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Abstract

The classical reduction of order for scalar ordinary differential equations (ODEs) fails
for a system of ODEs. We prove a constructive result for the reduction of order for a
system of ODEs that admits a solvable Lie algebra of point symmetries. Applications
are given for the case of a system of two second-order ODEs which admits a solvable
four-dimensional Lie algebra of point symmetries.

1 Introduction

Assume that one wants to integrate or reduce algorithmically a system of ODEs admitting
a solvable Lie algebra of point symmetries. If one tries the classical successive reduction
of order as in the case of scalar ODEs [10, 9, 1, 7], there results an ambiguity: a vector
field in n variables has a basis of first-order invariants formed by n+ 1 elements. Thus if
n ≥ 1 there will be ambiguity in the choice of the new variables for reduction of order as
there are n + 1 possibilities for the choices of the n new variables. As a result, it is not
clear which choice of variables does the reduction. This fact highlights the geometrical
difference between scalar and systems of ODEs.
The aim of this paper is to provide a method that avoids the above difficulty in an

algorithmical fashion, namely we show that for a system of n kth-order ODEs that admits
a solvable symmetry Lie algebra of dimension kn, the (k − 1)th prolongations of the
generators and the equation vector field are unconnected, is reducible to quadratures.

2 Integrability

There are basically two approaches to integrability using Lie point symmetries. One is that
of successive reduction of order using differential invariants for scalar ODEs. The other is
that of canonical forms which may apply to scalar as well as systems of ODEs. However,
the canonical forms approach only applies in the case when equations are classified for
their symmetries, for example Lie’s canonical forms for scalar second-order ODEs. Thus
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it is quite restrictive and in the case of systems of two second-order ODEs there are more
than 70 canonical forms [13]. This in itself indicates the difficulty in obtaining and using
canonical forms. The method of successive reduction of order applies to arbitrary scalar
ODEs which admit solvable symmetry Lie algebras. The manner in which this method is
presented in the literature does not lend itself to systems of ODEs. The following examples
amply illustrate this point.
As an illustration we present an example. Consider for instance the system (see also

[13])

ẍ = ẋ2f

(
ẋ

ẏ

)
, ÿ = ẋ2g

(
ẋ

ẏ

)
(2.1)

the symmetry Lie algebra L4 of which is generated by

X1 = −t
∂

∂t
, X2 =

∂

∂t
, X3 =

∂

∂x
, X4 =

∂

∂y
.

We form the chain of subalgebras < X2 >⊂< X2, X3 >⊂< X2, X3, X4 >⊂ L4. The first-
order differential invariants of < X2 > are x, y, ẋ, ẏ. Alternatively a basis of invariants of
X2, X3 and X4 is ẋ and ẏ. There arises an ambiguity for the choice of two new dependent
variables and one independent variable as invariants: in the first instance there are more
choices and in the second there is no choice. However in the second instance (number of
invariants equal number of dependant variables), one can sometimes uncouple the system.
However, the problem of solving the uncoupled system remains. In the above example
this approach leads to full integration of the system.
We point out the failure of the traditional successive reduction of order when it is

applied to systems. Next we use a constructive theorem contained in Einsenhart [3] to
overcome the ambiguity mentioned above and hence provide a systematic approach to
integration when the symmetries satisfy certain properties given below.

Definition 1. A vector field in n variables X = ξi(x)∂/∂xi is a symmetry of a first–order
linear homogeneous partial differential equation (PDE) Af ≡ ai(x)∂f/∂xi = 0 if there
exists λ(x) such that [X, A] = λ(x)A.

Definition 2. Operators Xl = ξi
l (x)∂/∂xi, l = 1, . . . , k ≤ n, are said to be unconnected

if the rank of the matrix (ξi
l (x)) is k on an open set.

Theorem 1. If a first-order linear homogeneous PDE in n variables Af = 0 admits a
solvable symmetry algebra Ln−1 for which the generators and A are unconnected, the
integration of the equation reduces to quadratures.

Proof. Let X1, X2, . . . , Xn−1 be a basis of Ln−1, chosen such that the first r symbols
for any r from 1 up to at most n− 2 generate a subalgebra which is an ideal Lr of the Lie
algebra Lr+1 spanned by the first r + 1 symbols. This choice is possible because Ln−1 is
solvable. Now, if Af = 0 is the equation, then

Af = 0, X1f = 0, . . . , Xn−2f = 0 (2.2)

form a complete system which admits Xn−1. Thus, if u is a solution of (2.2) different from
a constant, so is Xn−1u. If Xn−1u were zero, X1, . . . , Xn−1 and A would be connected.
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Hence Xn−1u = ϕ(u), since any two solutions of (2.2) are functions of one another (for,
rank[A, X1, . . . , Xn−2] = n − 1). If we put u1 =

∫
du/ϕ(u), we find that u1 is a solution

of (2.2) and that Xn−1u1 = 1. This last equation and (2.2), in which f is replaced by u1,
is compatible ([Xa, Xb]u1 = 0, [Xa, A]u1 = 0, a, b = 1, . . . , n− 1). Thus it can be solved
for the derivatives of u1. Therefore u1 is obtainable by a single quadrature.
If we use the coordinates x

′1 = u1, x
′2 = x2, . . . , x

′n = xn, then in the new coordinate
system, the equations (omitting the primes)

Af = 0, X1f = 0, . . . , Xn−3f = 0 (2.3)

do not involve derivatives with respect to x1. Hence we may treat these equations as a
set in n − 1 variables, with x1 entering possibly as a parameter. Since X1, . . . , Xn−3 are
the symbols of the ideal Ln−3 of Ln−2, we may apply the same process to find u2 which is
independent of u1 previously found since it involves variables other than x1. The x1 turns
out to be u1 in the present coordinate system. By repeating this process, we obtain by
n − 1 quadratures n − 1 independent solutions of Af = 0, that is, the complete solution.

Remark. Note that in the proof of Theorem 1 symmetries are used to reduce the number
of independent variables.

Corollary 1. A system of n kth-order ODEs x
(k)
i = fi(t, x, . . . , x(k−1)), i = 1, . . . , n,

which admits a kn-dimensional solvable symmetry algebra Lkn for which the (k − 1)th
prologation of its symbols as well as A = ∂/∂t + ẋi∂/∂xi + · · · + x

(k−1)
i ∂/∂x

(k−2)
i +

fi(t, x, . . . , x(k−1))∂/∂x
(k−1)
i are unconnected, is solvable by quadratures.

Proof. Write the system of n kth-order ODEs as a first-order linear homogeneous PDE
and use Theorem 1.

Remarks. In Corollary 1 the unconnectedness is redundant when n = 1. Indeed in this
case we obtain Lie’s classical result. However, for n ≥ 2 the unconnectedness is vital as we
can see from the following example. The system ẍ = xf(t, ẋ/x), ẋÿ = xẏf(t, ẋ/x) admits
the four-dimensional solvable Lie algebra spanned by

X1 =
∂

∂y
, X2 = x

∂

∂x
, X3 = x

∂

∂y
, X4 = x

∂

∂x
+ y

∂

∂y
,

but the system itself is not integrable by quadratures [13]. When the hypotheses of Corol-
lary 1 are satisfied, the approach given here is preferable since it does not require the
use of canonical variables. Moreover, this approach can be used to integrate canonical
forms for which the integration may not be straightforward. From this standpoint the two
approaches are complementary. Also, in this approach, the symmetries are used to reduce
the number of dependent variables since when the system of ODEs is cast as a first-order
linear homogeneous PDE, its dependent variables become independent variables of the
resulting PDE (see also the remark after the proof of Theorem 1).
Note that, when the symmetries are connected, linearization is possible [14].
Finally the method presented here enables one to construct first integrals. Recall that

systems do not always admit a Lagrangian formulation [2]. The use of Noether’s theorem
for the construction of first integrals is not always possible.
In the next section we provide two illustrations to systems of two second-order ODEs.
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3 Applications

In the following examples, in accordance with Corollary 1, we utilise the first prolongation
of the symmetries.
1. Consider the simple Newtonian system with velocity-dependent forces

ẍ =
1

ẋ2 − 2ẏ , ÿ =
1 + ẋ

ẋ2 − 2ẏ . (3.1)

It admits the following four symmetries

X1 =
∂

∂y
, X2 =

∂

∂x
, X3 =

∂

∂t
, X4 = t

∂

∂x
+ x

∂

∂y
+

∂

∂ẋ
+ ẋ

∂

∂ẏ
.

For equation (3.1) the operator A is

A =
∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+

1
ẋ2 − 2ẏ

∂

∂ẋ
+

1 + ẋ

ẋ2 − 2ẏ
∂

∂ẏ
.

It can be verified that the operators X1 to X4 and A are unconnected. We choose the
following sequence of ideals:

L1 =< X1 >⊂ L2 =< X1, X2 >⊂ L3 =< X1, X2, X3 >⊂< X1, X2, X3, X4 > .

Solving system (2.2), namely

Af = 0, X1f = 0, X2f = 0, X3f = 0,

we obtain

u = −ẏ + ẋ+
ẋ2

2
.

Simple calculations show that X4u = 1. Hence u is already normalised and we can choose
it to be u1.
In the second step we use the coordinates

x1 = t, x2 = x, x3 = y, x4 = ẋ, x5 = u1.

In these coordinates we have

X1 =
∂

∂x3
, X2 =

∂

∂x2
, X3 =

∂

∂x1
,

and

A =
∂

∂x1
+ x4 ∂

∂x2
+

[
(x4)2

2
+ x4 − x5

]
∂

∂x3
+ (2x5 − 2x4)−1 ∂

∂x4
.

The solution of

Af = 0, X1f = 0, X2f = 0
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leads to

u2 = x1 − 2x4x5 + (x4)2

which satisfies X3u2 = 1.
For the third step we take the coordinates

y1 = t, y2 = x, y3 = y, y4 = u2, y5 = u1.

As a result

X1 =
∂

∂y3
, X2 =

∂

∂y2
, A =

∂

∂y1
+ [y5 ±

√
(y5)2 − y1 + y4]

∂

∂y2
+ ()

∂

∂y3
,

where the explicit form of the term omitted in the parentheses is not needed. The solution
of Af = 0 and X1f = 0 yields

u3 = y2 − y1y5 ± 2
3

[
(y5)2 − y1 + y4

]3/2
.

It is easy to see that X2u3 = 1.
In the final step the new variables are

z1 = t, z2 = y, z3 = u3, z4 = u2, z5 = u1.

The operators are

X1 =
∂

∂z2
, A =

∂

∂z1
+

[
(z5)2 ± z5

√
(z5)2 − z1 + z4 +

1
2
z4 − 1

2
z1

]
∂

∂z2
.

The solution of Af = 0 gives

u4 = z2 − z1(z5)2 ± 2
3
z5

[
(z5)2 − z1 + z4

]3/2 − 1
2
z1z4 +

1
4
(z1)2

and we verify that X1u4 = 1.
In summary we have derived the following four first integrals

u1 = −ẏ +
ẋ2

2
+ ẋ,

u2 = t+ 2ẋẏ − ẋ2 − ẋ3,

u3 = x − tu1 ± 2
3
(u2

1 − t+ u2)3/2,

u4 = y − tu2
1 ±

2
3
(1 + u1)(u2

1 − t+ u2)3/2 − 1
2
tu2 +

1
4
t2.

These are indeed first integrals as dui/dt = 0 for i = 1, . . . , 4 on the solutions of the system
(3.1). One can also write the integrals u3 and u4 in terms of the variables t, x, y, ẋ and ẏ
as

u3 = x+ tẏ − 1
2
tẋ2 − tẋ+

2
3
(ẏ − 1

2
ẋ2)3,

u4 = y − tẏ2 − 1
4
tẋ4 − 1

2
tẋ2 + tẏẋ2 + tẋẏ − 1

2
tẋ3 − 1

4
t2 +

2
3
(1− ẏ +

ẋ2

2
+ ẋ)(ẏ − 1

2
ẋ2)3.
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2. Consider the system [13]

ẏẍ = e−ẋ/ẏ(ẏf(ẏ) + ẋg(ẏ)), ÿ = e−ẋ/ẏg(ẏ), (3.2)

which admits the symmetries

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
, X4 = t

∂

∂t
+ (x+ y)

∂

∂x
+ y

∂

∂y
+ ẏ

∂

∂ẋ
.

For equation (3.2) the operator A is

A =
∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ e−ẋ/ẏ(f(ẏ) +

ẋ

ẏ
g(ẏ))

∂

∂ẋ
+ e−ẋ/ẏg(ẏ)

∂

∂ẏ
.

As before it can verified that X1, . . . , X4 and A are unconnected and one can choose the
same ordering of the ideals as in the previous example. Performing the same steps as in
the first example, we obtain the first integrals

u1 =
ẋ

ẏ
−

∫
f(ẏ)
ẏg(ẏ)

dẏ,

u2 = y −
∫

ẏ

g(ẏ)
exp

(∫
f(ẏ)
ẏg(ẏ)

dẏ + u1

)
dẏ,

u3 = x −
∫ [

ẏ

∫
f(ẏ)
ẏg(ẏ)

dẏ + ẏu1

] [
exp

(∫
f(ẏ)
ẏg(ẏ)

dẏ + u1

)]
1

g(ẏ)
dẏ,

u4 = t −
∫ exp

(∫
f(ẏ)
ẏg(ẏ)

dẏ + u1

)

g(ẏ)
dẏ.

The integrals u2, u3 and u4 are further simplified after the substitution of the explicit form
of u1 into them. We have

u2 = y −
∫

ẏ

g(ẏ)
exp

(
ẋ

ẏ

)
dẏ,

u3 = x −
∫

ẋ

g(ẏ)
exp

(
ẋ

ẏ

)
dẏ,

u4 = t −
∫

1
g(ẏ)

exp
(

ẋ

ẏ

)
dẏ.

Remark. Consider the following two-dimensional central force problem, in term of polar
coordinates

r̈ − rθ̇2 + µr−3 − εr = 0, µ, ε > 0,
(3.3)

rθ̈ + 2ṙθ̇ = 0.

Equation (3.1) has four point symmeties:

X1 =
∂

∂t
, X2 =

∂

∂θ
, X3± = exp(±2t

√
ε)

(
1√
ε

∂

∂t
± r

∂

∂r

)
,
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where the + and − in ± refer to the two operators X3+ and X3−, respectively. Note that
(3.3) is integrable [11], but does not satisfy the unconnectedness condition of Corollary 1.
This emphasizes the fact that Corollary 1 provides a sufficient condition for integrability
for equations admitting four symmetries. We also refer the reader to, e.g., Leach and
Gorringe [4] for other systems.

4 Discussion

Contrary to folklore a system of two second-order ODEs admitting four point symme-
tries is not necessarily integrable even when the symmetries form a solvable Lie algebra.
However, in the case these solvable symmetries together with the equation vector field are
unconnected, the system is completely integrable.

In general a system of two second-order ODEs may not admit a Lagrangian [2]. Hence
the application of the classical Noether’s theorem for the construction of a first integral
does not apply. The approach presented here permits the construction of first integrals
provided the hypotheses of Corollary 1 are satisfied.

Amongst differential equations, linear ones are generally well understood. Therefore it
is of practical interest to know when nonlinear equations are transformable to linear ones
by invertible changes of dependent and independent variables. In the case of scalar second-
order ODEs, Lie [6] was the first to give necessary and sufficient conditions for linearization.
The linearization problem for scalar higher-order ODEs was studied by Mahomed and
Leach [8]. The study of linearization of a system of ODEs is recent. The work on the
symmetry properties of a system of linear second-order ODEs with constant coefficients
by Gorringe and Leach [5] was extended to a system with variable coefficients by Wafo
and Mahomed [12]. It was found that the allowable number of point symmetries is 5, 6, 7,
8 or 15. This somewhat surprising symmetry breaking renders the study of linearization
nontrivial. Indeed, instead of having a single class (from the symmetry standpoint) of
linear ODEs as in the scalar case, we now have five classes. A solution to the linearization
problem for a system of two second-order ODEs was given in [14]. In the case when the
four symmetries are all connected or three of them are unconnected, linearization can
apply and hence complete integrability. Precisely, a system of two second-order ODEs is
reducible via a point transformation to the simplest equations x′′ = 0, y′′ = 0 if it admits
a four-dimensional Lie algebra of symmetries with commutators [Xi, Xj ] = 0, [Xi, X4] =
Xi, i, j = 1, 2, 3 such that the symmetries are all connected or three of the symmetries are
unconnected [14]. We also can have linearization when the admitted algebra is Abelian.
In this case one has that a system of two second-order ODEs is linearizable by means
of a point transformation if it admits the four-dimensional Abelian Lie algebra with the
condition that two of the symmetries are unconnected [14].

Further work needs to be done on integrability for the other cases of four-dimensional
Lie algebras admitted by a system of two second-order ODEs which are not covered by
the results of this paper (Corollary 1) and the linearization theorems [14] restated in the
preceding paragraph.
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