we cluster the pages based on the 
sketches. Our clustering algorithm is a random sampling 
algorithm whose time complexity is O(NI) and space 
complexity is O(N) where N is number of all pages and I is 
number of iterations. Considering that there may be a mass of 
pages which have no similar template with other pages, we 
randomly select k initial templates in each iteration. Time 
complexity of computing sketch for each document is O(N) 
and time complexity of Select_Templates is O(k2) where k is 
number of templates selected in each iteration. And time 
complexity of clustering documents is O(NMI) where M is the 
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actual number of templates of all documents. So time 
complexity of our clustering algorithm is O(NI). Number of 
iteration I will be M/k approximately if there are M different 
templates, because the clustering algorithm can identify all the 
pages which have the same templates with the given k 
templates. When all M templates have been identified, the 
algorithm completes. 

As illustrated in Figure 1, there are several parameters that 
may affect the result of our clustering algorithm. Threshold 
sim is an important parameter to measure the similarity 
between templates. The compression efficiency of the whole 
approach is related to the threshold sim. If sim is too high, 
there will be many pages that have no similar pages to 
compute delta data with, which lead to bad compression ratio. 
If sim is too low, the similarity of the pages within the cluster 
will be reduced, which leads to bad efficiency. Our 
experiments show that when similarity threshold is 50%, the 
whole compression efficiency is optimal. 

B. Delta Computation 

The second step of our framework is to perform a delta 
computation for the pages within each cluster. We use Myers’ 
difference algorithm to compute the delta between target data 
set and reference data set where target data set is one 
randomly selected page in each cluster and reference data set 
is the others. Time of Myers’ algorithm is O(ND) where N is 
sum of the lengths of them and D is size of the minimum edit 
script for them. When D is not very small, Myers’ algorithm 
consumes huge time to compute the delta. So improvement in 
efficiency of the difference algorithm is important to our 
approach. We propose a filtering optimization method to 
reduce the differences between two pages before computing 
delta which can further reduce the time of delta computation.  

We firstly segment the web pages into sets of tokens 
before delta computation. Although there are many possible 
segmentation methods, such as letter-based, word-based, 
line-based and phase-based, we choose the segmentation 
method based on html tags. The reason for our choice it that 
our clustering algorithm clusters the pages that have similar 
template together; as a result, the pages within a cluster have 
many same html tags. 

Although the difference algorithm is performed within 
each cluster, there are two reasons for which improvement of 
its efficiency is necessary: (1) there would be some 
false-positives in our clustering algorithm which have large 
difference from others within the cluster and consume huge 
time of delta computation, and (2) as mentioned in subsection 
3.1, the similarity between the pages within each cluster can’t 
be very high, so the delta computation consumes huge time 
which counts the most part of the whole time of our approach. 
For example if the similarity of two pages is 20% of sum of 
their lengths, the O(ND) time for computing delta is then 
approaching a O(N2) time. So a filtering optimization method 
is needed to further reduce the difference between two pages 
before delta computation. 

Our filtering optimization method can be divided into 

three steps: given two documents A and B to compare, (1) we 
use the filtering algorithm based on sliding window to 
produce the filtered document A’ and B’, and the 
corresponding edit script SA and SB. Document A can be later 
recovered from document A’ and SA, so does document B. (2) 
compute SES’ (shortest edit script) between documents A’ and 
B’. (3) use SA , SB and SES’ to compute SES between 
Document A and B. It is important to note that document A’ 
and B’ are more similar, so the time of computing SES’ 
between them is much shorter. The task of step (3) is the 
procedure of merging SA, SB and SES’ together which can be 
completed in linear time. 

Huang’s work16 on managing duplicate data gives us much 
inspiration in designing the filtering algorithm. Our filtering 
algorithm is as follows: given two documents A and B to 
compare, we compute a filtered document for A and B 
respectively consisting of sufficiently long fragments that 
exist in both of them in the following way: (1) a sliding 
window of size S is used to compute the fingerprint for each 
overlapping S characters of each document using Rabin’s 
fingerprinting functions17, and (2) each fingerprint of A is 
hashed into a hash table T. (3) for each fingerprint of B, if it 
finds a match in T with the fingerprints of A, the 
corresponding sequence in B is reserved. The intersection of 
such reservations forms the filtered document B’. We can get 
the filtered document A’ through a similar process. The time 
and space cost of this algorithm are both O(N). 

 
Fig. 2. filtering algorithm. 

IV. EXPERIMENTS 

In this section, we perform an experimental evaluation of 
our approach. The experiments are organized as follows: 
firstly, we evaluated the sensitivity of key parameters 
deciding the efficiency of our approach; secondly, we 
compare our delta compression approach with Gzip on the 
data set of 19 million web pages from a repository of 3 billion 
web pages collected by Web InfoMall4, which is a Chinese 
web archive that has been built at Peking University since 
2001. The web pages in our experiment are all the raw pages 
without the process of cleaning noisy because we think the 
‘noise’ is template of web pages which is very important for 
our compression approach. All the experiments are run on 
Linux 64-bit system, with Intel(R) Xeon(R) 4core CPU at 
2.5GHz, 6M of Cache and 2GB of RAM. 

A. Parameter Sensitivity and Efficiency 
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There are two key parameters that can impact the 
efficiency of our approach, the threshold of similarity in the 
clustering stage and the length of sliding window in the delta 
computation stage. The data set in this subsection is 10000 
web pages selected randomly from http://auto.sina.com.cn in 
Web Infomall. We will analyze the parameter sensitivity to 
our approach in detail. 

Firstly, we evaluate the impact of similarity threshold on 
the distribution of web pages in the result of clustering step. 
Setting the similarity threshold to different values can produce 
subsets of pages that have different template similarity. We 
use number of templates and coverage rate to evaluate the 
impact on the distribution of web pages. Number of templates 
is the number of clusters. Coverage rate is defined as the ratio 
between the number of web pages that have templates and that 
of all web pages. And web pages that are not similar with any 
others are considered that they don’t have templates and can’t 
be compressed. For the other parameters, we set number of 
initial template number k to 30, size of sketch m to 100 and 
width of shingle w to 3. 

The result is illustrated as Figure 3, which shows the 
change of number of templates and coverage rate when 
similarity threshold increases from 0 to 1. When the similarity 
threshold increases from 0 to 0.6, the coverage rate descends 
smoothly. But when the similarity threshold is higher than 0.6, 
the coverage rate descends rapidly, which indicates that there 
are a lot of web pages which have 0.6 similarity with other 
pages. The change of number of templates indicates that the 
number of clusters increases when the similarity threshold 
increases, but the size of cluster is decreasing. It’s worth to say 
that when the similarity threshold is too high, the number of 
clusters descends rapidly. In the case, most of the similarity 
between web pages is not that high and mass of web pages are 
considered to have no similar template with any other web 
pages which reduce the number of templates. The higher 
similarity threshold is, the smaller the number of templates is. 

Secondly, we evaluate the impact of similarity threshold 
on computation time and compression ratio in delta 
compression step. We use the result of clustering step as the 
data set of this experiment and use our delta compression 
algorithm to compress the web pages within each cluster. We 
set length of sliding window to 7 which is proved the most 
efficient value in next experiment.  

The result is illustrated as Figure 4, which shows the 
change of time and compression ratio when similarity 
threshold increases from 0.1 to 0.9. The compression ratio 
reaches its peak which is 0.73 when similarity threshold is 0.5. 
And we adopt this value of similarity threshold in our system. 
The reason for the lower compression ratio in the range 
corresponding to similarity threshold between 0.1 and 0.5 is 
that the similarity between the pages within each cluster is too 
small and there are little common content between them. 
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Fig. 3.impact on the distribution of web pages. 

The reason for the lower compression ratio in the range 
corresponding to similarity threshold between 0.5 and 0.9 is 
that mass of pages are considered to have no template and 
have no pages to compute delta with. The time doesn’t 
increase linearly with the descending of similarity threshold, 
which proves that our optimization can further improve the 
time of Myers’ diff algorithm when the documents are not 
very similar. 
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Fig. 4. Impact on the time and compression ratio. 

Finally, we evaluate the impact of the length of sliding 
window on both time and compression ratio of optimized 
compression algorithm by changing the length of sliding 
window from 0 to 14. We first use our template-based 
clustering algorithm to cluster our data set into subsets of 
similar web pages and then use optimized Mayer’s diff 
algorithm to compress the web pages in each cluster with 
different length of sliding window. For the other parameters, 
we set number of initial template number k to 30, the size of 
sketch m to 100 and the similarity threshold to 50%. 

The result is illustrated as Figure 5, which shows the 
change of time and compression ratio when length of sliding 
window increases from 0 to 14. The change of compression 
ratio and time indicates that small length of sliding window 
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will lead to poor time, but large length of sliding window will 
lead to poor compression ratio since it filters massive common 
tag sequences of small length. The time and compression ratio 
seems to reach a balance when length of sliding window is 4 
to 8, which is a proper choice for our approach. When length 
of sliding window is small or even 0, the effectiveness of the 
filtering optimization is little and it’s very time-consuming, 
which indicates that the filtering optimization can further 
improve the time of Mayer’s diff algorithm with some 
decrease on compression ratio. 
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Fig. 5.Impact of the length of sliding window. 

C. Comparison Experiment 

We compare our delta compression approach named TBC 
(Template Based Compression) with Gzip in compression 
ratio on the data set of 19 million web pages breadth-first 
crawled by Web InfoMall. We also present the result of the 
combination of Gzip and TBC. 

algorithm Size of data set time Compression ratio
uncompressed 665G  100% 

TBC 179G 65hours 27% 
Gzip 137G 72hours 21% 

TBC + Gzip 49G 84hours 8% 

Table. 1. Comparison on large scale of web pages. 

Table 1 lists the result of comparison of TBC and Gzip in 
compression ratio. While compression ratio of TBC is a little 
worse than that of Gzip, time of TBC is better than Gzip. It is 
important that the combination of Gizp and TBC achieve 
much better compression ratio than that of both of them, 
though time of the combination of Gizp and TBC is a little 
worse than them. The experiment proves that TBC can 
compress large scale of web pages well and it will achieve 
great compression effect when it is combined with Gzip. 

V. CONCLUSIONS 

The approach we proposed identifies and clusters similar 
web pages according to their similarity of templates and 
performs delta compression within each cluster. The 
clustering algorithm in our approach can efficiently divide 
large scale of web pages into subsets of web pages with 
similar templates.  

The filtering optimization method we proposed further 
reduces the time-cost of delta computation algorithm used in 
the web pages compression within each cluster. The approach 
has been successfully used to compress a data set of 19 million 
web pages which is crawled from Chinese websites in a month 
by Web InfoMall using breadth-first crawling algorithm. 
Experiments show that our approach provides pretty good 
compression ratio when it is combined with Gzip. 
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