
Template-based Delta Compression of Large Scale Web Pages

Kai Lei*, Guangyu Sun, Lian’en Huang
Shenzhen Key Lab for Cloud Computing Technology & Applications (SPCCTA),

Shenzhen Graduate School, Peking University, Shenzhen 518055, P.R. China
*leik@pkusz.edu.cn, sun120409@gmail.com, hle@net.pku.edu.cn

Abstract—Delta compression techniques are commonly used in
the context of version control systems and the World Wide Web.
They are used to compactly encode the differences between two
files or strings in order to reduce communication or storage costs.
In this paper, we study the use of delta compression in
compressing massive web pages according to the similarity of
their templates. We propose a framework for template-based
delta compression which uses template-based clustering
techniques to find the web pages that have similar templates and
then encode their differences with delta compression techniques
to reduce the storage cost. We also propose a filter-based
optimization of Diff algorithm to improve the efficiency of the
delta compression approach. To demonstrate the efficiency of
our approach, we present experimental results on massive web
pages. Our experiments show that template-based delta
compression achieves significant improvements in compression
ratio as compared to individually compressing each web page.

Keywords- LCS, Diff, Delta compression, template

I. INTRODUCTION

Delta compression is a main field in data compression
research which is concerned with compressing target data set
in terms of reference data set by computing a delta which is
viewed as an encoding of difference between them. It plays a
more and more important role in information retrieval systems
and other web applications because they have to crawl and
store more and more data with the rapid growth of information
on the World Wide Web.

Delta compression is firstly used in revision control
systems1. By storing deltas of different versions, instead of the
actual data, these systems are able to reduce storage cost
significantly. However, most delta compression methods need
to be performed with respect to a previous version of the same
file, or some others that are easy to be identified as the
reference data set, or they will be quite inefficient. As a result
they don’t perform well in large scale web pages where it is
difficult to efficiently identify target and reference data set.

A feasible way to compressing large scale web pages is to
use clustering algorithms. By clustering methods, the large
data set is first divided into subsets of similar web pages
which have large compressible content, and then delta
compression is performed to compress the web pages of each
subset respectively. And how to cluster similar web pages
which have large compressible content in a fast and accurate
way is important to delta compression. Gibson et al.2 pointed
that templates represent between 40% and 50% of data on the
Web and this volume has been growing at a rate of

approximately 6% per year, and the template proportion of
portals is higher than that of other websites. That indicates
using web pages’ structural information to find similar
templates might be an efficient way to indentify similar pages
that have large compressible content.

In this paper, we propose a delta compression framework
based on template for efficiently compressing large scale web
pages. In the framework, we propose a random sampling
clustering algorithm which can cluster the pages that have the
same or similar templates together efficiently. We propose an
optimization on Myers’ diff algorithm3 based on sliding
window to improve its efficiency and use the optimized diff
algorithm to compute the difference between web pages. We
have evaluated our compression approach on the 19 million
web pages extracted from a repository of 2.4 billion web
pages collected by Web Infomall4. Compared to the results of
Gzip5 on the same data set, our template-based approach
performed much better in compression ratio.

The rest of the paper is organized as follows: the related
works of delta compression is introduced in Section 2. Our
template-based delta compression approach is described in
Section 3. The experiments results are reported in Section 4
and finally we conclude our work in Section 5.

II. RELATED WORK

The main delta compression algorithms in use today are
diff and vdelta6. Using diff to find difference between two
files and then applying Gzip5 to compress the difference is a
simple and widely used way to perform delta compression,
but it does not provide good compression on files that are only
slightly similar. Vdelta is a relatively new technique that
integrates both data compression and data differencing.

The problem statement of determining the differences
between two sequences of symbols is to find the minimum
“script” of symbol deletions and insertions that transform one
sequence into the other. Among numerous algorithms for the
problem, Myers’ difference algorithm3 performs best. Myers
solved the problem by transforming it into an equivalent
problem of finding a shortest path in an edit graph and
developing a greedy algorithm to solve the single-source
shortest path problem.

The clustering techniques are studied extensively.
K-means and its variants have a time complexity that is linear
in the number of documents, but it suffers from the serious
drawback that its performance heavily depends on the initial
starting conditions. Unlike the previous method, hierarchical
clustering methods do not require to fix the number of clusters

Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0608

priori as a parameter. It starts with all instances each in its own
cluster, and then repeatedly merges the two clusters that are
most similar in each iteration. The single linkage approach7 is
always merging those two clusters for which the distance
between two of the documents from the two clusters is
minimal over all inter-cluster distances. It is often portrayed
as the better quality clustering approach, but is limited
because of its quadratic time complexity.

There are several algorithms8-10 that can identify structural
similarity between templates in the template-based clustering
process. Several authors proposed algorithms for detecting
structural similarity based on tree-editing-distance11. Flesca et
al.12 introduced the Fourier transform technique as a
mechanism to compute similarity between documents.
Buttler13 reduces paths in a document to hash values, which
can be compared to those of other documents using set union
and set intersection operators.

III. Template-based Delta Compression

The basic idea of our framework is to divide the set of
massive pages into subsets of template-similar pages so that
there is large space for compression within each subset.
Clustering algorithm is first applied in the division of massive
pages. The pages that have same or similar templates will be
clustered together as they are considered to have large
common content. Then we perform a delta computation for
the pages of each cluster using Myers’ diff algorithm and then
save the delta and reference data set.

A. Clustering based on template-similarity

The first step of our framework is to divide massive web
pages into subsets of pages that have similar templates, in
order to constrain the computation of delta occurring only
between pages that have large common content in which
Myers’ O(ND) difference algorithm3 works efficiently. The
algorithm consists of two phases: computing a sketch for each
pages and clustering the pages based on their sketches.

()Procedure Cluster D, sim

Begin

1. compute a sketch s foreach document d in D, D is the set of document d

 S Compute_sketch(D), S is the set of sketch s

2. set T {}, T is the set of sketch of initial te

←
← mplate t

3. set C {}, C is the set of cluster C , C is the set of document d

4. choose k templates randomly in D, sim is threshold of the similarity

 between templates

 T Select_Template(S,sim,k)

t t←

←

t

5. for each sketch s in S do

6. for each template t in T do

7. if similarity of s and t is large than sim

8. if C exist in C

9. { }

10. else

11

t tC C d← ∪

()

. { , } , { }

12. -{ },

13. end if

14. end for

15. end for

16. if D has no change, End

17. else goto 4

End

Procedure Select _ Template S, sim, k

1. ch

t tC d t C C C

S S d break

← ← ∪
←

oose d from D randomly

2. set T {}, T is the set of template t

3. if similarity of s and t is small than sim, t T

4. T T {d}

5. if sizeof(T) k, goto 1

6. retuen T

←
∀ ∈

← ∪
<

Fig. 1. The procedure of clustering algorithm.

In the first phase, we use Broder’s min-wise independent
hashing method14 to compute a sketch of M fingerprints for
each page. For the goal of identifying the pages that have
similar templates, we take html tags and the strings between
html tags as tokens rather than lines, words, or letters which is
different from the tokens in Broder’s algorithm15. The shingle
in our algorithm is a contiguous sequence composed by tokens
of html tags and tokens of strings between html tags. No
matter how long a string between html tags is, it is seen as a
token, which reduces the influence of the content blocks. So
no matter the content blocks of the pages is the same or not,
the same templates can be identified.

In the second phase, we cluster the pages based on the
sketches. Our clustering algorithm is a random sampling
algorithm whose time complexity is O(NI) and space
complexity is O(N) where N is number of all pages and I is
number of iterations. Considering that there may be a mass of
pages which have no similar template with other pages, we
randomly select k initial templates in each iteration. Time
complexity of computing sketch for each document is O(N)
and time complexity of Select_Templates is O(k2) where k is
number of templates selected in each iteration. And time
complexity of clustering documents is O(NMI) where M is the

Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0609

actual number of templates of all documents. So time
complexity of our clustering algorithm is O(NI). Number of
iteration I will be M/k approximately if there are M different
templates, because the clustering algorithm can identify all the
pages which have the same templates with the given k
templates. When all M templates have been identified, the
algorithm completes.

As illustrated in Figure 1, there are several parameters that
may affect the result of our clustering algorithm. Threshold
sim is an important parameter to measure the similarity
between templates. The compression efficiency of the whole
approach is related to the threshold sim. If sim is too high,
there will be many pages that have no similar pages to
compute delta data with, which lead to bad compression ratio.
If sim is too low, the similarity of the pages within the cluster
will be reduced, which leads to bad efficiency. Our
experiments show that when similarity threshold is 50%, the
whole compression efficiency is optimal.

B. Delta Computation

The second step of our framework is to perform a delta
computation for the pages within each cluster. We use Myers’
difference algorithm to compute the delta between target data
set and reference data set where target data set is one
randomly selected page in each cluster and reference data set
is the others. Time of Myers’ algorithm is O(ND) where N is
sum of the lengths of them and D is size of the minimum edit
script for them. When D is not very small, Myers’ algorithm
consumes huge time to compute the delta. So improvement in
efficiency of the difference algorithm is important to our
approach. We propose a filtering optimization method to
reduce the differences between two pages before computing
delta which can further reduce the time of delta computation.

We firstly segment the web pages into sets of tokens
before delta computation. Although there are many possible
segmentation methods, such as letter-based, word-based,
line-based and phase-based, we choose the segmentation
method based on html tags. The reason for our choice it that
our clustering algorithm clusters the pages that have similar
template together; as a result, the pages within a cluster have
many same html tags.

Although the difference algorithm is performed within
each cluster, there are two reasons for which improvement of
its efficiency is necessary: (1) there would be some
false-positives in our clustering algorithm which have large
difference from others within the cluster and consume huge
time of delta computation, and (2) as mentioned in subsection
3.1, the similarity between the pages within each cluster can’t
be very high, so the delta computation consumes huge time
which counts the most part of the whole time of our approach.
For example if the similarity of two pages is 20% of sum of
their lengths, the O(ND) time for computing delta is then
approaching a O(N2) time. So a filtering optimization method
is needed to further reduce the difference between two pages
before delta computation.

Our filtering optimization method can be divided into

three steps: given two documents A and B to compare, (1) we
use the filtering algorithm based on sliding window to
produce the filtered document A’ and B’, and the
corresponding edit script SA and SB. Document A can be later
recovered from document A’ and SA, so does document B. (2)
compute SES’ (shortest edit script) between documents A’ and
B’. (3) use SA , SB and SES’ to compute SES between
Document A and B. It is important to note that document A’
and B’ are more similar, so the time of computing SES’
between them is much shorter. The task of step (3) is the
procedure of merging SA, SB and SES’ together which can be
completed in linear time.

Huang’s work16 on managing duplicate data gives us much
inspiration in designing the filtering algorithm. Our filtering
algorithm is as follows: given two documents A and B to
compare, we compute a filtered document for A and B
respectively consisting of sufficiently long fragments that
exist in both of them in the following way: (1) a sliding
window of size S is used to compute the fingerprint for each
overlapping S characters of each document using Rabin’s
fingerprinting functions17, and (2) each fingerprint of A is
hashed into a hash table T. (3) for each fingerprint of B, if it
finds a match in T with the fingerprints of A, the
corresponding sequence in B is reserved. The intersection of
such reservations forms the filtered document B’. We can get
the filtered document A’ through a similar process. The time
and space cost of this algorithm are both O(N).

Fig. 2. filtering algorithm.

IV. EXPERIMENTS

In this section, we perform an experimental evaluation of
our approach. The experiments are organized as follows:
firstly, we evaluated the sensitivity of key parameters
deciding the efficiency of our approach; secondly, we
compare our delta compression approach with Gzip on the
data set of 19 million web pages from a repository of 3 billion
web pages collected by Web InfoMall4, which is a Chinese
web archive that has been built at Peking University since
2001. The web pages in our experiment are all the raw pages
without the process of cleaning noisy because we think the
‘noise’ is template of web pages which is very important for
our compression approach. All the experiments are run on
Linux 64-bit system, with Intel(R) Xeon(R) 4core CPU at
2.5GHz, 6M of Cache and 2GB of RAM.

A. Parameter Sensitivity and Efficiency

Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0610

There are two key parameters that can impact the
efficiency of our approach, the threshold of similarity in the
clustering stage and the length of sliding window in the delta
computation stage. The data set in this subsection is 10000
web pages selected randomly from http://auto.sina.com.cn in
Web Infomall. We will analyze the parameter sensitivity to
our approach in detail.

Firstly, we evaluate the impact of similarity threshold on
the distribution of web pages in the result of clustering step.
Setting the similarity threshold to different values can produce
subsets of pages that have different template similarity. We
use number of templates and coverage rate to evaluate the
impact on the distribution of web pages. Number of templates
is the number of clusters. Coverage rate is defined as the ratio
between the number of web pages that have templates and that
of all web pages. And web pages that are not similar with any
others are considered that they don’t have templates and can’t
be compressed. For the other parameters, we set number of
initial template number k to 30, size of sketch m to 100 and
width of shingle w to 3.

The result is illustrated as Figure 3, which shows the
change of number of templates and coverage rate when
similarity threshold increases from 0 to 1. When the similarity
threshold increases from 0 to 0.6, the coverage rate descends
smoothly. But when the similarity threshold is higher than 0.6,
the coverage rate descends rapidly, which indicates that there
are a lot of web pages which have 0.6 similarity with other
pages. The change of number of templates indicates that the
number of clusters increases when the similarity threshold
increases, but the size of cluster is decreasing. It’s worth to say
that when the similarity threshold is too high, the number of
clusters descends rapidly. In the case, most of the similarity
between web pages is not that high and mass of web pages are
considered to have no similar template with any other web
pages which reduce the number of templates. The higher
similarity threshold is, the smaller the number of templates is.

Secondly, we evaluate the impact of similarity threshold
on computation time and compression ratio in delta
compression step. We use the result of clustering step as the
data set of this experiment and use our delta compression
algorithm to compress the web pages within each cluster. We
set length of sliding window to 7 which is proved the most
efficient value in next experiment.

The result is illustrated as Figure 4, which shows the
change of time and compression ratio when similarity
threshold increases from 0.1 to 0.9. The compression ratio
reaches its peak which is 0.73 when similarity threshold is 0.5.
And we adopt this value of similarity threshold in our system.
The reason for the lower compression ratio in the range
corresponding to similarity threshold between 0.1 and 0.5 is
that the similarity between the pages within each cluster is too
small and there are little common content between them.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

nu
m

be
r o

f t
em

pl
at

e

similarity threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
ve

ra
ge

 ra
te

number of template
coverage rate

Fig. 3.impact on the distribution of web pages.

The reason for the lower compression ratio in the range
corresponding to similarity threshold between 0.5 and 0.9 is
that mass of pages are considered to have no template and
have no pages to compute delta with. The time doesn’t
increase linearly with the descending of similarity threshold,
which proves that our optimization can further improve the
time of Myers’ diff algorithm when the documents are not
very similar.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

140

160

tim
e(

s)

similarity threshold

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
m

pr
es

si
on

 ra
te

time
compression rate

Fig. 4. Impact on the time and compression ratio.

Finally, we evaluate the impact of the length of sliding
window on both time and compression ratio of optimized
compression algorithm by changing the length of sliding
window from 0 to 14. We first use our template-based
clustering algorithm to cluster our data set into subsets of
similar web pages and then use optimized Mayer’s diff
algorithm to compress the web pages in each cluster with
different length of sliding window. For the other parameters,
we set number of initial template number k to 30, the size of
sketch m to 100 and the similarity threshold to 50%.

The result is illustrated as Figure 5, which shows the
change of time and compression ratio when length of sliding
window increases from 0 to 14. The change of compression
ratio and time indicates that small length of sliding window

Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0611

will lead to poor time, but large length of sliding window will
lead to poor compression ratio since it filters massive common
tag sequences of small length. The time and compression ratio
seems to reach a balance when length of sliding window is 4
to 8, which is a proper choice for our approach. When length
of sliding window is small or even 0, the effectiveness of the
filtering optimization is little and it’s very time-consuming,
which indicates that the filtering optimization can further
improve the time of Mayer’s diff algorithm with some
decrease on compression ratio.

0 2 4 6 8 10 12 14
0

40

80

120

160

200

240

280

320

360

400

tim
e(

s)

length of sliding window

0 2 4 6 8 10 12 14
0.15

0.2

0.25

0.3

0.35

0.4

co
m

pr
es

si
on

 ra
te

time
compression rate

Fig. 5.Impact of the length of sliding window.

C. Comparison Experiment

We compare our delta compression approach named TBC
(Template Based Compression) with Gzip in compression
ratio on the data set of 19 million web pages breadth-first
crawled by Web InfoMall. We also present the result of the
combination of Gzip and TBC.

algorithm Size of data set time Compression ratio
uncompressed 665G 100%

TBC 179G 65hours 27%
Gzip 137G 72hours 21%

TBC + Gzip 49G 84hours 8%

Table. 1. Comparison on large scale of web pages.

Table 1 lists the result of comparison of TBC and Gzip in
compression ratio. While compression ratio of TBC is a little
worse than that of Gzip, time of TBC is better than Gzip. It is
important that the combination of Gizp and TBC achieve
much better compression ratio than that of both of them,
though time of the combination of Gizp and TBC is a little
worse than them. The experiment proves that TBC can
compress large scale of web pages well and it will achieve
great compression effect when it is combined with Gzip.

V. CONCLUSIONS

The approach we proposed identifies and clusters similar
web pages according to their similarity of templates and
performs delta compression within each cluster. The
clustering algorithm in our approach can efficiently divide
large scale of web pages into subsets of web pages with
similar templates.

The filtering optimization method we proposed further
reduces the time-cost of delta computation algorithm used in
the web pages compression within each cluster. The approach
has been successfully used to compress a data set of 19 million
web pages which is crawled from Chinese websites in a month
by Web InfoMall using breadth-first crawling algorithm.
Experiments show that our approach provides pretty good
compression ratio when it is combined with Gzip.

ACKNOWLEDGMENTS

This research is financially supported by NSFC of China
(Grant No: 61103027), 973 Projects (No：2011CB302300
and Guangdong Gov Projects (2011A090200063 and
2011B090400396) , and Shenzhen Gov Project
(JC201104210107A and ZYA201106080025A）.

REFERENCES

[1] . J. Hunt, K. P. Vo, and W. Tichy. ACM Transactions on Software
Engineering and Methodology, 7 (1998).

[2] . D. Gibson, K. Punera, and A. Tomkins. In Proc. 14th WWW
(Special interest tracks and posters), pages 830–839 (2005).

[3] . E. W. Myers. Algorithmica, 1(2):251–266 (1986).
[4] . L. Huang, H. Yan, and X. Li. In Proceedings of The World

Engineers’ Convention, volume A, pages 217–222. China Science
and Technology Press, Nov (2004).

[5] . L. P. Deutsch, “RFC 1952: GZIP file format specification version
4.3”, May (1996).

[6] . W. Tichy. RCS: A system for version control. Software - Practice
and Experience, 15, July (1985).

[7] . Eddy, W.F.; Mockus, A. & Oue, S. (1996). Journal of
Computational Statistics and Data Analysis, Vol 23, pp. 29 – 43.

[8] . D. de Castro Reis, P. B. Golgher, A. S. da Silva, and A. H. F.
Laender. In Proceedings of the International Conference on the
World Wide Web, pages 502–511 (2004).

[9] . G. Valiente. In Proceedings of the International Symposium on
String Processing and Information Retrieval, pages 212–219. IEEE
Computer Science Press (2001).

[10]. W. Yang. Software – Practice And Experience, 21(7):739–755
(1991).

[12] . S. Flesca, G. Manco, E. Masciari, L. Pontieri, and A. Fifth
International Workshop on the Web and Databases (2002).

[13] . Buttler, D. In: IC ’04: Proceedings of the International
Conference on Internet Computing, CSREA Press (2004) 3–9.

[14] . A. Broder. pages 21–29. IEEE Computer Society (1997).
[15] . A.Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.

Computer Networks 29(8-13) (1997) 1157–1166.
[16] . Lian’en Huang, Lei Wang and Xiaoming Li. Proceeding of the

17th ACM conference on Information and knowledge management,
63-72 (2008).

[17] . A. Broder. Methods in Communications, Security, and
Computer Science, 143–152 (1993).

Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0612

