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Abstract

A new approach to discrete KP equation is considered, starting from the Gelfand-
Zakhharevich theory for the research of Casimir function for Toda Poisson pencil. The
link between the usual approach through the use of discrete Lax operators, is empha-
sized. We show that these two different formulations of the discrete KP equation are
equivalent and they are different representations of the same equations. The relation
between the two approaches to the KP equation is obtained by a change of frame in
the space Ln of upper truncated Laurent series and translated into the space Dn of
shift operators.

1 Introduction

In the classical picture (see [17, 18]), the discrete KP equation is described by a discrete
Lax operator of the form

L = ∆+
∑
j≥1

qj(n)∆−j , (1.1)

where ∆ is the shift operator, defined by the following relation

∆k
(

q(n)
)
= q(n + k) (1.2)

for every integer k. Clearly, L is an element of the non commutative algebra Dn of formal
series in ∆, with multiplication given by

∆k ·∆l = ∆k+l.

The operator L defines a discrete Lax equation, if

∂

∂ti
L =

[(
Li

)
+

, L

]
, (1.3)
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where
(

Li
)

+
is the positive part of the expansion of the i-th power of L respect to ∆.

Equation (1.3) is the discrete KP equation in the discrete Lax formalisms.
We consider a different approach to (1.3), based on the Gelfand-Zakhharevich (or GZ)

theory [14, 15] of bi-Hamiltonian geometry. In analogy with the theory developed in the
continuous case for KdV [19], the starting point is the study of the Casimir functions of
the Poisson pencil [2]

ȧn = an

(
∂H

∂bn
(bn + λ)− ∂H

∂bn+1
(bn+1 + λ) +

∂H

∂an−1
an−1 − ∂H

∂an+1
an+1

)
(1.4)

ḃn =
(

∂H

∂an−1
an−1 − ∂H

∂an
an

)
(bn + λ) +

∂H

∂bn+1
an − ∂H

∂bn−1
an−1

associated to the periodic Toda system [26] in R
2N , in the formalism of Flaschka [11, 12].

The main result proved in [22, 23] is that the Casimir functions can be expressed as a
product of N Hamiltonian densities h(n) = h(n, a, b;λ)

J = h(1) · h(2) · · · · · h(N), (1.5)

where h(n, a, b;λ) are solutions of the following Riccati system

h(n) · h(n + 1) = (bn+1 + λ) · h(n) + an. (1.6)

There are two fundamental solution of the Riccati system which differ by their expansion
as Laurent series in λ. They are:

h(n, λ) = λ +
∞∑
l=0

hl(n)
λl

, and k(n, λ) = an

(
1
λ
+

∞∑
l=2

kl(n)
λl

)
. (1.7)

The coefficients hl(n) and kl(n) of the above series can be computed iteratively by sub-
stitution into the Riccati equation (1.6). We are interested to the monic solution h(n, λ),
because it is related to the construction of the discrete KP hierarchy; while the second
density k(n, λ) is related to the modified discrete KP hierarchy [25]. The Riccati system
defines a map which at every point of the Toda-Flaschka phase space associates an n-uples
of functions h(n, a, b;λ) in the algebra of upper truncated Laurent series. This allows to
compute the Casimir functions of the Poisson pencil and therefore the integrals of mo-
tion of the Toda equations, according to the GZ scheme (we refer to [22] for details and
relations with the polynomial Casimir functions for Toda).

The map J : (an, bn) → h(1) · · · · · h(N) is the momentum mapping for Toda [2, 10, 13]
and it gives the link between the Toda system and the discrete KP hierarchy. In fact,
when we move in the phase space along a trajectory of the Toda system, the value of the
moment mapping J does not change in time, while the values of the Hamiltonian density
h(n) change in time and verify a local conservation law of the form

dh(n)
dt

= h(n)
(
H(n + 1)− H(n)

)
, (1.8)

which is compatible with the invariance of the momentum mapping J . Equation (1.8)
suggests to interpret the difference H(n + 1) − H(n) as the discrete analog of the (one
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dimensional) divergence and permits to call the quantities H(n, λ) the currents associated
to the conservation law. The previously described property of the momentum mapping for
Toda equation holds in general for every vector field of its hierarchy. In other words, there
exists an infinite series of local currents H(i)(n) associated to GZ hierarchy for Toda, such
that

∂h(n)
∂ti

= h(n)
(
H(i)(n + 1)− H(i)(n)

)
, (1.9)

if the temporal derivative is evaluated along the i-th vector field of the Toda hierarchy.
As in the continuous case [3, 9], it is possible to introduce the Faá di Bruno monomials

h(i)(n), associated to the point h(n), also in the discrete case. This permits to consider
(1.9) as the equations of the moving frame of the Faá di Bruno monomials in the space
Ln of upper truncated Laurent series.

At this point, equations (1.9) change their significate. They may not any more be
considered as the temporal evolutions of the moment mapping of the Toda system, but as
a new system of equations defined automatically in the space of Laurent series. Interpreted
from this new perspective, these equations can be called the discrete KP equations [20].
We show that these two different formulations of the discrete KP equation are equivalent
and they are different representations of the same equations. The relation between the
two approaches to the KP equation is given by a change of frame in the space Ln of upper
truncated Laurent series and translated into the space Dn of difference operator through
the introduction of a linear map φn defined by

φn(h(i)(n)) = ∆i; (1.10)

on the elements of the Faá di Bruno basis.
Moreover, we introduce the potentials ψn(λ) from the zero curvature [7] condition

∂H(i)(n)
∂tj

=
∂H(j)(n)

∂ti
. (1.11)

We will show that these functions ψn(λ), up to an opportune normalization, are the well
known Baker-Akhiezer functions for Toda system [27, 28], and the relation between the
two approaches is complete.

2 The discrete KP equation

In this section we recall the main steps which lead to obtain the discrete KP equations
from the temporal evolution of the moment mapping for Toda system, along a generic
Hamiltonian vector field of Toda Poisson pencil (1.4). For further details we remand to
[20, 22, 23, 25].

If the coefficients (an, bn) in the Riccati equation (1.6) evolve in time according to (1.4),
it is clear that the solution h(n, λ) evolves in time according to the law

ḣ(n)h(n + 1) + h(n)ḣ(n + 1)− ḣ(n)(bn+1 + λ) = ḃn+1h(n) + ȧn, (2.1)
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and using the Riccati equation, we can write the previous equation in the form

(h(n + 1)− (bn+1 + λ))
[
ḣ(n)− h(n) (H(n + 1)− H(n))

]
+h(n)

[
ḣ(n + 1)− h(n + 1) (H(n + 2)− H(n + 1))

]
= 0

where

H(n) = [h(n)− (bn+1 + λ)]
∂H

∂bn
− ∂H

∂an−1
an−1. (2.2)

We then find that h(n, λ) evolves according to the law (1.8). We now characterize a
class of Hamiltonian functions which are compatible with the asymptotic expansion of
the Hamiltonian densities h(n;λ), in such a way that the previous equation is univocally
determinate. These Hamiltonian functions are given by the GZ method when we take, as
Casimir functions of the pencil, the Laurent series

H(λ) = log(h1 · · · · · h(n)) = N log λ + H1λ
−1 + H2λ

−2 + . . . ,

K(λ) = log(k1 · · · · · kN ) = −N log λ + K0 + K1λ
−1 + K2λ

−2 + . . . ;

with relations

K0 = log(a1 · · · · · aN ) and Ki = −Hi. (2.3)

Hence, they define the same hierarchy

Xi = QdKi = −PdKi+1, (2.4)

which is the Toda hierarchy according to the GZ scheme. It is easy to prove that it
is not a really infinite hierarchy. In fact, only the first N vector fields are functionally
independent, and the other are combination of them. The advantage to consider the Toda
hierarchy above described is that the vector fields Xi of this hierarchy can be expressed
as Hamiltonian vector fields with respect to the Poisson pencil with hamiltonian function
given by

K(i)(λ) = λiK0 + λi−1K1 + · · ·+ Ki. (2.5)

At this point, we can say that the Hamiltonian density h(n)(λ) evolves, along the orbits
of the vector fields Xi of the Toda hierarchy (2.4), according to the local conservation law

∂h(n)
∂ti

= h(n)
(

H(i)(n + 1)− H(i)(n)
)

(2.6)

where the current H(i)(n) is given by

H(i)(n) = an−1

(∂K(i)(λ)
∂bn

1
h(n − 1)

− ∂K(i)(λ)
∂an−1

)
. (2.7)

To conclude the argument, it remains to prove only that (with the chosen currents) the
derivative ˙h(n)(λ) has the correct asymptotic expansion in λ. This result follows from the
following Lemma.
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Lemma 1. The currents H(i)(n), which appear in the local conservation laws for the
densities h(n) along the i-th flow of the Toda hierarchy, have the following asymptotic
expansion:

H(i)(n) = λi +O(λ−1), (2.8)

Proof. Remembering that
(

λiK(λ)
)
−

= O(λ−1), we can write the expression of the
currents as

H(i)(n) = λian−1

[
∂K(λ)

∂bn

1
h(n − 1)

− ∂K(λ)
∂an−1

]
+O(λ−1) (2.9)

Clearly, the Lemma is proved from the former expression (2.3) for K(i)(λ) and the following
Pfaffian relation

∂H(λ)
∂bn

= h(n − 1)
∂H(λ)
∂an−1

(2.10)

(see [23]) between the Hamiltonian density and the Casimir function. �

The previous Lemma gives the expressions of the currents H(i)(n) in the usual basis of
the space of Laurent series, i.e. as a series in the parameter λ. As we said, we want to give
a closed expression of the currents in terms of the densities themselves. In order to give
independence to equations (2.6) in the space Ln of Laurent series, we have to determinate
the pencil parameter λ (and its powers) in terms of the densities h(n). Once again,
the main idea comes from the Riccati equation. In fact we interpret the Riccati system
as a change of basis between the powers of λ, λ2, . . . and the products of the densities
h(n)h(n+1), h(n), 1

h(n−1) , . . . . This remark permits to define the basis of discrete Faá di

Bruno monomials h(i)(n) associated to h(n) as

h(0)(n) = 1
h(i+1)(n) = h(n)h(i)(n + 1). (2.11)

In this way, the Riccati system expresses the link between the natural basis of the powers
of λ and the basis of Faá di Bruno monomials in the affine space of Laurent series in λ.
This link can be written as λs ∈ span

(
h(s)(n), . . . ,h(−s)(n)

)
. This means that there exists

opportune functions αn,j(a, b) not depending of λ such that

λs =
s∑

j=−s

αn,jh
(j)(n). (2.12)

At this point the following Lemma is easily proved.

Lemma 2. The currents H(i)(n), associated to the local conservation laws for the densities
h(n), along the i-th vector field of the Toda hierarchy, satisfy the following relations:

H(i)(n) = ci(n)h(i)(n) + · · ·+ c0(n)h(0)(n), (2.13)

where the coefficients cs(n) are independents from λ.
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This means that the current H(i)(n) are elements of the subspace

H+(n) = span
(
h(0)(n),h(1)(n),h(2)(n), . . .

)
of the space of Laurent series Ln. This determines a direct decomposition of the space of
Laurent series

Ln = H+(n)⊕H−(n), (2.14)

where clearly H−(n) is the subspace generated by the negative Faá di Bruno monomials
of h(n). Using the trivial projection π+ over the subspace H+(n), we can express (2.13)
as:

π+

(
λi

)
= H(i)(n), (2.15)

where we made use of the asymptotic expansion of the currents H(i)(n) = λi+O(λ−1) and
of the linearity of the projector π+ and property π+

(
O(λ−1)

)
= 0 (since every positive

Faá di Bruno monomial has the asymptotic expansion h(s)(n) = λs + O(λs−1), and no
linear combination of them can generate a series without positives powers of λ). Formula
(2.15) gives a method to compute the currents in terms of the coefficients of the series
h(n). The passage from the local conservation laws of the Toda hierarchy to the KP
hierarchy, is now easy. At this point, we consider the density

h(n) = λ + h0(n) + h1(n)λ−1 + . . . , (2.16)

as an arbitrary monic Laurent series, no more forced to be a solution of the Riccati system.
This permits to consider the coefficients hj(n) of the expansion of h(n) as independent
coordinates in the infinite dimensional manifold of the Laurent series in λ. Formula (2.15)
of the currents, formulated before, is now considered as the definition of the currents and
the expression (2.6) is the discrete KP equation. The previous definition of the currents,
permits to determine H(i)(n) as functions of the point h(n). In fact, the currents H(i)(n)
are the unique Laurent series with the expansion in λ given by (2.8) and the expansion in
the Faá di Bruno basis given by (2.13). The main difference with the picture delineated
before consists in the fact that the coefficients cl(n) of the former expansion are functions
of the coefficients hl(n) of the arbitrary Laurent series (2.16).

3 Lax formulation

So far we have used a space representation, where the Faá di Bruno basis h(i)(n) is moving
in Ln and the standard basis λi is fixed. Now we pass to a body representation, where the
Faá di Bruno basis is considered as fixed and the standard basis becomes moving. The KP
equation is considered as the equation of moving frame of the Faá di Bruno monomials.
The relation between the two approach to the KP equation is given by this change of
representation in the space Ln and translated into the space Dn of difference operator
through a linear map ψn. We introduce a linear map φn from the space of Laurent series
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Ln in λ and the algebra Dn of shift operators. On the elements of the Faá di Bruno basis
it is defined by

φn(h(i)(n)) = ∆i, (3.1)

and it is extended by linearity over the entire space. The relation between the two ap-
proaches is given by the following Theorem.

Theorem 1.

φn(λ) = L (3.2)

Proof. The proof develops in two parts: in the first part we will show that φn(λ) has the
same expansion in ∆ of the operator L ( and we obtain an invertible relation between the
components of the expansion of the density h(n) and the components of the expansion of
the operator L). In the second part we will show that if the components of h(n) evolve
according to the KP equation:

∂h(n)
∂ti

= h(n)
(

H(i)(n + 1)− H(i)(n)
)

, (3.3)

then the components of L evolve according to equation

∂L

∂ti
=

[(
Li

)
+

, L

]
. (3.4)

We denote with qj(n) the components of the expansion of λ with the Faá di Bruno mono-
mials

λ = h(1)(n)−
∑
j≥0

qj(n)h(−j)(n). (3.5)

Formula (3.5) express the change of representation before discussed. At the first orders
we have explicitly:

q0(n) = h0(n)
q1(n) = h1(n)
q2(n) = h2(n) + h0(n − 1)h1(n) (3.6)
q3(n) = h3(n) + h0(n − 1)h2(n) + h0(n − 2)h2(n)

+h1(n − 1)h1(n) + h0(n − 2)h0(n − 1)h1(n)
...

If we apply the map ψn to (3.5), we have

φn(λ) = ∆−
∑
j≥0

qj(n)∆−j . (3.7)

In this way φn(λ) is an element L of Dn and the relation between the two expression (1.1)
and (3.7) is given by (3.6).
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At this point, we have to verify that the evolution of the coefficients qj(n) of L = φn(λ)
satisfies equation (3.4) and this proves the theorem.

For this purpose, we give some important properties of the map φn. The first one
concerns the values of the multiplication of an elements of the Faá di Bruno basis by a
power of λ. We will show that:

φn

(
λk · h(j)(n)

)
= ∆j(Lk). (3.8)

To prove (3.8), we consider the case of j = 1 and k = 1:

φn

(
λ · h(1)(n)

)
= φn

( h(1)(n + 1)−
∑
j≥0

qj(n + 1)h(−j)(n + 1)

 · h(j)(n)
)

= φn

( h(2)(n)−
∑
j≥0

qj(n + 1)h(−j+1)(n)

 · h(j)(n)
)

= ∆2 −
∑
j≥0

qj(n + 1)∆−j+1

= ∆ ·
(
∆−

∑
j≥0

qj(n)∆−j
)
= ∆ · L

where we used the definition of the Faá di Bruno monomials. The general proof of (3.8)
proceeds by induction with similar arguments.

The second property of φn concerns its action on the temporal derivatives of the Faá di
Bruno monomials. In fact, using the evolution law (3.3) for h(n), it is possible to obtain
the expression of the evolution law for generic Faá di Bruno monomials. If h(n) evolves
according to

˙h(n) = h(n)
(

H(n + 1)− H(n)
)

, (3.9)

with H(n) a generic currents, then

˙h(j)(n) = h(j)(n)
(

H(n + j)− H(n)
)

. (3.10)

For example, for j = 2 we have:

˙h(2)(n) =
(

h(n + 1) · h(n)
)•

= ˙h(n) · h(n + 1) + h(n) · ḣ(n + 1)

= h(n) · h(n + 1)
(

H(n + 2)− H(n + 1)
)
+ h(n + 1) · h(n)

(
H(n + 1)− H(n)

)
= h(2)(n)

(
H(n + 2)− H(n)

)
,

and analogously for a generic integer j. If now apply the function φn to (3.10) and suppose
that the current H(n) does not depend on λ, we obtain:

φn

(
˙h(j)(n)

)
= φn

(
h(j)(n)

(
H(n + j)− H(n)

))
= H(n + j)∆j − H(n)∆j

=
[
∆j , H(n)

]
.
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Now, let us suppose that the current in (3.10) is a polynomial in λ

H(n) =
∑

k

λkHk(n)

then we have

φn

(
˙h(j)(n)

)
= φn

( ∑
k

λkh(j)(n)
(

Hk(n + j)− Hk(n)
))

=
∑

k

[
∆j , H(n)

]
Lk

where we have used the previous equation and the first property of φn equation (3.8).
The third property of φn which we use is the following:

φn · π+ = Π+ · φn (3.11)

where π+ is the projection of the space Ln onto the subspace < 1, h(1)(n), h(2)(n), · · · >
generated by the positive Faá di Bruno monomials, while Π+ is the projection of Dn on
the subspace < 1,∆,∆2, · · · > generated by the positive powers of ∆.

Now, we are ready to conclude the proof of (3.4). Let us consider the relation (3.5)

λ = h(1)(n)−
∑
l≥0

ql(n)h(−l)(n), (3.12)

and let us differentiate it with respect to the j-th flux of the KP equation (3.3)

∑
l≥0

∂ql(n)
∂tj

h(−l)(n) =
∂h(1)(n)

∂tj
−

∑
l≥0

ql(n)
∂h(−l)(n)

∂tj
. (3.13)

Applying the map φn to both members of this equation and using the first two properties
of the map φn, one gets:∑

l≥0

∂ql(n)
∂tj

∆−l =
∑
k≥1

[
∆, Hj

k(n)
]

L−k −
∑
k≥1

∑
l≥0

ql(n)
[
∆−l, Hj

k(n)
]

L−k

(where the expression of the currents H(j)(n) = λj +
∑

k≥1 Hj
k(n)λ

−k has been used). The
previous expression is equivalent to

∂L

∂tj
+

∑
k≥1

[
L, Hj

k(n)
]

L−k = 0. (3.14)

If we now consider

Q(j)(n) = φn(H(j)(n)) = φn(λj +
∑
k≥1

Hj
k(n)λ

−k) = Lj +
∑
k≥1

Hj
k(n)L

−k, (3.15)

we observe that

Q(j)(n) = φn(π+(λj)) = Π+(φn(λj)) =
(

Lj
)

+
(3.16)
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using the formula of the currents H(j)(n) = π+(λj) and the third property (3.11) of φn.
At this point the proof is complete if we substitute the previous expression (3.16) into

(3.14), obtaining

∂L

∂tj
+

[
L,

(
Lj

)
+

]
= 0. (3.17)

which is the discrete KP equation in the Lax formalism. �

4 The Baker-Akhiezer function

We want to conclude by showing some properties of the KP equation which come from
the bi-Hamiltonian structure of the Toda equation. First of all, we prove the commutation
of the fluxes of the KP hierarchy:

∂H(i)(n)
∂tj

=
∂H(j)(n)

∂ti
. (4.1)

This property comes from the following Theorem, where the expression of the evolution
of the currents H(i)(n) along the vector fields of the KP hierarchy is given.

Theorem 2. Along the trajectories of the discrete KP hierarchy, the currents H(i)(n)
obey the equations( ∂

∂ti
+ H(i)(n)

)
(H+(n)) ⊂ H+(n), (4.2)

where H+(n) = span
(
h(0)(n),h(1)(n),h(2)(n), . . .

)
=< H(0)(n),H(1)(n),H(2)(n), · · · >, or

equivalently:

∂H(i)(n)
∂tj

= −H(i)(n)H(j)(n)+H(i+j)(n)+
j∑

l=1

H i
l (n)H

(j−l)(n)+
i∑

l=1

Hj
l (n)H

(i−l)(n), (4.3)

which is the Central System [20][25] of the discrete KP theory.

Proof. We proceed by induction using the Faá di Bruno formula and the KP equation
written in the following equivalent form:

h(n) ·
( ∂

∂ti
+ H(i)(n + 1)

)
=

( ∂

∂ti
+ H(i)(n + 1)

)
· h(n). (4.4)

We prove that( ∂

∂ti
+ H(i)(n)

)
· h(j)(n) ⊂ H+(n). (4.5)

Starting with j = 1:( ∂

∂ti
+ H(i)(n)

)
· h(1)(n) =

∂h(n)
∂ti

+ H(i)(n)h(n) = h(n)H(i)(n + 1)

= h(n)
(

h(i)(n + 1) + ci−1(n + 1)h(i−1)(n + 1) + . . .

· · ·+ c0(n + 1)h(0)(n + 1)
)

= h(i+1)(n) + ci−1(n + 1)h(i)(n) + · · ·+ c0(n + 1)h(1)(n) ∈ H+(n).
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Now let us suppose that (4.5) is true for j and let us prove it for j + 1:( ∂

∂ti
+ H(i)(n)

)
· h(j+1)(n) =

( ∂

∂ti
+ H(i)(n)

)
· h(n)h(j)(n + 1)

= h(n) ·
( ∂)

∂ti
+ H(i)(n + 1)

)
· h(j)(n + 1)

= h(n) ·
( ∑

csh
(s)(n + 1)

)
=

∑
cs(n + 1)h(s+1)(n) ∈ H+(n).

Clearly (4.3) is the expression of (4.2) with respect to the basis H(0)(n), H(1)(n), H(2)(n), . . .
of the space H+(n). �

The closure condition (4.1) allows us to introduce a potential ψ(n, λ) by

H(i)(n) =
∂

∂ti
logψ(n). (4.6)

We will show that the function ψ(n) is the Baker-Akhiezer function [3, 7, 27, 28] for
the discrete Lax operator L. First of all we establish a relation between ψ(n) and the
Hamiltonian density h(n):

h(n) =
ψ(n + 1)

ψ(n)
. (4.7)

The proof of (4.7) follows by the definition (4.6) of the potential ψ(n) and the KP equation
itself:

∂

∂ti
log (h(n)ψ(n)) =

∂

∂ti
logψ(n) +

∂

∂ti
log h(n)

= H(i)(n) + H(i)(n + 1)− H(i)(n)

= H(i)(n + 1) =
∂

∂ti
logψ(n + 1).

From (4.7) follows that

h(i)(n) =
ψ(n + i)

ψ(n)
, (4.8)

for every elements of the Faá di Bruno basis. Now, we are ready to prove that the function
ψ(n) is the Baker-Akhiezer function for L, i.e. ψ(n) is an eigenvector of L with eigenvalue
λ:

ψ(n;λ)λ = Lψ(n;λ), (4.9)

and

∂

∂tj
ψ(n;λ) =

(
Lj

)
+

ψ(n;λ). (4.10)
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The first one is easily proved, remembering the link between the function ψ(n) and the
Faá di Bruno monomials:

λψ(n) =
(

h(1)(n)−
∑

l

ql(n)h(−l)(n)
)

ψ(n)

=
(ψ(n + 1)

ψ(n)
−

∑
l

ql(n)
ψ(n − l)

ψ(n)

)
ψ(n)

= ψ(n + 1)−
∑

l

ql(n)ψ(n − l)

=
(
∆−

∑
l

ql(n)∆−l
)

ψ(n) = Lψ(n).

With the same arguments, we prove that

∂

∂tj
ψ(n) = H(j)(n)ψ(n) =

(
h(j)(n) +

j−1∑
l=0

cl(n)h(l)(n)
)

ψ(n)

=
(ψ(n + j)

ψ(n)
+

j−1∑
l=0

ψ(n + l)
ψ(n)

)
ψ(n) = ψ(n + j) +

j−1∑
l=0

ψ(n + l)

=
(
∆j +

j−1∑
l=0

cl(n)∆l
)

ψ(n);

and remembering that

(
Lj

)
+

= φn

(
H(j)(n)

)
= φn

(
h(j)(n) +

j−1∑
l=0

cl(n)h(l)(n)
)

= ∆j +
j−1∑
l=0

cl(n)∆l,

as seen in the previous section; we get the equation (4.10), which is the evolution law of
the eigenfuction of the discrete Lax operator L.

A general solution of (4.6) is given by ψ̂(n;λ)e
∑

i≥1 tiλ
i

, where ψ̂(n;λ) = 1 + O(λ−1),
up to an opportune normalization. Relation (4.6), fixes this normalization with

ψ(n;λ) = µnψ̂(n;λ)e
∑

i≥1 tiλ
i

, (4.11)

where µ = O(λ) is an invariant for all the fluxes of the KP hierarchy, because µN =
h(1) ·h(2) · · · · ·h(N) is the Casimir (1.5) of Toda Poisson pencil. Formula (4.6) is the well
known Baker-Akhiezer function for Toda.

Acknowledgments

I wish to thank Prof. Franco Magri and Prof. Marco Pedroni, for the enlightning discus-
sions about the treated arguments and their friendly hospitality. A particular thank to
Maria Carmela Lombardo for her helpful suggestions.



Discrete KP Equation and Momentum Mapping of Toda System 221

References

[1] Adler, On a trace functional for formal pseudo-differential operators and the symplectic
structure of the Korteweg-Devries type equations, Invent. Math., 50 (1979), 219–248.

[2] V. I. Arnold, A. B. Givental, Symplectic geometry, Dynamical systems, IV, Encyclopae-
dia Math. Sci., vol 4, Springer, Berlin (2001), 1–138.

[3] P. Casati, G. Falqui, F. Magri, M. Pedroni, The KP theory revisited. IV . KP equations,
dual KP equations, Baker-Akhiezer and tau function. SISSA/ISAS preprint 5/96/FM.

[4] P. Damianou, Master symmetries and R-matrices for the Toda lattice, Lett. Math. Phys.,
20 (1990), 101–112.

[5] P. A. Deift,L.-C. Li, T. Nanda, C. Tomei, The Toda lattice on a generic orbit is inte-
grable, Comm. Pure Appl. Math., 39 (1986), 183–232.

[6] P. A. Deift, C. Tomei, Matrix factorizations and integrable systems, Comm. Pure Appl.
Math., 42 (1989), no. 4, 443–521.

[7] L. A. Dickey, Soliton equations and Hamiltonian systems, World Scientific Singapore, 1991.

[8] B. Dubrovin, I. M. Krichever, S. P. Novikov, Integrable systems I, Encyclopaedia of Mathe-
matical Sciences, 4, Dynamical systems IV, pp. 173–280, Springer-Verlag 1990.

[9] G. Falqui, F. Magri, M. Pedroni, BiHamiltonian geometry, Darboux covering and
linearization of KP hierarchy, Commun. Math. Phys., 197 (1998), 303–324.

[10] G. Falqui, F. Magri, M. Pedroni, Bihamiltonian geometry and separation of variables for
Toda lattices. In: Nonlinear evolution equations and dynamical systems (Kolimbary, 1999).
J. Nonlinear Math. Phys. 8 (2001), suppl., 118–127.

[11] H. Flaschka, The Toda lattice I: Existence of integrals, Phys. Rev. , B9 (1974), p.1924

[12] H. Flaschka, The Toda lattice II: Inverse scattering solution, Prog. Theor. Phys., 51 (1974),
703–716.

[13] H. Flaschka, Integrable systems and torus action, In O. Babelon et al., editors, Lectures
on integrable systems , World Scientific Singapore (1994), 43–102.

[14] I. M. Gelfand, I. Zakharevich, Webs, Veronese curves and biHamiltonian systems, Funct.
Anal. Appl., 99 (1991), 150–178.

[15] I. M. Gelfand, I. Zakharevich, Webs, Lenard schemes, and the local geometry of bi-
Hamiltonian Toda and Lax structures. Selecta Math (N.S.) 6 (2000), no. 2, 131–183.

[16] B. M. Kostant, The solution to a generalized Toda lattice and reppresentation theory, Adv.
Math., 34 (1979), 195–338.

[17] B. Kupershmidt, Discrete Lax equations and differential-difference calculus, Asterisque,
Paris., Societe Mathematique de France, 1985.

[18] B. Kupershmidt, KP or mKP : noncommutative mathematics of Lagrangian, Hamilto-
nian and integrable systems, American Mathematical Society, 78 Mathematical Surveys and
Monographs, 2000.



222 V Sciacca

[19] F. Magri, G. Falqui, M. Pedroni, The method of Poisson pairs in the theory of nonlinear
PDEs, in CIME course Direct and inverse method in solving nonlinear evolution equations
1999, arXiv: nlin.SI/0002009.

[20] F. Magri, M. Pedroni, J. Zubelli, On the geometry of Darboux transformations for the
KP hierarchy and its connection with the discrete KP hierarchy,Comm. Math. Phys., 188
(1997), no. 2, 305–325.

[21] C. Morosi, L. Pizzocchero, R-matrix theory formal Casimirs and the periodic Toda
lattice, J. Math. Phys., 37 (1999), 4484–4513.

[22] A. Meucci, The bi-Hamiltonian route to the discrete Sato Grassmannian, Ph.D. Thesis,
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