On a Certain Fractional q-Difference and its Eigen Function

Atsushi NAGAI
Department of Mathematical Sciences, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
E-mail: a-nagai@sigmath.es.osaka-u.ac.jp

This paper is part of the Proceedings of SIDE V;
Giens, June 21-26, 2002

Abstract

A fractional q-difference operator is presented and its properties are investigated. Especially, it is shown that this operator possesses an eigen function, which is regarded as a q-discrete analogue of the Mittag-Leffler function. An integrable nonlinear mapping with fractional q-difference is also presented.

1 Introduction

Fractional derivative goes back to the Leipniz's note in his list to L'Hospital in 1695 and we now have many definitions of fractional derivatives [9]. In the last few decades, many authors pointed out that derivatives and integrals of fractional order, especially $1 / 2$-derivative, are very suitable for the description of physical phenomena.

We first define a fractional integral operator I^{a} as follows.
Definition 1. Let a be a nonnegative real number. For a given function $u(t)(t>0)$, its integral of order a is defined as follows.

$$
\begin{align*}
& I^{a} u(t)=\int_{0}^{t} K(a ; t-s) u(s) \mathrm{d} s \tag{1.1}\\
& I^{0} u(t)=u(t) \tag{1.2}
\end{align*}
$$

where $K(a ; t)$ is a monomial given by

$$
\begin{equation*}
K(a ; t) \equiv \frac{t^{a-1}}{\Gamma(a)} \quad(t>0, a>0) . \tag{1.3}
\end{equation*}
$$

Fractional derivatives of order $a>0$ are defined by a combination of normal derivative and fractional integral in the following two manners.

Definition 2. Let m be a positive integer such as $m-1<a \leq m$. Then for a given m times continuously differentiable function $u(t)$, its derivative of order a is defined by

$$
\begin{equation*}
D^{a} u(t) \equiv\left(I^{m-a} D^{m} u\right)(t)=\int_{0}^{t} K(m-a ; t-s) u^{(m)}(s) \mathrm{d} s \tag{1.4}
\end{equation*}
$$

Definition 3. For the same $a, m, u(t)$ in the previous definition, a derivative of order a is defined by

$$
\begin{equation*}
D^{a} u(t) \equiv\left(D^{m} I^{m-a} u\right)(t)=\left(\frac{\mathrm{d}}{\mathrm{~d} t}\right)^{m} \int_{0}^{t} K(m-a ; t-s) u(s) \mathrm{d} s . \tag{1.5}
\end{equation*}
$$

These two definitions are called Caputo and Riemann-Liouville fractional derivatives, respectively. We here adopt Caputo's definition 3 .

The Mittag-Leffler function,

$$
\begin{equation*}
E_{a}(z)=\sum_{j=0}^{\infty} \frac{z^{j}}{\Gamma(a j+1)} \quad(a>0, z \in \mathbb{C}) \tag{1.6}
\end{equation*}
$$

was proposed by Mittag-Leffler [6] in 1903 as an entire function whose order can be calculated exactly. Afterwards, it was clarified that the Mittag-Leffler function also plays an important role in fractional calculus (See refs. [5, 8] for example). In other words, the Mittag-Leffer function,

$$
\begin{equation*}
u(t)=\sum_{j=0}^{\infty} \lambda^{j} K(a j+1 ; t)=E_{a}\left(\lambda t^{a}\right) \tag{1.7}
\end{equation*}
$$

is an eigen function of Caputo's fractional derivative [5],

$$
\begin{equation*}
D^{a} u(t)=\lambda u(t) \quad(t>0) \tag{1.8}
\end{equation*}
$$

In a present paper [7], a discrete analogue of Mittag-Leffler function is presented, together with its relation with a certain fractional difference and a nonlinear integrable mapping with fractional difference has been proposed. The main purpose of this paper is a q-discretization of the above result. In section 2 , we present a certain fractional q-difference operator, which is a slight modification of Al-Salam's fractional q-difference operator [1], and investigate its properties. Section 3 is devoted to q-discretization of the Mittag-Leffler function. We also show that q-Mittag-Leffler function serves as an eigen function of the fractional q-difference operator. Finally in section 4, a new type of nonlinear integrable mapping equipped with fractional q-difference is presented.

2 Fractional q-difference

In this section, we present fractional q-addition and q-difference operators and investigate their properties.

Before getting onto the main subject, we first give definitions of q-number, q-binomial coefficient and q-difference operator, together with their properties, which are required in
this paper. ${ }^{1}$ Let q be a given complex number. Throughout this paper, we impose the assumption,

$$
\begin{equation*}
|q|>1 \tag{2.1}
\end{equation*}
$$

We introduce q-number $[a]_{q}$ defined by

$$
\begin{equation*}
[a]_{q}=\frac{q^{a}-1}{q-1}, \tag{2.2}
\end{equation*}
$$

we here rewrite $[a]_{q}$ as $[a]$ for the sake of simplicity. By making use of the q-number, q-binomial coefficient is given as follows.

$$
\left[\begin{array}{l}
x \tag{2.3}\\
n
\end{array}\right]=\frac{[x][x-1] \cdots[x-n+1]}{[n]!}=\frac{[x][x-1] \cdots[x-n+1]}{[n][n-1] \cdots[1]}
$$

We here list some important properties of q-number and q-binomial coefficient used in future.

$$
\begin{align*}
& {[-x]=-q^{-x}[x]} \tag{2.4}\\
& {\left[\begin{array}{c}
-x \\
n
\end{array}\right]=(-1)^{n} q^{-n x-\frac{1}{2} n(n-1)}\left[\begin{array}{c}
x+n-1 \\
n
\end{array}\right]} \tag{2.5}\\
& {\left[\begin{array}{c}
x \\
n
\end{array}\right]-\left[\begin{array}{c}
x-1 \\
n
\end{array}\right]=q^{x-n}\left[\begin{array}{c}
x-1 \\
n-1
\end{array}\right]} \tag{2.6}\\
& {\left[\begin{array}{c}
x \\
n
\end{array}\right]-\left[\begin{array}{c}
x-1 \\
n-1
\end{array}\right]=q^{n}\left[\begin{array}{c}
x-1 \\
n
\end{array}\right]} \tag{2.7}\\
& \sum_{k=0}^{n}\left[\begin{array}{c}
x \\
n-k
\end{array}\right]\left[\begin{array}{c}
y \\
k
\end{array}\right] q^{k^{2}-n k+k x}=\left[\begin{array}{c}
x+y \\
n
\end{array}\right] \tag{2.8}
\end{align*}
$$

We here adopt backward q-difference operator Δ_{q} defined by

$$
\begin{equation*}
\Delta_{q} f(x)=\frac{f(x)-f\left(q^{-1} x\right)}{\left(1-q^{-1}\right) x} \tag{2.9}
\end{equation*}
$$

Through dependent and independent variable transformations

$$
\begin{equation*}
x=q^{n}, f(x)=f\left(q^{n}\right)=f_{n}, \tag{2.10}
\end{equation*}
$$

the q-difference operator in eq. (2.9) is rewritten equivalently as

$$
\begin{equation*}
\Delta_{q} f_{n}=\frac{f_{n}-f_{n-1}}{q^{n}-q^{n-1}} . \tag{2.11}
\end{equation*}
$$

We next introduce a fractional q-addition operator I_{q}^{α} defined as follows.
Definition 4. Let α be a non-negative real number and $\left\{f_{n}\right\}$ is a given complex sequence. Then a q-addition operator of fractional order α for $\left\{f_{n}\right\}$ is defined by

$$
\begin{array}{lr}
I_{q}^{\alpha} f_{n}=q^{(n-1) \alpha}(q-1)^{\alpha} \sum_{k=0}^{n-1}(-1)^{k}\left[\begin{array}{c}
-\alpha \\
k
\end{array}\right] q^{\frac{1}{2} k(k-1)} f_{n-k} & (\alpha>0, n \geq 1) \\
I_{q}^{0} f_{n}=f_{n} & (n \geq 1) \tag{2.13}
\end{array}
$$

${ }^{1}$ For details of q-analysis, see ref. [2] for example.

Substitution of $\alpha=1$ into eq. (2.12) gives

$$
\begin{aligned}
I_{q} f_{n} & =q^{n-1}(q-1) \sum_{k=0}^{n-1}\left[\begin{array}{c}
-1 \\
k
\end{array}\right] q^{\frac{1}{2} k(k-1)} f_{n-k} \\
& =q^{n-1}(q-1) \sum_{k=0}^{n-1}(-1)^{k}(-1)^{k} q^{-\frac{1}{2} k(k+1)} q^{\frac{1}{2} k(k-1)} f_{n-k} \\
& =(q-1) \sum_{k=0}^{n-1} q^{n-1-k} f_{n-k} \\
& =(q-1) \sum_{k=1}^{n} q^{k-1} f_{k}
\end{aligned}
$$

which is a finite version of Jackson integral. This fractional q-addition operator satisfies the following lemma.

Lemma 1. Let α, β be non-negative real numbers, a, b be complex numbers and $\left\{f_{n}\right\},\left\{g_{n}\right\}$ be given complex sequences. Then q-addition operators satisfy the following linearity and commutation rules.

$$
\begin{align*}
& I_{q}^{\alpha}\left(a f_{n}+b g_{n}\right)=a\left(I_{q}^{\alpha} f_{n}\right)+b\left(I_{q}^{\alpha} g_{n}\right) \tag{2.14}\\
& I_{q}^{\alpha} I_{q}^{\beta} f_{n}=I_{q}^{\beta} I_{q}^{\alpha} f_{n}=I_{q}^{\alpha+\beta} f_{n} \tag{2.15}
\end{align*}
$$

Proof of Lemma 1. Equation (2.14) is obvious. We prove a commutation rule (2.15) by employing some properties of a q-binomial coefficient.

$$
\begin{aligned}
& I_{q}^{\alpha} I_{q}^{\beta} f_{n} \\
& =q^{(n-1) \alpha}(q-1)^{\alpha} \sum_{k=0}^{n-1}(-1)^{k}\left[\begin{array}{c}
-\alpha \\
k
\end{array}\right] q^{k(k-1) / 2} q^{(n-k-1) \beta}(q-1)^{\beta} \\
& \quad \times \sum_{j=0}^{n-k-1}(-1)^{j}\left[\begin{array}{c}
-\beta \\
j
\end{array}\right] q^{j(j-1) / 2} f_{n-k-j} \\
& =q^{(n-1)(\alpha+\beta)}(q-1)^{\alpha+\beta} \sum_{k=0}^{n-1}(-1)^{k}\left[\begin{array}{c}
-\alpha \\
k
\end{array}\right] q^{k(k-1) / 2} q^{-\beta k} \\
& \quad \times \sum_{j=0}^{n-k-1}(-1)^{j}\left[\begin{array}{c}
-\beta \\
j
\end{array}\right] q^{j(j-1) / 2} f_{n-k-j} \\
& =q^{(n-1)(\alpha+\beta)}(q-1)^{\alpha+\beta} \sum_{k=0}^{n-1}(-1)^{k}\left[\begin{array}{c}
-\alpha \\
k
\end{array}\right] q^{k(k-1) / 2} q^{-\beta k} \\
& \quad \times \sum_{j=0}^{n-k-1}(-1)^{n-k-1-j}\left[\begin{array}{c}
-\beta \\
n-j-1-k
\end{array}\right] q^{(n-k-1-j)(n-k-2-j) / 2} f_{j+1}
\end{aligned}
$$

$$
\begin{aligned}
& =q^{(n-1)(\alpha+\beta)}(q-1)^{\alpha+\beta} \sum_{j=0}^{n-1}(-1)^{n-j-1} f_{j+1} \\
& \quad \times \sum_{k=0}^{n-j-1}\left[\begin{array}{c}
-\alpha \\
k
\end{array}\right]\left[\begin{array}{c}
-\beta \\
n-j-1-k
\end{array}\right] q^{k(k-1) / 2+(n-k-1-j)(n-k-2-j) / 2} q^{-\beta k} \\
& = \\
& q^{(n-1)(\alpha+\beta)}(q-1)^{\alpha+\beta} \sum_{j=0}^{n-1}(-1)^{n-j-1} q^{(n-j-1)(n-j-2) / 2} f_{j+1} \\
& \quad \times \sum_{k=0}^{n-j-1}\left[\begin{array}{c}
-\alpha \\
k
\end{array}\right]\left[\begin{array}{c}
-\beta \\
n-j-1-k
\end{array}\right] q^{k^{2}-k(n-j-1)-\beta k} \\
& = \\
& q^{(n-1)(\alpha+\beta)}(q-1)^{\alpha+\beta} \sum_{j=0}^{n-1}(-1)^{n-j-1} q^{(n-j-1)(n-j-2) / 2} f_{j+1}\left[\begin{array}{c}
-\alpha-\beta \\
n-j-1
\end{array}\right] \\
& =q^{(n-1)(\alpha+\beta)}(q-1)^{\alpha+\beta} \sum_{j=0}^{n-1}(-1)^{j} q^{j(j-1) / 2} f_{n-j}\left[\begin{array}{c}
-\alpha-\beta \\
j
\end{array}\right] \\
& = \\
& I^{\alpha+\beta} f_{n},
\end{aligned}
$$

which completes the proof.
Next we present a fractional q-difference operator Δ_{q}^{α}, which can be regarded as a q-discrete version of Caputo's fractional derivative operator.

Definition 5. Let α be a positive real number and m be a positive integer which satisfies $m-1<\alpha \leq m$. Then a fractional q-difference operator of order $\alpha>0$ is given by

$$
\begin{align*}
\Delta_{q}^{\alpha} f_{n} & =I_{q}^{m-\alpha} \Delta_{q}^{m} f_{n} \\
& =q^{-(n-1)(\alpha-m)}(q-1)^{-(\alpha-m)} \sum_{k=0}^{n-1}(-1)^{k}\left[\begin{array}{c}
\alpha-m \\
k
\end{array}\right] q^{\frac{1}{2} k(k-1)} \Delta_{q}^{m} f_{n-k} \tag{2.16}
\end{align*}
$$

Remark 1. Fractional q-difference operator was first proposed by Al-Salam [1] in 1966. Let $f(x)$ be a given function and $\alpha \in \mathbb{R} \backslash\{1,2,3, \cdots\}$. Then a q-difference operator K_{q}^{α} is given by

$$
K_{q}^{\alpha} f(x)=x^{-\alpha}(1-q)^{-\alpha} \sum_{k=0}^{\infty}(-1)^{k}\left[\begin{array}{l}
\alpha \tag{2.17}\\
k
\end{array}\right] q^{k(k-1) / 2-\alpha(\alpha-1) / 2} f\left(x q^{\alpha-k}\right)
$$

Fractional q-difference operator Δ_{q}^{α} presented here is a slight modification of Al-Salam's operator K_{q}^{α}. The operator K_{q}^{α} satisfies the commutative rule,

$$
\begin{equation*}
K_{q}^{\alpha} K_{q}^{\beta}=K_{q}^{\beta} K_{q}^{\alpha}=K_{q}^{\alpha+\beta} \tag{2.18}
\end{equation*}
$$

for any α, β, whereas the commutation rule for Δ_{q}^{α} does not always hold. However, as is mentioned in the next section, the operator Δ_{q}^{α} possesses an eigen function, which is regarded as a q-discrete analogue of the Mittag-Leffler function.

3 -Mittag-Leffler function

This section provides a q-discrete analogue of the Mittag-Leffler function and its relation with the fractional q-difference operator Δ_{q}^{α}. We first introduce a fundamental function $M_{q}(a ; n)$ defined by

$$
\begin{align*}
& M_{q}(a ; n)=(q-1)^{a-1}\left[\begin{array}{c}
n+a-2 \\
n-1
\end{array}\right] \quad\left(a>0, n \in \mathbb{Z}_{\geq 1}\right) . \tag{3.1}\\
& M_{q}(a ; 0)= \begin{cases}1 & (a=1) \\
0 & (a \neq 1)\end{cases} \tag{3.2}
\end{align*}
$$

Remark 2. In the limit $q \rightarrow 1$ and $n \rightarrow \infty$ with $t=(q-1) n>0$ fixed, the above function converges to a monomial,

$$
\begin{equation*}
M_{q}(a ; n) \rightarrow K(a ; t)=\frac{t^{a-1}}{\Gamma(a)} . \tag{3.3}
\end{equation*}
$$

It is a well-known fact that this function $K(a ; t)$ plays an essential role in the theory of fractional derivatives.

The above fundamental function $M_{q}(a ; n)$ satisfies the following two lemmas which states the relation between $M_{q}(a ; n)$ and q-difference (or fractional q-addition) operator.

Lemma 2. If $a>0$ and $n \in \mathbb{Z}_{\geq 1}$, we have

$$
\begin{equation*}
\Delta_{q} M_{q}(a+1 ; n)=M_{q}(a ; n) . \tag{3.4}
\end{equation*}
$$

Lemma 3. If $\alpha \geq 0, a>0$ and $n \in \mathbb{Z}_{\geq 1}$, we have

$$
\begin{equation*}
I_{q}^{\alpha} M_{q}(a ; n)=M_{q}(a+\alpha ; n) . \tag{3.5}
\end{equation*}
$$

Proof of Lemma 2. This is proved essentially by using an addition rule of q-binomial coefficient given by eq. (2.7).

$$
\begin{aligned}
\Delta_{q} M_{q}(a+1 ; n) & =\frac{M_{q}(a+1 ; n)-M_{q}(a+1 ; n-1)}{q^{n}-q^{n-1}} \\
& =(q-1)^{a}\left(\left[\begin{array}{c}
n+a-1 \\
n-1
\end{array}\right]-\left[\begin{array}{c}
n+a-2 \\
n-2
\end{array}\right]\right) \frac{1}{q^{n-1}(q-1)} \\
& =(q-1)^{a} q^{n-1}\left[\begin{array}{c}
n+a-2 \\
n-1
\end{array}\right] \frac{1}{q^{n-1}(q-1)} \\
& =(q-1)^{a-1}\left[\begin{array}{c}
n+a-2 \\
n-1
\end{array}\right] \\
& =M_{q}(a ; n)
\end{aligned}
$$

which completes the proof.
Proof of Lemma 3. If $\alpha=0$, it is obvious. We suppose $\alpha>0$.

$$
\begin{aligned}
& I_{q}^{\alpha} M_{q}(a ; n)=q^{(n-1) \alpha}(q-1)^{\alpha} \sum_{k=0}^{n-1}(-1)^{k}\left[\begin{array}{c}
-\alpha \\
k
\end{array}\right] q^{\frac{1}{2} k(k-1)} M_{q}(a ; n-k) \\
&= q^{(n-1) \alpha}(q-1)^{a-1+\alpha} \sum_{k=0}^{n-1}(-1)^{k}\left[\begin{array}{c}
-\alpha \\
k
\end{array}\right] q^{\frac{1}{2} k(k-1)}\left[\begin{array}{c}
n-k+a-2 \\
n-k-1
\end{array}\right] \\
&= q^{(n-1) \alpha}(q-1)^{a-1+\alpha} . \\
& \sum_{k=0}^{n-1}(-1)^{k}\left[\begin{array}{c}
-\alpha \\
k
\end{array}\right] q^{\frac{1}{2} k(k-1)}(-1)^{n-1-k} q^{(n-k-1) a+\frac{1}{2}(n-k-1)(n-k-2)}\left[\begin{array}{c}
-a \\
n-k-1
\end{array}\right] \\
&= q^{(n-1) \alpha}(q-1)^{a-1+\alpha} q^{(n-1) a+\frac{1}{2}(n-1)(n-2)}(-1)^{n-1} . \\
& \sum_{k=0}^{n-1}\left[\begin{array}{c}
-\alpha \\
k
\end{array}\right] q^{k^{2}-(n-1) k+k(-a)}\left[\begin{array}{c}
-a \\
n-k-1
\end{array}\right] \\
&= q^{(n-1) \alpha}(q-1)^{a-1+\alpha} q^{(n-1) a+\frac{1}{2}(n-1)(n-2)}(-1)^{n-1}\left[\begin{array}{c}
-(a+\alpha) \\
n-1
\end{array}\right] \\
&= q^{(n-1) \alpha}(q-1)^{a-1+\alpha} q^{(n-1) a+\frac{1}{2}(n-1)(n-2)} q^{-(n-1)(a+\alpha)-\frac{1}{2}(n-1)(n-2)}\left[\begin{array}{c}
n+a+\alpha-2 \\
n-1
\end{array}\right] \\
&=(q-1)^{a+\alpha-1}\left[\begin{array}{c}
n+a+\alpha-2 \\
n-1
\end{array}\right]=M_{q}(a+\alpha ; n),
\end{aligned}
$$

where we have employed an upper negation rule (2.5) twice and a Vandermonde convolution rule (2.8). This completes the proof.

We next introduce a q-analogue of the Mittag-Leffler function.
Definition 6. Let a be a positive real number. Then q-Mittag-Leffler function $F_{a, q}(\lambda ; n)$ is given by

$$
F_{a, q}(\lambda ; n)=\sum_{j=0}^{\infty} \lambda^{j} M_{q}(a j+1 ; n)=\sum_{j=0}^{\infty} \lambda^{j}(q-1)^{a j}\left[\begin{array}{c}
n+a j-1 \tag{3.6}\\
n-1
\end{array}\right]
$$

It can be verified easily from eq. (3.3) that the above function $F_{a, q}(\lambda ; n)$ converges to the Mittag-Leffler function $E_{a}\left(\lambda t^{a}\right)$ in the limit $q \rightarrow 1$ and $n \rightarrow \infty$ with $t=(q-1) n$ fixed. The following main theorem states that q-Mittag-Leffler function serves as an eigen function of the fractional q-difference operator Δ_{q}^{a}.

Theorem 1. If $a>0$ and $n \in \mathbb{Z}_{\geq 1}$, we have

$$
\begin{equation*}
\Delta_{q}^{a} F_{a, q}(\lambda ; n)=\lambda F_{a, q}(\lambda ; n) \tag{3.7}
\end{equation*}
$$

Proof of Theorem 1. Let m be a positive integer such as $m-1<a \leq m$. Operating
Δ_{q}^{m} on $F_{a, q}(\lambda ; n)$ and noticing $\Delta_{q} M_{q}(1 ; n)=\Delta_{q} 1=0$, we have from Lemma 2

$$
\begin{align*}
\Delta_{q}^{m} F_{a, q}(\lambda ; n) & =\sum_{j=0}^{\infty} \lambda^{j} \Delta_{q}^{m} M_{q}(a j+1 ; n) \\
& =\sum_{j=1}^{\infty} \lambda^{j} M_{q}(a j-m+1 ; n) . \tag{3.8}
\end{align*}
$$

Operating fractional q-addition operator I_{q}^{m-a} on both sides of the above equation and employing Lemma 3, we finally obtain

$$
\begin{align*}
& \Delta_{q}^{a} F_{a, q}(\lambda ; n)=I_{q}^{m-a} \Delta_{q}^{m} F_{a, q}(\lambda ; n) \\
& \quad=\sum_{j=1}^{\infty} \lambda^{j} I^{m-a} M_{q}(a j-m+1 ; n) \\
& \quad=\sum_{j=1}^{\infty} \lambda^{j} M_{q}(a j-a+1 ; n) \\
& \quad=\sum_{j=0}^{\infty} \lambda^{j+1} M_{q}(a j+1 ; n)=\lambda F_{a, q}(\lambda ; n), \tag{3.9}
\end{align*}
$$

which completes the proof.

4 An integrable nonlinear mapping with fractional q-difference

We here give a new type of integrable nonlinear mapping which is equipped with fractional q-difference. We start with a linear mapping,

$$
\begin{equation*}
\Delta_{q}^{p} g_{n}=-a g_{n}, \quad 0<p \leq 1,0<a . \tag{4.1}
\end{equation*}
$$

The above equation is rewritten equivalently as

$$
\left(1+a\left(q^{n}-q^{n-1}\right)^{p}\right) g_{n}=g_{n-1}+\sum_{k=1}^{n-1}(-1)^{k-1}\left[\begin{array}{c}
p-1 \tag{4.2}\\
k
\end{array}\right] q^{k(k+1) / 2}\left(g_{n-k}-g_{n-1-k}\right)
$$

Through dependent variable transformation,

$$
\begin{equation*}
u_{n}=\frac{1}{g_{n}+1} \tag{4.3}
\end{equation*}
$$

we obtain the following nonlinear mapping with fractional q-difference.

$$
u_{n}=\frac{1+a\left(q^{n}-q^{n-1}\right)^{p}}{u_{n-1}^{-1}+a\left(q^{n}-q^{n-1}\right)^{p}+\sum_{k=1}^{n-1}(-1)^{k-1}\left[\begin{array}{c}
p-1 \tag{4.4}\\
k
\end{array}\right] q^{k(k+1) / 2}\left(u_{n-k}^{-1}-u_{n-1-k}^{-1}\right)} .
$$

The solution for eq. (4.4) is written as

$$
\begin{equation*}
u_{n}=\frac{u_{0}}{u_{0}+\left(1-u_{0}\right) F_{p, q}(-a ; n)} . \tag{4.5}
\end{equation*}
$$

Putting $p=1$ in eq. (4.4), we have

$$
\frac{u_{n}-u_{n-1}}{q^{n}-q^{n-1}}=a u_{n-1}\left(1-u_{n}\right)
$$

which converges to the Riccatti equation,

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} t}=a u(1-u) \tag{4.6}
\end{equation*}
$$

in the continuum limit $t=q^{n}, u(t)=u_{n}$ and $q \rightarrow 1$.
The following Figure 1 illustrates the time evolution of the fractional mapping with parameter $p=n / 4(n=1,2,3,4)$ and $u_{0}=0.2, a=4, q=2^{1 / 10}$.

Figure 1. Time evolutions of the fractional mapping (4.4)

5 Concluding Remarks

We have presented one definition of fractional q-difference operator. We have also shown that a q-discrete version of Mittag-Leffer function preserves the property that MittagLeffler function is an eigen function of a fractional derivative. It should be noted, however, that the Mittag-Leffler function possesses more abundant properties such as complexintegral expression, asymptotic behavior [10]. It is unknown whether its q-discrete version preserves such properties as well.

It is also an interesting problem to construct nonlinear integrable equations equipped with fractional derivative, difference or q-difference. Although it contains many difficult
problems, it is no doubt that the Mittag-Leffler function and its discrete analogues hold the key to this problem.

The author is supported by J.S.P.S. Grant-in-Aid for Scientific Research (C) No. 13640212.

References

[1] W. A. Al-Salam, Some Fractional q-Integrals and q-Derivatives, Proc. Edinburgh Math. Soc., 15 (1966) pp. 135-140.
[2] G. E. Andrews, q-Series : Their Development and Application in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra, CBMS Regional Conference Lacture 66, Amer. Math. Soc., Providence, R. I., 1986.
[3] J. B. Diaz and T. J. Osler, Differences of Fractional Order, Math. Comp., 28(1974) pp. 185-202.
[4] R. Hirota, Sabunhouteishiki Kougi (Lectures on difference equations) (Science-sha, 2000) p. 132 [in Japanese].
[5] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc., 1993.
[6] G. M. Mittag-Leffler, Sur la nouvelle fonction $E_{\alpha}(x)$, C. R. Acad. Sci. Paris, 137 (1903) pp. 554-558.
[7] A. Nagai, An integrable mapping with fractional difference, J. Phys. Soc. Jpn., 72 (2003) pp. 2181-2183.
[8] I. Podlubny, Fractional Differential Equations, Academic Press, 1999.
[9] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, 1993.
[10] G. Sansonne and J. Gerretsen, Lectures on the Theory of Functions of a Complex Variable, P. Noordhoff-Groningen, 1960.

